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Introduction: Patients with activated PI3Kd syndrome (APDS) may elude

diagnoses for nearly a decade. Methods to hasten the identification of these

patients, and other patients with inborn errors of immunity (IEIs), are needed. We

sought to demonstrate that querying electronic health record (EHR) systems by

aggregating disparate signs into a risk score can identify these patients.

Methods: We developed a structured query language (SQL) script using

literature-validated APDS-associated clinical concepts mapped to ICD-10-CM

codes. We ran the query across EHRs from 7 large, US-based medical centers

encompassing approximately 17 million patients. The query calculated an “APDS

Score,” which stratified risk for APDS for all individuals in these systems. Scores

for all known patients with APDS (n=46) were compared.
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Results: The query identified all but one known patient with APDS (98%; 45/46) as

well as patients with other complex disease. Median score for all patients with

APDS was 9 (IQR = 5.75; range 1-25). Sensitivity analysis suggested an optimal

cutoff score of 7 (sensitivity = 0.70).

Conclusion: Disease-specific queries are a relatively simple method to foster

patient identification across the rare-disease spectrum. Such methods are even

more important for disorders such as APDS where an approved, pathway-

specific treatment is available in the US.
KEYWORDS

APDS, EHR query, AI, inborn errors of immunity, diagnostic delay, IEI diagnosis
Introduction

Activated PI3Kd syndrome (APDS) is an inborn error of

immunity (IEI) with a heterogenous clinical presentation with signs

of both immune deficiency and immune dysregulation (1–3).

Hallmarks of immune deficiency include recurrent sinopulmonary

infections and susceptibility to herpesvirus viremia, while

dysregulation may manifest as atopy, lymphadenopathy,

organomegaly, and autoimmunity (2, 4, 5). The proximate cause of

increased risk of lymphoma in APDS is debated, but both deficiency

and dysregulation could be implicated (6).

The complex array of symptoms frequently drives a patient to

seek care from several types of clinicians. Uncoordinated care,

misdiagnoses, status as a rare disease, range of severity of

symptoms, unavailability of genetic testing, and other factors may

contribute to the 7-year median diagnostic delay (7, 8). APDS is a

progressive illness; therefore, like many IEIs, this diagnostic odyssey

may increase healthcare utilization, lead to permanent organ

damage such as bronchiectasis, and result in other poor outcomes

(4, 7, 9–11).

Organizations such as the National Organization for Rare

Disorders and Jeffrey Modell Foundation have led robust

educational initiatives focused on rare diseases and IEIs

specifically (12–14). Despite these and other efforts, diagnostic

rates of IEIs remain stable apart from extreme presentations in

infants (11, 15). The growing fields of bioinformatics and artificial

intelligence investigate and provide methods to search electronic

health records (EHRs) to weave together the patient encounters

distributed throughout a hospital system (16–18). We sought to

demonstrate that querying EHR systems to aggregate the disparate

signs into a risk score could help identify patients with APDS.

At study origination, APDS did not have its own ICD-10-CM

code, though it has since been assigned a code (81.82). This will

presumably raise awareness of the disease; however, to our

knowledge, there has been no impact on patient identification to

date. We surmise that undiagnosed patients with APDS could be

more efficiently identified by EHR query methods. This may be
02
especially useful in the adult population, who may more easily

escape diagnoses of an IEI (11, 15). Firstly, genetic disease has the

bias of assumed fulminant presentation while the patient is young.

Secondly, smoldering presentations in IEIs are not well

characterized. They may remain unremarkable, present differently

from the pediatric population, or become urgent only in adulthood

(19, 20). For example, lymphoma was reported as the first clinical

sign of APDS in 20.5% of patients in one cohort (n=39) who had a

primary diagnosis charted (7).

Importantly, this disease-specific EHR query method could be

mapped to the other nearly 500 IEIs. Interested researchers could

also apply structured (16) approaches to initially cull a cohort of

high risk or leverage unstructured data approaches such as natural

language processing (NLP) additively to this effort (17, 21).
Methods

This study was approved by the Institutional Review Board

(IRB; H-50212) of Texas Children’s Hospital (TCH), Houston,

Texas, with reciprocal approvals by the IRBs at Children’s

Hospital Los Angeles, Los Angeles, California, University of South

Florida, Tampa, Florida, Mount Sinai School of Medicine, New

York, New York, and Spectrum (now Corewell) Health, Grand

Rapids, Michigan; as well as a standing IRB for informatics research

at University of California Los Angeles, Los Angeles, California.

We developed a structured query language (SQL) script using

literature-validated APDS-associated clinical features mapped to

ICD-10-CM codes (https://www.icd10data.com/) to identify

patients. The initial features used were based upon relevant APDS

clinical signs described in the literature up until 2021

(Supplementary File 1).

The raw query was then refined by adding relative-risk weights

to selected APDS clinical features as learned from clinical data and

previously published (22) and noted in Table 1. Briefly, weights for

each feature were mined from a cohort of verified IEI patients

(n=1762) by comparing frequencies of clinical conditions to that of
frontiersin.org
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a medically complex and diverse set of controls (n=1698). Relative

risk values for features relevant to APDS were calculated by

normalizing counts per capita as described previously. The

learned feature weights and strategy for this approach are noted

in Supplementary File 2. APDS score was calculated by summing

the weighted features detected for every member of a cohort. For

example, if bronchiectasis (weight = 4) and pneumonia (weight = 2)

were detected from an individual’s records, their APDS score would

be 6. Initial query validation took place within the TCH enterprise

data warehouse (EDW) (Supplementary File 4). Having found all
Frontiers in Immunology 03
known patients at this center, and a patient there who had known

PTEN (phosphatase and tensin homolog) syndrome, we sought to

validate it at other institutions with known patients with APDS.

Ultimately, this disease-specific query extracts predefined codes on

each member of a population, builds a cohort of patients with any

one of the relevant codes, applies the specified weight to each code-

based clinical concept (ie, only counted once if present numerous

times) then aggregates and ranks population members by APDS

score in descending fashion.

We further validated this query by running it through 6

additional large US-based hospitals with known patients with

APDS. These patients have been diagnosed by genetic testing

performed by the expert immunologists caring for and treating

these patients. The query was run directly in the EHR systems at

Mount Sinai, New York, NY; Helen DeVos, Spectrum Health, Grand

Rapids, MI; Phoenix Children’s Hospital, Phoenix, AZ, Children’s

Hospital of Los Angeles (CHLA), LA, CA, and University of South

Florida (USF), Tampa, FL. At the University of California, Los

Angeles (UCLA), Los Angeles, California, the query was run in a

deidentified data warehouse (DDW). The query was initially written

for Epic Systems Corporation software and table structure (ie,

Clarity) (Supplementary File 2). The refined and weighted query

was converted to a language compatible with Cerner by Precision

Extract so it could be run at CHLA (Supplementary File 3).

Scores for all known patients with APDS were accumulated using

all available data from each center. Median values and interquartile

ranges were calculated with Python (3.12.4) and SciPy (1.11.1). A

sensitivity analysis was conducted using the Python package NumPy

(2.0.1) and plotted in Matplotlib (3.9.1). Optimal sensitivity was

determined by plotting sensitivity vs score (Figure 1).
FIGURE 1

Sensitivity analysis for scores from all known patients with APDS. Balancing sensitivity with number of records captured, the arrow denotes an
optimal cutoff score (7) and corresponding sensitivity of 0.70 calibrated from the centers evaluated here. Optimal threshold suggests a sensitivity of
100% and a score of 1, above which a very large number of subjects would be found effectively nullifying the need for our query.
TABLE 1 Feature weights (22).

Feature name Weight

Lymphoma 11

Splenomegaly/organomegaly 6

Herpes viral infections 6

Bronchiectasis 4

Lymphadenopathy 2

Pneumonia 2

Bronchitis 1

Enteropathy 1

Relevant labs and/or previous diagnoses (eg, elevated IgM, CVID
with autoantibodies)

1

Nodular lymphoid hyperplasia 1

Otitis 1
CVID, common variable immunodeficiency; IgM, immunoglobulin M. For full list of
corresponding ICD-10-CM codes, please see Supplementary File 2.
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Results

The query identified 98% (45/46) of patients with APDS across

all centers (Table 2). One patient was not identified (ie, no scorable

features in record); however, that individual is healthy and APDS

was diagnosed pre-symptomatically via genetic testing prompted by

family history (PIK3R1: c.343C>G p.Leu115Val). The median risk

score for known patients with APDS across all institutions was 9,

with a range from 1 to 25. The age range of known patients with

APDS was 3 years to 69 years of age, with a median of 15 years of

age. There did not appear to be a pattern of risk score vs age;

however, this may be attributed to limitations of the EHR data.

Sensitivity analysis suggested an optimal score cutoff of 7

(sensitivity = 70%). Across nearly 17 million individuals assessed,

41,041 (0.2%) had a score of ≥7 or 7741 patients per site (Figure 1).

This represents an APDS high-risk population, which is reduced in

number from the total population by more than 400-fold.

The results of the query at each institution are summarized

in Table 2.

Some salient results not reflected in Table 2 are as follows:

UCLA, USF, and Mount Sinai each had patients with artificially low

scores but for slightly differing reasons. At UCLA, the patients with

scores of 2 and 3 had APDS features of bronchiectasis and

splenomegaly listed in the notes. Further, one patient had

marginal hyperplasia, but our query focused on nodular

hyperplasia. If the query had also captured unstructured data and

expanded the ICD-10-CM codes for hyperplasia, these patients

would have had APDS risk scores of 7 and 12, respectively.

Similarly, when a patient is referred into the system at Mount

Sinai, the patient’s history is primarily captured in the notes, and

ICD-10-CM codes are rarely associated with these historical clinical

features. Had there been codes in the structured data for the 3

patients’ complex histories, the scores would have been much

higher. Further, these patients had cytopenias, which are a

hallmark of APDS, but were not included in this script, and

should be in future iterations (9).

At USF, the patient with a score of 1 was referred to the

immunology department with a severe case of human

papillomavirus (HPV). Our script focused on herpesviruses, a

cardinal feature of APDS. However, HPV has also been reported.

(4, 7, 23, 24). Up to 50% of patients with APDS have chronic viral

infections with a wide range of presentations (25). This patient also

had hypogammaglobulinemia and autism. These are common

features of APDS and while not in the original query, we suggest

adding them to future queries (2, 26).

Finally, variants of uncertain significance (VUSs) in either of the

genes that cause APDS are of great interest. The query identified a

patient at CHLA who has a VUS in an APDS gene, but two patients

at USF who have VUSs in APDS genes were not identified.
Discussion

We validated our query in seven large, US-based medical

centers with 46 known patients with APDS. The query found all

but one known patient with APDS (45/46), and that patient is
Frontiers in Immunology 04
asymptomatic. This relatively simple SQL script was a successful

first effort and proof of concept for an EHR-based intervention to

find patients with APDS, albeit with a suspected high false positive

rate, that we draw attention to with refinement suggestions below.

We suspect that this approach could find patients with other

disorders of immune dysregulation that share clinical features and

will probably be most useful in conditions with unique features or a

complex and variable phenotype. Given that APDS and many IEIs

are progressive, early diagnosis is critical to patient outcomes and to

quality of life; thus, our aim was to create a process for reducing the

diagnostic odyssey for patients with APDS. (4, 7, 9–11)
Developing a diagnostic tool for a
new disease

APDS was discovered in 2013, and though the impact of the

genetic variants on the immune system was well described by both

Angulo and Lucas, the understanding of clinical features in large

cohorts continues to expand. (27–29) In 2017 and 2018, the ESID

(European Society for Immunodeficiency) registry papers

illustrated the main urgent immune features, but it was not until

2021 that atopy and asthma were well-established features of the

disease. (2, 4, 9, 30) Thus, other important phenotypic features of

APDS have only recently come to light. For example, neurological

and behavioral concerns (26) and the specific timing of infections

(31) are also recent attributes of the broader APDS phenotype.

These findings, and those of other studies (32), emphasize the

heterogeneous clinical presentation of APDS and suggest that we

still have much to learn.

In newly discovered rare diseases without established natural

histories, there may be considerable variation in which signs

present, how those are captured in any EHR system, and how

much of a patient’s history will be localized at the specialist’s

hospital vs scattered among the records systems of the patient’s

primary care physician, pulmonologist, gastroenterologist,

hematologist, psychologist, and other clinicians. We have

presented a script that captured the main features represented in

the literature at that time, but we suggest updating this script

before use.
Refining this script for use in APDS

Though the script did find nearly all of the patients, it did so

while capturing a significant number of presumed false-positive

cases. The number of records returned for even the median APDS

risk score at each hospital would not be immediately clinically

actionable at most of the institutions. Though beyond the purview

of our validation effort, many suggestions for refining the script

exist. These are a few: running a targeted sensitivity analysis, then

refining the script and rerunning it; adding additional ICD-10-CM

codes, such as those for autism, hypogammaglobinemia, atopy,

common variable immune deficiency or other immune disorders,

which the patient may have been previously diagnosed with. Finally,

the script could also be revised by adding a “number of encounters”
frontiersin.org
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TABLE 2 Query results by institution.

Texas
Children’s
Hospital

Children’s
Hospital

Los Angeles

University of
California,
Los Angeles

Phoenix
Children’s
Hospital

Icahn School
of Medicine at
Mount Sinai

Helen DeVos
Children’s

Hospital and
Corewell
Health

University
South Florida

at
Johns Hopkins
All Children’s

Hospital

Starting
Population
~2,100,000

Starting
Population
~1,200,000

Starting
Population
~4,300,000

Starting
Population
~1,100,000

Starting
Population 4,657,510

Starting
Population 2,090,280

Starting
Population 1,503,610

Query Results

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

APDS
Score

Patient
Age (y)

23 – 16 9 8 11 9 – 25 22 17 – 1 15

22 – 15 11 13 25 8 – 12 35 14 – 4 16

15 – 11 32 8 9 6 – 3 16 14 – 5 18

11 – 10 11 8 7 1 – 10 – 9 11

11 – 8 17 4 7
Null
(not

found)
– 9 – 10 39

10 – 8 (VUS) 8 4 21 8 – 13 13

9 – 6 25 3 69 7 –

5 – 3 21 8 3

2 21

9 13

Median
Score

Median
Age

Median
Score

Median
Age

Median
Score

Median
Age

Median
Score

Median
Age

Median
Score

Median
Age

Median
Score

Median
Age

Median
Score

Median
Age

11 9 14 8 12 7 12 22 10 19 7 15.5

Total records captured (based on lowest score)

420,147 39,791 103,539 44,973 42,561 174,510 154,103

Total records captured at or above median score % of records above median/total records | % of records above median/
records captured

Score of 11: 1262 Score of 9: 130 Score of 8: 9921 Score of 7: 531 Score of 12: 32 Score of 10: 3415 Score of 7: 18,764

0.06% 0.30% 0.01% 0.33% 0.23% 9.58% 0.05% 1.18% 0.0007% 0.08% 0.16% 1.96% 1.25% 12.18%

Records captured by score

≥6: 12,184 ≥6: 1092 ≥6: 28,679 ≥6: 1020 ≥6: ≥6: 18,984 ≥6: 19,245

≥7: 7741 ≥7: 433 ≥7: ≥7: 531 ≥7: ≥7: 13,572 ≥7: 18,764

≥8: 6177 ≥8: 323 ≥8: 9921 ≥8: 473 ≥8: ≥8: 11,254 ≥8: 15,887

≥9: 3340 ≥9: 130 ≥9: ≥9: 107 ≥9: ≥9: 5842 ≥9: 10,630

≥10: 2172 ≥10: 86 ≥10: ≥10: 61 ≥10: ≥10: 3415 ≥10: 8809

≥11: 1262 ≥ 11: 60 ≥ 11: ≥ 11: 23 ≥ 11: 32 ≥ 11: 1748 ≥ 11: 7831

Maximum APDS score for all patients at this location

24 17 23 17 20 23 33
F
rontiers in Immunolog
y
 05
 fron
APDS, activated PI3Kd syndrome; Y, years; VUS, variant of uncertain significance.
Bolded values are for visual clarity and differentiation.
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or “events per year” feature, which would capture common signs

(eg, atopy, otitis, specific infections) only if they appeared

chronically across time or at an above-normal frequency per year,

as recommended in the Jeffrey Modell Foundation 10 warning signs

of immunodeficiency (33).
Other IEIs could be identified

PTEN is a negative regulator of the PI3Kd/ATP pathway; its

deficiency can cause a hyperactivity of this pathway, leading to

immunological manifestations similar to those observed in APDS

(34). We were aware of a patient at TCH with PTEN deficiency and

autism, and we intentionally confirmed that this patient record was

captured by the script. Given the high record return, the script

capture was unsurprising; however, we believe the script would find

this record even after refinement. Similarly, it stands to reason that

other patients who have IEIs of immune dysregulation (Category IV

of the International Union of Immunological Societies classification

system) could be identified with a refined version of this script (3).
Navigating the use of artificial intelligence
in a healthcare system

We have provided the open-source code (Supplementary File

2) to be refined accordingly and used for similar efforts at other

institutions. There are many practical considerations to navigate.

Efforts to codify the use of AI in large institutions are beginning to

appear in the literature, and these roadmaps will be valuable (35,

36). Running a query like this can require coordination with

several hospital stakeholders. In our experience, the IRB process

varied institution to institution. The FDA guidance for AI tools is

evolving (37). Presently, if the tools are considered to be

diagnostic, the requirements related to IRB approval might be

more significant than what we encountered for script validation.

Further, one will need to identify the appropriate people in the

information services (IS) department who can help ensure the

query is compatible with each EHR, and who can run the query.

We have included Epic- and Cerner-compatible scripts in the

supplement, but there may be additional changes made based

upon unique parameters in a hospital’s system. Finally, though

deidentified data warehouses (copies of the hospital’s EHR system

with the medical record numbers removed) are compelling

systems for research and can expedite IRB approval, they create

a nontrivial barrier to clinical implementation in queries like

these. Without medical record numbers, it is not easy to refer

the appropriate patients.

Our results displayed variability in part due to record

management. This includes how each institution codes, refers,

and records medical histories; some hospitals did not attach ICD-

10-CM codes to any records transferred from outside systems,

which meant the patients’ extensive histories were only captured

in notes. The amount of care managed locally vs by the hospital

specialist will also impact the results.
Frontiers in Immunology 06
Implementation of the results

The most important part of any patient identification effort is

how to facilitate accurate diagnosis and access to appropriate care

for newly discovered patients. We conducted a survey to this end.

Expert considerations ranged from clinician availability to perform

chart review, genetic testing and counseling to patient-centered

identification and plan for unexpected financial burden. (38) Health

systems will need to operationalize a workflow that is sensitive to

existing and optimal clinical decision support processes for that

organization. Critically, any healthcare analytics of this nature will

require ongoing assessment and monitoring to ensure that its

performance does not drift.
Limitations

This was a proof-of-concept effort, and there are numerous

limitations to this study. The evolving natural history of APDS is a

significant limitation of the script. We included ICD-10-CM codes

based on the literature at the time. We did not include cognition

codes, which should be included. Also absent were autoimmune,

atopy, cytopenias, additional viral infection codes, and some

laboratory values. We suggest adding these to the script for

further use.

Limitations of the data sets include patients who have few

encounters with that system may be missed or have deceptively low

scores. ICD-10-CM codes are useful structured data, but there is

clinician-based variability in codes used. Some structured data may

simply be absent or found in the unstructured patient notes. This

last limitation can be corrected by using natural language

processing models on top of the SQL query (17, 21).

Finally, this pilot study showcases the utility of a disease-specific

query, which may not sufficiently detect other important IEIs or

fully capture the phenotypic heterogeneity of APDS. Our

experience, as described, offers a potential strategy to compress

the diagnostic odyssey for patients with APDS but not patients with

IEIs as a whole.
Conclusion

EHR analytical approaches represent a strategy for reducing

diagnostic delays among patients with APDS and other IEIs, but

further methods to refine this search, and means to expeditiously

evaluate new referrals, need to be devised. Our goal is to hasten

diagnoses in these devastating diseases, and though AI is an

excellent tool to do so, without the human intelligence to change

large institutional practices, patients will languish undiagnosed.
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records cannot be supplied as it is not de-identified; however, the

metadata is found in the article and the original source codes to

generate data are found in the supplement.
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