Skip to main content

ORIGINAL RESEARCH article

Front. Immunol.
Sec. B Cell Biology
Volume 15 - 2024 | doi: 10.3389/fimmu.2024.1509534

Preparation and application of a Brucella multiepitope fusion protein based on bioinformatics and Tandem Mass Tag-based proteomics technology

Provisionally accepted
Qi Wu Qi Wu 1Yuan Yuan Yuan Yuan 2Liping Guo Liping Guo 1Yujia Xie Yujia Xie 1Meixue Yao Meixue Yao 1Dehui Yin Dehui Yin 1,2*
  • 1 Xuzhou Medical University, Xuzhou, China
  • 2 Jinan University, Guangzhou, Guangdong Province, China

The final, formatted version of the article will be published soon.

    Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.Methods: Tandem mass tag (TMT) proteomic analysis was conducted on the wildtype strain Brucella abortus (B. abortus) DT21 and the vaccine strain B. abortus A19 to identify proteins with high expression levels. The proteins that exhibited high expression in the wild-type strain were selected based on the proteomic results.Subsequently, B-cell linear epitopes were predicted using multiple computational tools, including ABCpred, SVMTriP, BCPred, and Bepipred Linear Epitope Prediction 2.0. These epitopes were concatenated to construct a multiepitope fusion protein. Following prokaryotic expression and purification, an indirect enzyme-linked immunosorbent assay (iELISA) was developed. A total of 100 positive serum samples, 96 negative serum samples, and 40 serum samples from patients infected with other pathogens were collected and analyzed using the established iELISA. Furthermore, the protein was assessed for its capability to differentiate human brucellosis from lipopolysaccharide (LPS).Results: Proteomic analysis revealed the presence of 152 proteins with high expression levels in the wild-type strains. A multiepitope fusion protein, comprising a total of 32 predicted B-cell linear epitopes, was successfully prepared. The results from the iELISA indicated that the multiepitope fusion protein exhibited exceptional diagnostic performance, evidenced by an area under the receiver operating characteristic curve (AUC) of 0.9576, a sensitivity of 0.9300, and a specificity of 0.8542. In comparison to the commonly utilized LPS antigen, the fusion protein demonstrated a reduced level of cross-reactivity.A novel multiepitope fusion protein has been successfully developed utilizing bioinformatics and TMT proteomics technology. This fusion protein demonstrates significant potential as a diagnostic antigen for brucellosis, exhibiting high sensitivity and specificity.

    Keywords: Brucellosis, diagnosis, multiepitope fusion protein, bioinformatics, Proteomics

    Received: 11 Oct 2024; Accepted: 26 Dec 2024.

    Copyright: © 2024 Wu, Yuan, Guo, Xie, Yao and Yin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Dehui Yin, Xuzhou Medical University, Xuzhou, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.