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Few pathogens have historically been subjected to as intense scientific and

clinical scrutiny as SARS-CoV-2. The genetic, immunological, and environmental

factors influencing disease severity and post-infection clinical outcomes, known

as correlates of immunity, remain largely undefined. Clinical outcomes of SARS-

CoV-2 infection vary widely, ranging from asymptomatic cases to those with life-

threatening COVID-19 symptoms. While most infected individuals return to their

former health and fitness within a few weeks, some develop debilitating chronic

symptoms, referred to as long-COVID. Autoimmune responses have been

proposed as one of the factors influencing long-COVID and the severity of

SARS-CoV-2 infection. The association between viral infections and

autoimmune pathologies is not new. Viruses such as Epstein-Barr virus and

cytomegalovirus, among others, have been shown to induce the production of

autoantibodies and the onset of autoimmune conditions. Given the extensive

literature on SARS-CoV-2, here we review current evidence on SARS-CoV-2-

induced autoimmune pathologies, with a focus on autoantibodies. We closely

examine mechanisms driving autoantibody production, particularly their

connection with disease severity and long-COVID.
KEYWORDS

SARS-CoV-2, COVID-19, autoantibodies, ACE2, autoimmunity, long-COVID, post-
acute sequelae
1 Introduction

SARS-CoV-2 has profoundly impacted the lives of the global community since its emergence

from Hubei province, China, in late 2019 (1, 2). This novel beta-coronavirus rapidly spread

among humans and animals causing the COVID-19 pandemic. Fortunately, the prompt

development of vaccines and extensive immunization efforts significantly reduced the

mortality rate following infection. Nonetheless, over seven million deaths have so far been

attributed to SARS-CoV-2 (3). Despite these medical advances, the incidence of breakthrough

infections and vaccine hesitancy among some individuals means that SARS-CoV-2 continues to

impose a significant burden on healthcare systems worldwide (4–7).
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While most infected individuals return to their pre-infection health

levels, some do not. These individuals continue to experience ongoing

and/or new chronic symptoms for months after the initial infection (8–

10). Although diagnostic guidelines remain unclear, these individuals

are generally referred to as having post-acute sequelae of SARS-CoV-2,

also known as long-COVID patients or long-haulers (11–13).

Another question that has stymied the scientific community is

the highly heterogeneous nature of COVID-19 disease severity (14,

15). While many individuals experience mild or even asymptomatic

infections (16, 17), others suffer severe infections requiring

hospitalization, which can sometimes result in death (18, 19).

Multiple studies have identified independent factors and co-

morbidities that increase the likelihood of poor outcomes

following infection, such as older age, respiratory illnesses,

cardiovascular conditions, obesity, and weak antibody immunity

(20, 21). However, these factors do not account for all severe clinical

outcomes following infection. Given this conundrum, some have

suggested that SARS-CoV-2-induced autoimmune pathologies may

be a contributing factor (22–24). It has also been hypothesized that

autoantibodies are a contributing factor to long-COVID (25).

The underlying factors governing the etiology and development of

autoimmune responses and disease are not well understood and are

believed to have roots in genetics, demographic characteristics (e.g., age

and sex), and environmental factors (26–28). Viruses are considered one

of several central exogenous factors able to trigger autoimmunity (26).

Correlational studies have highlighted close links between certain

viruses and the subsequent development of autoimmune pathologies.

For example, Bjornevik et al. showed that individuals who

seroconverted to Epstein-Barr virus (EBV) had a 32-fold increased

risk of being diagnosed with multiple sclerosis (MS) (29). Other studies

have also linked EBV infections to systemic lupus erythematosus (SLE),

rheumatoid arthritis (RA), and other autoimmune pathologies (30–33).

Type 1 diabetes mellitus is another example of a disease with possible

linkages to viral infections and autoimmunity. Enteroviruses such as

coxsackievirus and rotavirus have been linked with beta-cell

autoimmunity (26, 34–36). Although multiple mechanisms have been

proposed to explain viral-induced autoimmunity, the etiological link

remains unclear due to the scarcity of underlying mechanistic evidence.

Here, we review the association between SARS-CoV-2 infection

and autoimmune pathologies, emphasizing the production of

various autoantibody classes. We present current experimental

evidence on the presence and induction of these autoantibodies in

the context of SARS-CoV-2 infection, and explore potential

mechanisms underlying their emergence. Additionally, we address

the complexities of establishing causal relationships between

autoimmunity and disease processes, situating these findings

within the broader context of SARS-CoV-2 disease severity and

the evolving clinical picture of long-COVID.
2 Types of autoantibodies detected in
SARS-CoV-2 infections

Autoantibodies are immunoglobulins that recognize and bind

to self-antigens (e.g., serum proteins, cellular proteins,
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phospholipids, nucleic acids) (37–39). These antibodies, which

seem to defy tolerance mechanisms, have been detected in many

vertebrates including sharks, fish, turtles, mice, and humans (40–

43). Their ubiquitous prevalence suggests a broader role in

homeostasis (44). Some propose that autoantibodies are

important for immune regulation and function, clearance of

apoptotic cells, transport and modulation of biologically active

molecules, and other physiological processes (45). Autoantibodies

can differ in isotype and binding properties. Some can bind multiple

self-antigens with varying affinities and can be constituted of

minimally mutated recombined V(D)J gene sequences, while

others have undergone more intense somatic hypermutation

resulting in higher affinity autoantibodies (46). While these

antibodies can occur in healthy individuals without any obvious

impact on health, environmental exposures such as viral infections

can sometimes trigger the generation of pathogenic autoantibodies

or increase existing autoantibodies to pathogenic levels. This section

summarizes experimental evidence and describes various

potentially pathogenic autoantibodies linked with SARS-CoV-2

infections (Figure 1).
2.1 Anti-nuclear antibodies

Antinuclear antibodies (ANA) are a well-known group of

autoantibodies that recognize and bind to antigens within the

nuclear compartment (47–49). These autoantibodies are generally

classified into two large groups: (I) antibodies targeting DNA and

histones, and (II) antibodies targeting extractable nuclear antigens,

including RNA-binding proteins complexed to RNA (50, 51).

Examples of ANA antibodies include anti-dsDNA, anti-histones,

anti-Smith antigen, anti-SSA/Ro, anti-SSB/La, anti-Scl70, and anti-

Jo-1 (51). Their combinatorial presence has been used as laboratory

biomarkers for several autoimmune diseases such as rheumatoid

arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s

disease, and systemic sclerosis (50, 52–54).

The prevalence of ANA autoantibodies in SARS-CoV-2

infections has been explored by multiple groups. Early in 2020,

studies reported ANA seroprevalence in small cohorts of SARS-

CoV-2-infected individuals that ranged from 34.5% to 54.5% (55–

57). Larger cohorts estimated ANA prevalence at around 35.6% by

Gazzaruso et al., around 25% by Lerma et al., and around 57.5% by

Sacchi et al. (58–60). Interestingly, ANA autoantibodies cannot

simply be explained by hyperglobulinemia, as they are produced in

different proportions to total immunoglobulin levels in plasma (61).

The notable heterogeneity in seroprevalence of ANA antibodies

across studies could be explained by SARS-CoV-2 severity and

cohort characteristics. For example, Taeschler et al. observed a

higher trend of ANA antibodies in individuals with severe COVID-

19 compared to those with milder infections (62). Despite numerous

seroprevalence studies on ANA, mechanistic studies are limited.

Recently, a longitudinal cohort study of 106 convalescent

individuals identified ANA antibodies as a predictor of long-

COVID (63). Interestingly, in another large recent study, the

authors found an increased risk of an autoimmune pathology
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diagnosis after COVID-19 in those with detectable ANA antibodies

(64). Nonetheless, it is important to note that ANA antibodies are

also found in 14-27% of healthy individuals without symptomatic

presentations (65–68). The low predictive value of positive

antinuclear antibodies (ANA) requires careful correlation with

clinical findings to support an autoimmune diagnosis.

Consequently, studies linking SARS-CoV-2 infection with ANA

positivity must be interpreted within the context of the study’s

healthy control cohorts, the specific assays used, and the

established positivity thresholds.
2.2 Anti-cytokine antibodies

Antibodies recognizing various cytokines have been described in

the context of viral infections prior to the COVID-19 pandemic (69,

70). Anti-cytokine antibodies (ACA) have been shown to bind a vast

array of common cytokines such as IL-1, IL-6, IL-8, IL-12, GM-CSF,

IFN-a, IFN-g, and TNF-a (71–80). Interestingly, certain categories of

anti-cytokine antibodies have been linked with disease. For example,

anti-GM-CSF autoantibodies are believed to be responsible for

idiopathic pulmonary alveolar proteinosis (PAP). While primary

PAP is caused by a mutation in the GM-CSF receptor, idiopathic

PAP is caused by the neutralization of GM-CSF itself (81–83). Anti-
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cytokine autoantibodies, particularly anti-IFN-g, have been linked

with poor clinical outcomes and increased disease severity in

individuals infected with nontuberculous mycobacteria and other

opportunistic infections (84–87). These antibodies can effectively

neutralize interferon-gamma, leading to poor immune engagement

and an overall compromised immune response (84, 88). Immune

suppression by ACA has led to their inclusion in the IUIS

classification of primary immunodeficiency diseases, commonly

referred to as adult-onset immunodeficiency syndrome (AOID)

(89, 90). Bastard et al. first reported that in a cohort of 987

individuals with severe COVID-19, 10.2% had detectable levels of

autoantibodies against type I IFN. These autoantibodies were not

found in individuals with mild or asymptomatic SARS-CoV-2

infections. The overall seroprevalence of these autoantibodies in

healthy individuals was approximately 0.33%, underscoring a

significant association with severe COVID-19 (91). These

observations have been confirmed by other groups across various

demographics (92–96). Anti-IFN antibodies are thought to pre-exist

in certain individuals rather than being induced by infection. This

highlights their potential to exacerbate common infection severity

through IFN neutralization, thereby inhibiting downstream antiviral

signaling pathways (91). Other types of ACA have also been

identified in severe cases of SARS-CoV-2. For example, Chang

et al. used a multiplex protein array to identify antibodies targeting
FIGURE 1

Types of autoantibodies associated with SARS-CoV-2 infection. Multiple studies have highlighted the association, induction, and possible roles of
various types of autoantibodies in SARS-CoV-2 infection. This figure illustrates the primary categories of autoantibodies: Anti-ACE2, Anti-Cytokine
Antibodies (ACAs), Antinuclear Antibodies (ANAs), and Anti-Phospholipid Antibodies (APLAs), Rheumatoid factors (RFs). Autoantibodies can generally
be detected in circulation but may act in specific physiological locations (e.g., blood, respiratory tract epithelium). For simplicity, IgG antibodies are
mostly depicted here, although IgM and IgA antibodies may also be present. The respiratory epithelium layer is shown as a representative site for
SARS-CoV-2 infection, although the virus can infect multiple other tissues. The figure was created in https://BioRender.com.
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IL-1, -6, -10, -15, -17A, -22, -21, MIP-a, and VEGF-B (61). Another

group reported similar findings, including IFN-g, GM-CSF, IL-12p70,

IL-17F, and TNF-b, but only found anti-IL-12p70, anti-IL-22, and

anti-IL-6 to be neutralizing. Non-neutralizing anti-cytokine

antibodies can still have clinical relevance; however, their role in

SARS-CoV-2 infection is not well defined. Key questions remain

regarding the triggers for their induction and the persistence of ACA

levels over time. Additionally, the clinical impact of most ACAs is

poorly understood. In the context of long-COVID, there is currently

no evidence to suggest that ACAs contribute to the condition.
2.3 Anti-ACE2 antibodies

Intensive research has centered on the angiotensin-converting

enzyme 2 (ACE2) protein, recognized as the entry receptor for both

SARS-CoV-1 and SARS-CoV-2. Additionally, ACE2 serves as the

entry receptor for NL63, a common human alphacoronavirus (97).

Given the key role of this protein in viral entry, some hypothesized

that auto-reactivity to ACE2 could contribute to severe COVID-19

symptoms (22, 98). Building on these questions, several studies

examined anti-ACE2 autoantibodies in SARS-CoV-2-infected

individuals. Arthur et al. found that antibodies recognizing ACE2

were detected in 93% of inpatients, and 81% of convalescent controls,

but in none of the healthy controls (99). Another study found IgM

antibodies to ACE2 in 27.2% of individuals with severe infections but

only 3.8% of those with mild disease, similar to the control cohort

(4%) (100). Additional studies have documented the presence of anti-

ACE2 antibodies (101, 102). However, anti-ACE2 antibodies have

not shown significant capacity to inhibit ACE2 enzymatic activity

(99, 100). Interestingly, a study demonstrated the induction of anti-

ACE2 antibodies following immunization with recombinant RBD in

mice (101). While there is evidence that SARS-CoV-2 infection can

induce anti-ACE2 autoantibodies, the topic remains controversial.

For example, Chang et al. did not find elevated anti-ACE2

autoantibodies in hospitalized SARS-CoV-2 patients compared to

other autoantibodies (61). In a cohort study of 464 individuals, anti-

ACE2 IgG autoantibodies were detected in 10.3% of participants, IgA

in 6.3%, and IgM in 18.8%, with no association found with SARS-

CoV-2 vaccination or infection (103). ACE2 autoantibodies are not

exclusive to SARS-CoV-2 infection, having been detected in

conditions such as Parkinson’s disease, vasculopathy, and

rheumatoid arthritis (104–108). The presence and function of anti-

ACE2 antibodies in serum remain unclear, with mixed evidence of

their association with SARS-CoV-2 infections.
2.4 Anti-phospholipid antibodies

Anti-phospholipid antibodies (APLAs) target phospholipids and

phospholipid-binding proteins such as cardiolipin (CL), b2-
glycoprotein-1 (b2GP1), and non-classical antigens like

prothrombin (PT) and annexin-V (109–113). These autoantibodies

are primarily associated with antiphospholipid syndrome (APS), a

condition characterized by thrombotic events and pregnancy
Frontiers in Immunology 04
complications (113, 114). While murine models have demonstrated

APLA pathogenicity in APS, the underlying etiology remains unclear

(115, 116).

Historically, APLAs were first identified in fetuses with

congenital syphilis in 1906 and have since been linked to

infections such as HIV and HCV (117, 118). COVID-19

coagulopathy shares similarities with thrombotic events observed

in both standard and catastrophic APS (119, 120). In early 2020, a

case report suggested a potential role for APLAs in severe COVID-

19 (121). Subsequent studies have further explored this association.

For example, critically ill COVID-19 patients were reported to

exhibit elevated levels of APLAs, such as IgA against CL and IgG/

IgA against b2GP1 (122).

While several other studies have also highlighted the prevalence

of elevated APLAs in COVID-19 patients (59, 123–125),

Trahtemberg et al., however, found that APLAs associated with

increased disease severity of patients with respiratory failure

regardless if they were infected by SARS-CoV-2 or not (126).

Reports have also correlated APLAs with thrombosis. Helms

et al., for instance, identified APLAs in 87.7% of 57 SARS-CoV-2

patients with coagulation abnormalities (127). Supporting evidence

from other studies has confirmed similar findings (122, 128).

Mechanistically, Zuo et al. demonstrated that IgG fractions from

COVID-19 patients with APLAs induced neutrophil extracellular trap

(NET) release in healthy neutrophils and promoted venous thrombosis

in mice (129). However, Serrano et al. observed elevated anti-b2GP1
levels in COVID-19 patients but found no association with thrombosis

(130). Additionally, some studies reported no link between APLAs and

thrombosis (123, 124, 131).The relationship between COVID-19-

associated coagulopathy and APLAs remains ambiguous. It is

unclear whether these coagulopathies are independent of APLAs,

whether APLA prevalence is specific to COVID-19, or if it is simply

a feature of severe illness and hospitalization. Uncharacterized APLAs

may play a role in these coagulopathies. Notably, baseline APLA levels

vary with age and may be influenced by other infections or

autoimmune disorders (118, 132, 133).
2.5 Rheumatoid factors

Rheumatoid factors (RFs) are a common class of autoantibodies

that recognize and bind the Fc region of IgG immunoglobulins

(Figure 1) (134, 135). RFs can be of any isotype and have been

described extensively in the context of rheumatoid arthritis but have

also been associated with other autoimmune conditions (e.g., SLE,

Sjögren’s disease) (136–138). Notably, RFs have also been described

in the context of viral infections, such as hepatitis C virus (HCV)

(139, 140). Recently, RFs have been linked to COVID-19. In a

cohort of 129 individuals, Xu et al. detected RFs in 20% of

individuals infected with COVID-19 (141). Other studies have

reported a variable RF seroprevalence among COVID-19 patients,

ranging from 20% to 50% (141–144). One study found higher rates

of death, ICU admission, and mechanical ventilation in COVID-19

patients that were RF-positive, suggesting a link with disease

severity (142). Interestingly, another study identified novel
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polyreactive RFs in COVID-19, with one RF able to bind epitopes

on IgG and the spike protein (145). The role of RFs in SARS-CoV-2

infection and recovery remains unclear. Previous research has

suggested that RFs may neutralize virus-antibody complexes (146)

and enhance viral clearance (147). Additionally, RF-positive B cells

have been shown to present antigens to T cells, potentially

augmenting cellular immune responses during viral infections

(148).These findings raise the possibility that RFs may play a

protective role during SARS-CoV-2 infection; however, further

mechanistic studies are required to elucidate their exact function.
2.6 Other types of autoantibodies

Anti-citrullinated protein antibodies (ACPAs) are a notable class of

autoantibodies that recognize peptides containing citrulline, a post-

translational modification of arginine (149). ACPAs are strongly

associated with autoimmunity and serve as a hallmark marker of

rheumatoid arthritis (150–152). Early in the COVID-19 pandemic, a

case study reported a potential association between ACPAs and SARS-

CoV-2 infection (153). However, subsequent studies have produced

mixed results, with some supporting a connection between ACPAs and

COVID-19, while others have not found a significant link (154–156).

Another group of autoantibodies relevant to SARS-CoV-2

infections are anti-neutrophil cytoplasmic antibodies (ANCAs).

These autoantibodies are primarily associated with ANCA-associated

vasculitis (AAV) (157). Case reports have documented instances of

AAV occurring in the context of SARS-CoV-2 infection (158, 159).

However, the association of both ACPAs and ANCAs with COVID-19

requires validation through studies involving larger cohorts.

Recent advancements in high-throughput multiplexed

approaches have significantly enhanced our understanding of

autoantibody prevalence. For instance, human exoproteome

display analysis using a yeast library has facilitated the profiling

of several hundred potential autoantigens. These techniques have

been applied to studies of SARS-CoV-2 infection and long-COVID.

Interestingly, Klein et al. utilized these methods to evaluate

autoantibodies against thousands of putative self-antigens. They

observed no significant differences in autoantibody levels or specific

enrichment in individuals with long COVID (160). However, in

severe COVID-19 cases, the same approach revealed a broad range

of autoantibodies targeting lymphocyte function, cytokines,

complement factors, growth factors, cell surface proteins, and

more (95). Other high-throughput approaches confirmed that

severe SARS-CoV-2 infections induce autoantibodies against a

broad array of secreted and non-secreted proteins (61, 161, 162).

These unbiased assays provide a comprehensive assessment of

circulating autoantibody distributions.
3 Mechanisms for autoantibody
induction during viral infection

Studies on the prevalence of autoantibodies across various

health conditions, including viral infections such as SARS-CoV-2,
Frontiers in Immunology 05
are relatively common; however, the mechanisms leading to

increased self-tolerance breakdown during viral infections remain

unclear. In this review, we describe, explain, and discuss the most

relevant mechanisms thought to drive autoantibody production and

potential pathogenesis in the context of viral infections (Figure 2).

These mechanisms are not mutually exclusive, and multiple

pathways may contr ibute to the pool of c irculat ing

autoantibodies. While T cells are also crucial in the generation

and maintenance of autoantibodies, their role is beyond the scope of

this review.
3.1 Natural autoantibodies

Natural autoantibodies are commonly occurring, low-

specificity, and polyreactive antibodies found in all vertebrates

(44, 163–165). These antibodies can occur independently of

antigenic encounters and are able to recognize both endogenous

and exogenous antigens (43, 166, 167). Networks of natural

antibodies have been proposed to be remnants of evolution prior

to the appearance of specific adaptive immune responses (163, 168).

The presence of natural autoantibodies raises critical questions

about our understanding of self-tolerance mechanisms. Central

and peripheral tolerance mechanisms during B cell development

are designed to eliminate autoreactive clones. For instance, in the

bone marrow, negative selection of immature B cells upon

recognition of self-antigens can lead to B cell receptor (BCR)

editing (169). In addition, auto-reactive immature B cells that are

unable to rescue a self-reactive BCR may undergo apoptosis by a

mechanism known as clonal deletion (170). Despite this, a large

number of self-reactive clones persist in the periphery where other

tolerance checkpoints are in place such as B cell anergy (171).

Nevertheless, the immune system appears capable of maintaining a

repertoire of B cell receptors that are polyreactive and can secrete

polyreactive immunoglobulins. These are believed to be secreted

primarily by B1-cells co-expressing CD5, although other subsets

have been reported (172–175). Given this, it is crucial to consider

that some of the autoantibodies detected during and after SARS-

CoV-2 infection may be natural autoantibodies or could result from

the expansion or upregulation of polyreactive B cells already present

in circulation due to inflammation or immune system activation

during infection. A better characterization of the affinities and rate

of somatic hypermutation, as well as identifying B-cell subsets able

to generate such autoantibodies is critical to understand if natural

antibodies play a key role in SARS-CoV-2 related autoantibodies.
3.2 Molecular mimicry

Molecular mimicry is one of the most widely recognized

mechanisms associated with autoimmunity. In its simplest form, it

refers to the phenomenon where certain exogenous antigens, such as

viral proteins, including those from SARS-CoV-2, share common

epitopes with endogenous antigens (26, 176–178). Antibodies raised

against these regions of high homology can in some cases lead to cross-
frontiersin.org
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reactive antibodies that can be pathogenic to the host (179–181). In

1962, the work and observations of Kaplan et al. showed that antibodies

against group A streptococci can cross-react with cardiac tissues,

leading to the death of an individual due to rheumatic pancarditis

caused by a streptococcal infection (182). In the following years,

multiple lines of evidence led to the acceptance of molecular

mimicry as a mechanism explaining cross-reactive antibodies

following infection. In fact, molecular mimicry has been observed

with various viruses such as Influenza, Zika, Epstein-Barr virus (EBV),

and others (183–189). For instance, mimicry between EBV nuclear

antigen 1 (EBNA1) and the central nervous system protein glial cell

adhesion molecule (GlialCAM) has been shown to generate cross-
Frontiers in Immunology 06
reactive antibodies, which are detected in approximately 25% of

multiple sclerosis (MS) patients (190).

Recent computational analyses of structural homology between

SARS-CoV-2 antigens and the human proteome have identified

several shared epitopes. For example, Kanduc et al. identified

several linear hexapeptide epitopes that displayed conserved

homology between SARS-CoV-2 proteins and 460 human

proteins (191). Other groups, using slightly different approaches,

have also reported several SARS-CoV-2 proteins containing regions

that can be referred to as “molecular mimicry hot-spots” (192–194).

Interestingly, immunization of mice with the receptor-binding

domain (RBD) protein, as demonstrated by Lai et al. generated
FIGURE 2

Description of possible mechanisms for autoantibody generation. These mechanisms should be considered as non-exclusive, as more than one
mechanism can explain the pool of autoantibodies detected in SARS-CoV-2. (A) Natural Autoantibodies can be found in most vertebrates and seem
to be important in normal physiological processes. They are believed to arise mainly from the B1 cell subset. These autoantibodies usually exhibit
poly-reactivity to endogenous and exogenous proteins. (B) Molecular Mimicry occurs when an epitope is shared between an exogenous antigen and
an endogenous protein. This can result in cross-reactive autoantibodies that bind to host-derived proteins. (C) Anti-Idiotype Autoantibodies (Ab2)
are generated against the variable region of another antibody (Ab1). This antibody (Ab2) can potentially retain structural determinants of the original
antigen, and in some cases, could bind its target. (D) Epitope Spreading (Intermolecular) can occur when an ongoing inflammatory process (initiated
by a viral infection) results in the release of normally sequestered self-antigens. T and B cell specificity can then extend to self-antigens that would
not normally be presented. (E) Bystander Activation refers to the loss of TCR/BCR engagement requirement for activation that can happen to
immune cells in proximity to a highly inflammatory milieu. Other signals (such as cytokine release) decouple the need for proper engagement with
innate cells and BCR/TCR-MHC interaction. This can result in the activation of auto-reactive clones. The figure was created in https://
BioRender.com.
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antibodies capable of binding to ACE2, suggesting the presence of

cross-reactive epitopes (101). Validation of these findings from

animal models in larger cohorts of vaccinated individuals remains

to be conducted. Importantly, molecular mimicry is not a binary

“all-or-nothing” model; genetic factors, such as HLA haplotypes,

and environmental factors, such as infections, can influence antigen

processing and peptide presentation (195).
3.3 Anti-idiotype antibodies

Anti-idiotype antibodies are not often discussed in the context

of autoimmunity. However, these types of antibodies remain

interesting as they could explain, at least partially, some of the

autoantibodies detected during SARS-CoV-2 infections. The

concept of anti-idiotype antibodies, first introduced by Niels Jerne

in 1974, suggests that antibodies generated in response to infection

(Ab1) possess an immunogenic component within their variable

regions that constitutes the idiotype. This region could then be

recognized as an antigen, and as such, new antibodies (Ab2)

generated against this region would structurally mimic the

original antigen (196). This can hypothetically have ramifications

whereby anti-idiotype Ab2 antibodies could bind membrane-bound

proteins of the host, form immune complexes, and potentially drive

pathogenic effects (197, 198). In the context of the SARS-CoV-2

spike protein, one can hypothesize that antibodies against the spike

protein could represent the Ab1, and newly generated Ab2

antibodies would be able to bind Ab1 antibodies, but also

potentially the ACE2 protein. Interestingly, anti-idiotype

antibodies have been explored as possible vaccine candidates for

infectious diseases and cancer therapies (199–203). Despite this

intriguing hypothesis, at the time of writing this review, no

experimental evidence has been reported to support this

mechanism in the context of SARS-CoV-2.
3.4 Epitope spreading

Epitope spreading (ES) can be described as the broadening of

reactive lymphocytes to other antigen/epitopes (204, 205). Epitope

spreading can be subdivided into intramolecular ES when reactive

lymphocytes are able to react with cryptic, non-presented, non-

available, or sub-dominant epitopes (206, 207). In contrast, ES can

also occur through the diversification of reactive T and B

lymphocytes toward antigens distinct from the initially presented

antigen that triggered their expansion, a phenomenon commonly

referred to as intermolecular ES. Intermolecular ES is frequently

discussed in contexts of tissue damage, whether caused by direct

trauma or by tissue destruction through phagocytic and

inflammatory mechanisms (208, 209). Several factors influence

the magnitude of ES, some of which include the type and

intensity of the primary inflammatory process and the magnitude

of the tissue damage (210). It is also important to consider that ES

can be a normal feature of immunity, allowing for more efficient

and diverse adaptive responses (208). While ES has been associated

with multiple viruses, whether ES contributes to SARS-CoV-2-
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related autoantibodies remains inconclusive (26, 211). However,

tissue damage has been extensively described in severe COVID-19

(212, 213). As such, it is reasonable to suggest that ES is a valid

possibility that could explain the generation of some of the

autoantibodies identified following SARS-CoV-2 infections.
3.5 Bystander activation

Bystander activation has been proposed as a mechanism that

may explain the activation of auto-reactive lymphocytes

independently of their BCR/TCR specificity (214, 215). This

antigen-independent activation relies on several co-stimulatory

signals that decouple the requirement of BCR/TCR signaling with

their specific antigen (214, 216). Some of these signaling mediators

include ligands (co-signaling receptors, pathogen-associated

molecular patterns), cytokines, and chemokines (214, 217–221).

These signaling mediators can all occur during infection, resulting

in a localized pro-inflammatory environment that can trigger

bystander activation of nearby lymphocytes. For example, during

primary HIV infection, CD8+ T cells against influenza, EBV, and

CMV show markers of activation and expansion in some

individuals, despite the absence of cognate antigens (219). Several

autoimmune disorders have been associated with bystander

activation such as rheumatoid arthritis (RA), systemic lupus

erythematosus (SLE), Grave’s disease, and Hashimoto’s thyroiditis

(222–225). While direct evidence of bystander activation in SARS-

CoV-2 infections is limited, it is well known that severe infections

have been correlated with an overall release of pro-inflammatory

cytokines (226, 227), which have the potential to initiate bystander

activation in some individuals.
3.6 Other proposed mechanisms

In addition to the mechanisms discussed in this review, several

other processes may contribute to the generation of autoantibodies.

These include direct infection of lymphocytes, the activity of

superantigens, and the breakdown of immune tolerance

mechanisms (228, 229). It is also important to recognize that

polyreactive antibody-secreting cells can positively contribute to

antibody-mediated immune responses during infection. For

instance, in the context of influenza infections, polyreactive

monoclonal antibodies (mAbs) have demonstrated increased

binding breadth to antigenically drifted and shifted influenza A

virus (IAV) antigens (230). Similarly, in HIV infections, two well-

characterized broadly neutralizing mAbs were found to be

polyreactive and cross-reactive to cardiolipin (231).
4 Possible regulatory roles
of autoantibodies

Autoantibodies have also been linked to the relief of

inflammatory pathologies, suggesting possible regulatory

functions. It is important to consider that autoantibodies may not
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all be pathogenic, and some may possibly be important features of

normal physiology. For example, Sjöwall et al. showed that in

patients with systemic lupus erythematosus (SLE) a reduction of

TNFa autoantibodies was linked with disease exacerbation (78).

Similarly, another group showed that autoantibodies against type 1

IFN in SLE correlated with lower levels of IFN bioactivity and

reduced downstream IFN pathways, which correlated with a lower

disease score (77). It is also important to consider the regulatory

role of antibodies in the treatment of numerous autoimmune or

inflammatory conditions. For example, Guillain-Barré syndrome,

chronic inflammatory demyelinating polyneuropathy, vasculitis,

immune thrombocytopenic purpura, and several others are often

treated with intravenous immunoglobulins (IVIG) (232–234). Anti-

idiotype interactions, inhibition of complement deposition,

saturation of the neonatal Fc receptor (FcRn) involved in

antibody recycling, and competitive blockade of activating Fc

gamma receptors are all non-exclusive mechanisms proposed to

explain the effects of intravenous immunoglobulin (IVIG) (233,

235). These examples highlight that antibodies, including

autoantibodies, can be important in controlling aberrant or

excessive inflammatory processes. Whether autoantibodies

associated with SARS-CoV-2 are of regulatory importance in viral

infections or post-infection physiological processes remains unclear

but represents an interesting proposition.
5 Link with disease severity

Research on autoantibodies in individuals infected with or

recovering from SARS-CoV-2 has primarily focused on those

with severe COVID-19, aiming to elucidate their role in adverse

outcomes. As a result, most studies have reported autoantibody

presence in hospitalized patients with severe disease, leaving limited

data on those with mild or asymptomatic infections. The definitive

relationship between autoantibody production and disease severity

remains under investigation.

A recent study stratified participants by disease severity,

including healthy controls, and found an increased prevalence of

autoantibodies—particularly those targeting cardiolipin, claudin,

and platelet glycoproteins—with escalating disease severity and

advancing age (236). Mechanistically, severe SARS-CoV-2

infections may result in a temporary loss of T cell tolerance.

Woodruff et al. demonstrated that severe COVID-19 is associated

with the expansion of antibody-secreting B cell populations with

low somatic hypermutation, which contract upon recovery,

indicating a transient period of reduced selection pressure (229).

Similar findings have been observed in acute respiratory distress

syndrome caused by bacterial pneumonia, suggesting this

phenomenon may represent a physiological response to severe

pulmonary infections (229). Recent data from Jaycox et al.

suggest that the increase in autoantibodies seen in SARS-CoV-2

infections is not a feature of mRNA vaccinations, suggesting that

severe infection may well be the cause (237). While anecdotal

reports and small cohort studies have identified autoantibodies

after vaccination (238, 239), vaccination remains protective against

the development of autoimmune diseases (240, 241).
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The underlying mechanisms driving autoantibody production

during SARS-CoV-2 infection remain unclear. It is hypothesized

that factors such as the intensity of the immune response,

inflammation (e.g., cytokine storm), or viral proteins may

contribute to their development. Variability in symptom profiles

and infection characteristics, such as viral variants, may also

influence autoantibody production.

Interestingly, one study highlighted that autoantibodies are not

unique to SARS-CoV-2 but are a common feature in critically ill

patients with non-SARS-CoV-2 respiratory infections (242).Anti-

cytokine autoantibodies were more prevalent in critically ill patients

with non-SARS-CoV-2 infections compared to non-infected

critically ill individuals (242). Although baseline levels of anti-

cytokine autoantibodies (ACAs) in SARS-CoV-2 patients remain

understudied, ACAs are recognized as potential risk factors for

severe disease. Future longitudinal studies are needed to quantify

the risk of severe COVID-19 associated with pre-existing ACAs and

to monitor whether specific ACAs are induced during infection.
6 Interpretation and considerations
related to SARS-CoV-2-
induced autoantibodies

The COVID-19 pandemic has highlighted the established link

between viral infections and autoantibodies with a remarkable volume

of literature emerging on this topic. Reaching robust conclusions

about the causative factors behind autoantibody production and their

physiological roles is challenging due to the wide diversity of study

designs (e.g., cross-sectional, longitudinal, retrospective, case reports),

laboratory assay methodologies, and the varying characteristics of

SARS-CoV-2 infections and clinical outcomes (e.g., disease severity,

hospitalization, viral variants, therapeutic interventions, vaccination

status, and co-morbidities) (Figure 3).
6.1 Interpretation of laboratory assay data

The wide range of validated and in-house assays used to

measure autoantibodies results in variability in reporting and

interpretation, which often depends on the specific method

employed. Taking ANA detection as an example, it has

traditionally been performed using indirect immunofluorescence

(IIF), which is considered the gold standard method (243).

However, the development of alternative methods, such as solid-

phase assays and bead-based multiplex platforms, has introduced

challenges in standardizing results across different techniques (244).

Beyond the challenges of standardization, each experimental system

has distinct sensitivity and specificity profiles. While most assays

used in clinical settings have been validated, in-house assays are

inherently more flexible but their performance more heterogeneous.

Therefore, it is essential to carefully select the assay type based on

the specific research questions being asked. Furthermore, the choice

of thresholds for seroprevalence measurements should be

considered when comparing findings across different studies.
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6.2 Pathogenicity potential
of autoantibodies

The presence of autoreactive antibodies during and after SARS-

CoV-2 infection is of significant clinical interest, but whether these

antibodies are directly induced by the virus remains unclear. For

example, Lebedin et al. demonstrated that some autoantibodies

associated with COVID-19 are non-specific, polyreactive IgG.

These polyreactive antibodies can interfere with the accurate

quantification of target-specific and functionally relevant

autoantibodies, which may have greater clinical importance (245).

Additionally, the profiles of these autoantibodies before, during, and
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after infection are becoming increasingly well-characterized, enabling

the proposal of distinct autoantibody trajectories (Figure 4).

Observational studies and those with limited control cohorts often

cannot establish whether SARS-CoV-2 infection directly triggers

autoantibody production. Given the heterogeneity of autoantibodies

observed across various diseases, it is plausible that some findings may

be unrelated to SARS-CoV-2 infection (246). For cases where a link

between SARS-CoV-2 and autoantibodies has been demonstrated, a

key question remains: are these autoantibodies induced de novo, or are

pre-existing antibodies elevated to higher titers? For instance, Bastard

et al. showed that autoantibodies targeting interferons (IFNs),

associated with severe COVID-19, were present prior to infection
FIGURE 3

Considerations for Interpreting Experimental Evidence of Autoantibodies Following SARS-CoV-2 Infection. Several factors can influence the
interpretation of SARS-CoV-2 induced autoantibodies. Here is a visual representation of a non-exclusive list of factors: (A) The Trajectory of
Autoantibodies: Understanding whether autoantibodies are present chronically, induced independently of SARS-CoV-2, or induced by SARS-CoV-2
infection. (B) SARS-CoV-2 Infection Characteristics: Factors such as infection severity, treatment, and immunization status can significantly influence
the presence and levels of autoantibodies. (C) Cohort Selection: The selection of cohorts, including characteristics like age, sex, underlying health
conditions, and control groups, can have a substantial impact on the interpretation of results. (D) Laboratory Considerations: The experimental
methods employed can significantly influence the sensitivity and specificity of autoantibody detection. The figure was created in https://
BioRender.com.
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but did not cause symptoms (91). This indicates that such

autoantibodies may preexist in predisposed individuals. Further

longitudinal studies that assess baseline autoantibody levels are

needed to clarify their trajectories over time and elucidate their origins.

It is important to understand that the presence of autoreactive

antibodies does not automatically indicate a causal relationship with

the onset of autoimmune diseases. Notably, conditions associated

with autoimmunity, such as myocarditis, arthritis, vasculitis, and

encephalitis, have been reported following SARS-CoV-2 infection

(247, 248). Retrospective studies in unvaccinated individuals have

confirmed that SARS-CoV-2 infection significantly increases the

risk of developing autoimmune disorders (240, 247). One study

reported a 42.6% higher likelihood of autoimmune disease in

individuals previously infected with SARS-CoV-2 (249). However,

no definitive mechanistic studies have linked these conditions to

autoantibodies, making it difficult to establish causality.

Despite this, the detection of autoantibodies raises important

questions about their clinical significance and their potential utility

as biomarkers for disease. Future research should focus on

disentangling the pathogenic and non-pathogenic roles of these
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autoantibodies to better understand their implications in post-

infection outcomes.
7 Conclusion

Autoantibodies have been extensively reported in association

with SARS-CoV-2 infections, reinforcing the notion that viral

infections, are important environmental factors that can induce

de novo autoantibody production or amplify existing autoantibody

levels. However, there remains a significant gap in our

understanding of the precise mechanisms by which these

autoantibodies are generated following infection and, more

specifically, whether and how they contribute to pathology in the

host. It is also plausible that some autoantibodies contribute to

regulatory physiological processes during infection or recovery,

highlighting their multiple complex roles beyond their known

pathogenic effects. Moreover, there is a scarcity of studies

exploring therapeutic interventions, such as plasmapheresis or

immunosuppressants, specifically targeting these autoantibodies.
FIGURE 4

Possible SARS-CoV-2-dependant and -independent trajectories of autoantibody production. (A) Hypothetical trajectories of virus-independent
autoantibodies. Autoantibody levels are not influenced by SARS-CoV-2 infection. Such antibodies are generally already present but can vary in level.
A chronically present autoantibody (Blue) can remain relatively stable over time, with slight biological fluctuations. A SARS-CoV-2-independent
induction can also occur (Green), in which antibody levels can rapidly increase and possibly decay over time. (B) Hypothetical trajectories virus-
dependent autoantibodies detected in individuals. The presence and/or quantity of an autoantibody is influenced by SARS-CoV-2 infection. It is
possible to see an increase in the titer of an autoantibody already detected in the infected host (Grey). This trajectory contrasts with a de novo
induction, where SARS-CoV-2 infection leads to the induction of an autoantibody that was not in circulation prior to the infection (Red). These
features of possible trajectories need to be considered when interpreting experimental evidence. The figure was created in https://BioRender.com.
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These gaps in our knowledge represent both challenges and valuable

research opportunities. The findings related to SARS-CoV-2 and its

association to autoantibodies underscore the complex and

intertwined relationship between viral infections and

autoimmunity, inviting further exploration into their clinical

significance and therapeutic potential.
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