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Human airway epithelium
controls Pseudomonas
aeruginosa infection via
inducible nitric oxide synthase
Philipp Grubwieser1,2†, Nina Böck3†, Erika Kvalem Soto3,
Richard Hilbe1, Patrizia Moser4, Markus Seifert1,
Stefanie Dichtl2, Miriam Alisa Govrins2, Wilfried Posch2,
Thomas Sonnweber1, Manfred Nairz1, Igor Theurl1,
Zlatko Trajanoski3* and Günter Weiss1,5*

1Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical
University of Innsbruck, Innsbruck, Austria, 2Institute of Hygiene and Medical Microbiology, Medical
University of Innsbruck, Innsbruck, Austria, 3Biocenter, Institute of Bioinformatics, Medical University
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Introduction: Airway epithelial cells play a central role in the innate immune

response to invading bacteria, yet adequate human infection models are lacking.

Methods: We utilized mucociliary-differentiated human airway organoids with

direct access to the apical side of epithelial cells to model the initial phase of

Pseudomonas aeruginosa respiratory tract infection.

Results: Immunofluorescence of infected organoids revealed that Pseudomonas

aeruginosa invades the epithelial barrier and subsequently proliferates within the

epithelial space. RNA sequencing analysis demonstrated that Pseudomonas

infection stimulated innate antimicrobial immune responses, but specifically

enhanced the expression of genes of the nitric oxide metabolic pathway. We

demonstrated that activation of inducible nitric oxide synthase (iNOS) in airway

organoids exposed bacteria to nitrosative stress, effectively inhibiting intra-

epithelial pathogen proliferation. Pharmacological inhibition of iNOS resulted

in expansion of bacterial proliferation whereas a NO producing drug reduced

bacterial numbers. iNOS expression was mainly localized to ciliated epithelial

cells of infected airway organoids, which was confirmed in primary human lung

tissue during Pseudomonas pneumonia.

Discussion: Our findings highlight the critical role of epithelial-derived iNOS in

host defence against Pseudomonas aeruginosa infection. Furthermore, we

describe a human tissue model that accurately mimics the airway epithelium,

providing a valuable framework for systemically studying host-pathogen

interactions in respiratory infections.
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1 Introduction

Bacterial lower respiratory tract infections remain a major

public health concern, causing over 2 million deaths worldwide

annually (1). Substantial progress has been made in understanding

host responses to these infections. Animal and in-vitromodels have

underscored the importance of innate immune cells, such as

macrophages, in frontline defence against pulmonary infections

(2, 3). However, the role of the respiratory epithelium in early

defence against bacterial pathogens is increasingly recognized (4).

Positioned at the interface between the external environment and

the internal milieu, the respiratory epithelium is the primary site of

contact with invading bacteria, suggesting its active participation in

early innate immune defence (5).

Pseudomonas aeruginosa (PA) is a gram-negative opportunistic

bacterium and a growing health concern due to its pathogenicity

and antibiotic resistance (6). PA lung infections are common and

associated with high mortality rates, greatly impacting patients with

cystic fibrosis (CF),chronic obstructive pulmonary disease (COPD)

as well as patients with nosocomial pneumonia (7, 8).

During infection of the respiratory tract, PA closely interacts with

epithelial cells and can adopt an intracellular lifecycle (9). PA can invade

and actively replicate inside various epithelial cell types, including

bronchial epithelia (10–12). Consequently, it has been hypothesized

that epithelial internalization is the prerequisite for invasion, facilitating

dissemination of the bacterium to the bloodstream and distant organs,

while allowing the pathogen to evade innate immune cells, thus

promoting bacterial persistence (13–15).

Although the airway epithelium initiates an inflammatory

response and secretes antimicrobial effector molecules after

pathogen detection, little is known about its direct antimicrobial

responses. Only recently, we showed that airway epithelial cells

differentially regulate nutrient trafficking in response to intra- or

extracellular bacteria, thereby affecting pathogen multiplication (16).

It has been hypothesized that the production of reactive oxygen-

and nitrogen species (ROS/RNS) by airway epithelial cells facilitates

intracellular pathogen killing (5). Indeed, the human respiratory

epithelium expresses nitric oxide synthases (NOS) (17, 18). In mice,

the expression of the inducible isoform iNOS, mainly by monocytic

cells including macrophages, is induced by inflammatory stimuli,

such as bacterial lipopolysaccharide (LPS) or cytokines, such as

interferon-gamma, tumor-necrosis factor-alpha, and interleukin-

(IL-) 17 (19, 20). However, limited information is available on iNOS

function in human infection models, particularly regarding its

potential role within the human respiratory epithelium (21).

Despite significant progress, the multistage and cell specific

mechanisms of host responses to bacterial invasion in the lung

remain poorly understood. Herein we apply a novel infection

model, in which differentiated human airway organoids (AOs) are

challenged with the opportunistic pathogen Pseudomonas

aeruginosa. In direct suspension culture, apical-out organoids are

exposed to viable bacteria, closely mimicking the in-vivo situation as

bacteria interact with the epithelial layer at the correct spatial

localization. This enables monitoring of the bacterial entry and

intracellular fate, and in parallel allows for comprehensive analysis

of host epithelial cell responses to infection.
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2 Material and methods

2.1 Organoid and bacteria culture

Patient derived human airway organoids were acquired

from Foundation Hubrecht Organoid Biobank (www.

hubrechtorganoidbiobank.org) and cultured as described by Sachs

et al. (22). Apical-out polarity switch and mucociliary

differentiation was performed as described by Co et al. (23) and

Zhou et al. (24), respectively.

Pseudomonas aeruginosa, strain P14 as well as strain P14 stably

expressing GFP (PA-GFP), were a kind gift of Dirk Bumann,

Biozentrum Basel, Switzerland. This reference strain is characterized

by its similarity to patient isolates in terms of virulence and thus is the

preferred model for infection studies with virulent PA (25). Detailed

information is provided in the Supplementary Methods.
2.2 Organoid infection

Fully differentiated, apical-out human airway organoids were

washed two times with PBS, and seeded in equal density in proximal

differentiation medium without antibiotics and hydrocortisone into

12-well plates treated with anti-adherence solution. On the next day,

PA from the mid-logarithmic growth phase was added to organoids at

a final concentration of 25*106/ml for 3h. Bacterial outgrowth in the

medium is then prevented by washing thrice in PBS containing

gentamicin (25µg/ml) and adding fresh medium containing

gentamicin (8µg/ml) for further incubation. To minimize the use of

gentamicin and thus off-target effects, we determined the minimal

inhibitory concentration (MIC) of gentamicin with conventional

microbiological methods (Etest, MIC: 1µg/ml, Supplementary

Figure 2A) and in experiment-specific conditions (growth in ALI or

LB medium; Supplementary Figure 2B). This antibiotic is not able to

penetrate cell membranes, and thus only acts in the extracellular space

(26). Thus, bacteria, which have invaded the epithelial formation, are

not exposed to this antibiotic and remain viable inside epithelial cells.

During this gentamicin-protected phase, organoids and intra-organoid

bacteria further interact for up to 24 hours, enabling analysis of intra-

organoid bacterial numbers and organoid innate immune responses at

various time intervals. To quantify intra-organoid bacteria, AOs were

washed thrice in PBS, and subsequently lysed in 0.5% sodium

deoxycholic acid (Sigma-Aldrich). Organoid lysates, containing

viable bacteria, were plated immediately on LB plates, and colony-

forming units (CFUs) were quantified after overnight incubation.

Where indicated, Organoids were treated with 100µM of the NO-

donor NOC-18 (MedchemExpress, HY-136278) or 50µM of the iNOS

inhibitor L-NIL (MedchemExpress, HY- 12116) during the active and

gentamicin-protected infection phase.
2.3 Statistical analysis

RNA sequencing analysis is described in detail in the

Supplementary Methods section. Statistical analysis of CFU and

qPCR data was performed in GraphPad Prism (9.4.1). For pairwise
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comparisons, an unpaired student t-test was used. ANOVA with

Sidaks post-hoc test was used for multiple group comparisons. Data

was log-transformed as appropriate. A p-value of <0.05 was used as

the significance threshold. Additional methods can be found in the

Supplementary Material.
3 Results

3.1 Pseudomonas aeruginosa infects
differentiated human airway organoids and
resides in the intracellular space

To investigate the epithelium-pathogen interaction, we first

generated apical-out airway organoids. To this end, we treated
Frontiers in Immunology 03
organoids with EDTA for complete matrix degradation and

cultured them in suspension, resulting in apical-out airway

organoids (AOAOs, Figure 1A). After 16 days of culture in the

differentiation medium, AOAOs present an abundance of ciliated

cells at the apical side, considered to be the hallmark of terminal

mucociliary differentiation. During the differentiation phase,

markers of ciliated (FOXJ1) and goblet (MUC5AC) cells

increased significantly, whereas club cells (SCGB1A1) decreased,

and basal cells (P63) remained constant (Supplementary Figure 1).

AOAOs were then challenged with the bacterial pathogen PA in

a gentamicin-protected infection model (Figure 1B): viable bacteria

are directly added to the antibiotic-free cell culture medium, after

which AOs and bacteria directly interact for 3h. Subsequently, to

prevent bacterial overgrowth, AOs are washed and treated with
FIGURE 1

Pseudomonas aeruginosa infects differentiated human airway organoids and resides in the intracellular space. (A) Immune fluorescence imaging of
human airway organoids in basal-out configuration (left panel) and apical-out configuration (middle panel). Representative epifluorescence images
of organoids stained for actin (red) and nuclei (blue), mounted on slides. Terminally differentiated organoid (right panel). Representative confocal
image, stained for apically located cilia (red) and nuclei (blue). (B) Schematic representation of the organoid infection model used herein. (C)
Confocal immune fluorescence imaging revealing intra-organoid bacteria (PA-GFP, green rods) in infected organoids after 3h of active infection and
removal of extracellular bacteria. (D) Quantification of intracellular bacteria during the gentamicin-protected course of infection. Infected organoids
were lysed at indicated time intervals, and lysates were plated onto LB-agar plates for CFU quantification. Data from three independent experiments
are shown as a scatter plot with mean ± SD. *** denotes p < 0.001 for ANOVA with post hoc statistical testing.
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gentamicin, which eliminates bacteria in the extracellular space but

does not affect intracellular bacteria which have invaded the

organoid. Infected AOs are then further incubated in a

gentamicin-containing medium and harvested at multiple time

intervals for analysis.

We first applied immunofluorescence of organoids infected

with PA expressing GFP (PA-GFP), harvested after the active

infection phase and after the removal of extracellular bacteria.

Interestingly, confocal imaging revealed bacteria (green, rod-

shaped) inside the epithelial tissue (Figure 1C), showing that PA

has invaded the epithelial barrier. Subsequently, to quantify the

number of viable intracellular bacteria, the organoid lysate was

plated at multiple time intervals of the gentamicin-protected phase

(Figure 1D). Viable PA bacteria were recovered directly after the

active infection phase (0h), indicating the number of bacteria that

have invaded AOs. The number of intra-organoid bacteria

subsequently increased, with peak bacterial burden at 16h,

suggesting intra-organoid bacterial multiplication.
3.2 Pro-inflammatory signaling shapes
organoid responses to infection

To shed light on organoid responses to infection, bulk RNA

sequencing of infected and uninfected organoids was performed.

Direct comparison revealed major differences in the transcriptome

of infected organoids compared to uninfected controls (Figures 2A,

B). Principal-component analysis (PCA) demonstrated close

similarities among samples belonging to the same treatment

group after batch effect correction (Supplementary Figure 3).

Infection with PA induced the upregulation of 343 genes and

downregulation of 182 genes in AOs, with a significant increase

in the expression of genes associated with the inflammatory

response, such as the pro-inflammatory cytokine IL-17C

(Volcano plot, Figure 2A; Supplementary Table 2). The ORA

revealed, that these changes reflect pathways involved in cellular

responses to bacteria and lipopolysaccharides (LPS), mainly

including a pro-inflammatory cytokine signature (IL1-B, TNFA,

IL-8) and production of antimicrobial peptides (DEFB, S100A8,

S100A9). To confirm if those alterations are also found by

sequential analysis of mRNA and protein expression of such

genes, we studied IL-6 and IL-8 expression via qPCR and ELISA

over time (Figures 2C, D). The transcriptional induction of both

cytokines was immediately increased after the initiation of the

infection phase and significantly elevated throughout the

gentamicin-protected infection phase, being in line with the

RNA-sequencing data. Consistent with previous findings,

uninfected AOs exhibited basal secretion of IL-8 (27).

Interestingly, aside from the expected inflammatory response,

differential regulation of metabolic pathways, specifically the

nitric oxide (NO) metabolic pathway (GO:0046209) was evident

(Figure 2E). This pathway contains several genes associated with

nitric oxide production, including iNOS (NOS2), which was

significantly induced in infected organoids compared to

uninfected controls. Together, these results indicate that human
Frontiers in Immunology 04
airway organoids exposed to viable bacteria induce multiple

inflammatory and anti-microbial pathways, secrete inflammatory

cytokines and upregulate genes that are associated with

NO production.
3.3 Human airway organoids induce iNOS
in response to infection with
Pseudomonas aeruginosa

Next, to further examine organoid iNOS induction in response

to infection, we evaluated the involved regulatory networks. To

accomplish this, bulk RNA sequencing data was analysed for

pathogen detection and subsequent activation of inflammatory

signalling pathways, which finally led to antimicrobial effector

induction (Figure 3A). In all entities, a significant positive

regulation pattern in infected organoids was evident, including a

prominent induction of iNOS. We confirmed the transcriptional

upregulation of iNOS by qPCR at multiple time-intervals of the

gentamicin-protected infection phase (Figure 3B). A striking

increase in NOS2 mRNA levels is visible directly after the end of

the active infection phase (3h of bacterial exposure), with a

consecutive upregulation thereafter. Interestingly, not only

infection with viable PA but also treatment with heat-inactivated

bacteria (HI PA) led to a significant increase of NOS2 mRNA levels

(Figure 3C). In contrast, treatment with the sterile bacterial

supernatant (SN), which contains soluble bacterial products

including toxins but no viable bacteria, did not result in iNOS

induction. Notably, the induction of iNOS in infected organoids

was evident at the protein level (Figures 3D, E). Induction of iNOS

was paralleled by increased phosphorylation of p38, indicating

increased mitogen-activated protein kinase (MAPK) activation.

This data suggests, that the host-pathogen interaction during

active PA infection leads to the activation of pro-inflammatory

pathways in airway epithelial cells including iNOS formation at the

transcriptional and translational level.
3.4 iNOS is induced in ciliated cells of
infected airway organoids and human
bronchial epithelia during Pseudomonas
aeruginosa pneumonia

Next, we applied immunofluorescence imaging to reveal cellular

localization of iNOS-protein expression in infected organoids. After

the active infection, organoids were stained for ciliated cells

(acetylated tubulin) and iNOS protein. Imaging revealed

induction of iNOS protein in infected organoids but not in

uninfected controls (Figure 4A). Furthermore, regions with high

iNOS expression in infected AOs structurally resembled ciliated

cells. Indeed, co-staining with acetylated tubulin, a specific marker

for ciliated cells, revealed near congruent expression of iNOS

protein (Figure 4A). Finally, iNOS expression was investigated in

human lung tissue specimen (Figure 4B). Immunohistochemistry

staining confirmed iNOS protein presence in the bronchial
frontiersin.or
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FIGURE 2

Pro-inflammatory signaling shapes organoid responses to infection. (A) Volcano plot showing differentially expressed genes of infected human
airway organoids in comparison to uninfected controls after 4h of gentamicin-protected infection. (B) Gene-set analysis with over-representation
test (ORA) showing Gene ontology biological processes. (C) Differential IL-6 (left panel) and IL-8 (right panel) mRNA expression in infected
organoids. Organoids were harvested at indicated time intervals of gentamicin-protected infection. Data is shown as mean ± SD of a triplicate
experiment. (D) Levels of the inflammatory cytokines IL-6 (left panel) and IL-8 (right panel) in supernatants of infected organoids. Supernatants were
collected at indicated time intervals of gentamicin-protected infection. Data is shown as mean ± SD of a triplicate experiment. (E) Heat map
graphical representation of differentially expressed genes in infected versus uninfected organoids. The genes (X axis) are derived from Gene ontology
nitric oxide metabolic process (GO:0046209) set of genes. The gene expression is indicated by z-score. ** denotes p < 0.01, *** denotes p < 0.001
for ANOVA with post-hoc statistical testing.
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epithelium in a patient infected with PA, specifically in ciliated cells

of the bronchial region. Compared to this, no obvious iNOS

expression was found in a non-infected control lung sample.

These results indicate, that iNOS is induced in human respiratory
Frontiers in Immunology 06
epithelium upon pathogen contact, specifically in ciliated cells.

Corroborating our findings of the organoid infection model, the

iNOS protein expression showed a similar pattern in histological

analysis of human lung specimens.
FIGURE 3

Human airway organoids induce iNOS in response to infection with Pseudomonas aeruginosa. (A) Graphical representation of infection-associated
induced genes as nodes. Pathogen-detection-associated genes are shown as ellipses, intracellular inflammatory signalling genes are shown as
squares, and antimicrobial effectors are depicted as diamonds. The colour of the nodes indicates the log2-fold change from the differential
expression analysis of infected human airway organoids compared to uninfected controls (B) Differential NOS2 mRNA expression in infected
organoids. Organoids were harvested at indicated time intervals of gentamicin-protected infection. Data is shown as mean ± SD of three
independent experiments. (C) Differential NOS2 mRNA expression at the 4h time interval in infected organoids and organoids exposed to heat-
inactivated (HI) bacteria or treated with sterile-filtrated bacterial supernatant (SN). Organoids were harvested at indicated time intervals of gentamicin
protected infection. Data is shown as mean ± SD of three independent experiments. (D) Western blot of the MAPK subunit p38, phosphorylated p38,
and iNOS protein of infected organoids and uninfected controls harvested directly after the active infection phase (0h-time interval), shown in
duplicates. (E) Densitometric quantification of the Western blots targets iNOS and phosphorylated p38. * denotes p < 0.05 for statistical testing with
a two-sided unpaired t-test, *** denotes p < 0.001 for ANOVA with post-hoc statistical testing.
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3.5 Human airway organoids expose
Pseudomonas aeruginosa to
nitrosative stress

After confirming the expression of iNOS protein in infected

AOs, we next assessed the impact of iNOS expression on bacterial

genes associated with response to nitrosative stress exerted by host

formation of NO. For this, PA bacteria were either incubated in AO
Frontiers in Immunology 07
medium alone or in the presence of AOs (graphical representation

Figure 5A). After 3h of incubation, mRNA was extracted and

expression of bacterial genes associated with NO detoxification,

namely nitrite reductase (NirS), nitric oxide reductase (NorCB),

nitrous oxide reductase (NosZ), flavohemoglobin (fhp)) were

analysed (Figure 5B) (28). In bacteria exposed to AOs, several

genes for detoxification of nitric-oxide stress were significantly

elevated, indicating that direct interaction with human AOs leads
FIGURE 4

iNOS is induced in ciliated cells of infected airway organoids and human bronchial epithelia during Pseudomonas aeruginosa pneumonia.
(A) Immune fluorescence imaging of differentiated human airway organoids, infected with PA14 (lower panels). Representative epifluorescence
images of organoids stained for iNOS (yellow), ciliated cells (red) and nuclei (blue). Co-localization of iNOS and ciliated cells is depicted in white
(right panel). (B) Histological analysis of human lung samples stained for iNOS protein obtained from a non-infected lung (left panel) and a lung with
confirmed Pseudomonas aeruginosa pneumonia (right panel).
frontiersin.org
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to the induction of nitrosative stress in bacteria and subsequently to

expression of bacterial NO detoxification enzymes.
3.6 Human airway organoids control
intracellular Pseudomonas aeruginosa
growth via iNOS

To determine the functional relevance of epithelial iNOS

expression for the control of intraepithelial bacterial

multiplication, we applied the specific iNOS inhibitor L-NIL in

our AO infection model (illustration Figure 6A). To this aim, AOs

were infected with PA and treated with 50µM L-NIL during the

active infection and gentamicin-protected infection phase, or left

untreated. At the peak of bacterial intra-organoid pathogen burden

(16h), total RNA was extracted and expression of bacterial genes

associated with denitrification (NirS, NorB, fhp, NosZ) were

analysed (Figure 6B). In intra-organoid bacteria from AOs treated

with the iNOS inhibitor L-NIL, expression of denitrification genes

(NirS, NorB, fhp, NosZ) was generally lower compared to bacteria

exposed to AOs under standard conditions. A statistically

significant reduction was only observed for the nitrous oxide
Frontiers in Immunology 08
reductase (NosZ). Next, intra-organoid bacteria were quantified

after the gentamicin-protected infection phase in AOs treated with

either the iNOS inhibitor L-NIL or the NO-donor NOC-18

(Figure 6C). Underlining the role of iNOS activation in pathogen

control, recovered CFUs from AOs treated with L-NIL were

significantly increased. Accordingly, bacterial numbers recovered

from AOs treated with the NO forming drug NOC-18 were

significantly decreased. In sum, this data demonstrates that

human airway organoids infected with PA control intra-epithelial

bacterial growth at least in part by induction of the iNOS pathway

in epithelial cells.
4 Discussion

To date, a bottleneck in respiratory infection research is the

sparse offering of physiologically relevant in-vitro or ex-vivomodels

to study bacterial interactions with human airway epithelial cells.

Here, we developed an ex-vivo human model and demonstrate that

human mucociliary differentiated bronchiolar airway organoids

recapitulate the early steps of Pseudomonas aeruginosa respiratory

tract infection. AOs recognize invading pathogens and initiate
FIGURE 5

Human airway organoids expose Pseudomonas aeruginosa to nitrosative stress. (A) Graphical illustration of the experimental setup: PA were either
incubated for 3h in antibiotic-free AO medium alone or in the presence of AOs. After this, mRNA was extracted. (B) Differential mRNA expression of
bacterial genes associated with denitrification, in PA versus PA exposed to human AOs. Data is shown as mean ± SD of three independent
experiments. ns denotes not significant, ** denotes p < 0.01 for a two-sided, unpaired t-test.
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innate immune responses, as indicated by induction of multiple

inflammatory and anti-microbial pathways, which is consistent

with previous studies using Pseudomonas-epithelial infection

models (29, 30). Furthermore, suppressive regulators of innate

immunity, like TRIM29 or IL-19, showed a positive regulation

pattern in infected AOs. TRIM29 has been reported to be highly

expressed by airway epithelial cells and is modulating innate

immune responses (31, 32). Interestingly, increased presence of

TRIM29 promotes endoplasmic reticulum stress and production of

reactive species, potentially exposing an intracellular pathogen to

oxidative stress (33). Considering this dual role in both innate

immune modulation and stress response, epithelial-derived

TRIM29 potentially impacts PA respiratory tract infection.

In this work, we provide the first evidence of the airway

epithelial iNOS axis in controlling intra-organoid bacterial

growth. Although iNOS activity is a well-established antimicrobial

effector molecule in murine infection models, the role of iNOS-

derived antimicrobial RNS in humans remained less clear (20, 34).

Most human ex-vivo infection models employing innate immune

cells, such as macrophages, failed to show induction of iNOS during
Frontiers in Immunology 09
infection or sufficient production of antimicrobial iNOS-derived

RNS species. Several reasons have been postulated, including

epigenetic silencing of the respective promotor or the artificial

environment during ex-vivo experiments (35, 36). Nevertheless,

induction of iNOS following infection has been demonstrated for

specific infections in-vivo, including tuberculosis (37).

In respiratory infections, it has been proposed that iNOS may

not originate from classical innate immune cells, such as

macrophages, but rather from airway epithelial cells (17, 18).

Accordingly, dysfunctional airway epithelium, for instance in CF

or COPD patients, critically alters host defence functions (38). In a

cellular co-culture model, CF bronchial epithelial cells failed to

induce iNOS in response to neutrophilic infiltration (39). In line

with this observation, lower epithelial iNOS expression was shown

in CF subjects as compared to controls (40). Nonetheless, NO

formation in a CF epithelial cell-line model resulted in decreased

PA adherence and improved the elimination of internalized bacteria

(21). Together, these findings suggest that the reduced functionality

of epithelial iNOS in CF patients significantly contributes in PA

colonization and infection. Additionally, the use of inhaled
FIGURE 6

Human airway organoids control intracellular Pseudomonas aeruginosa growth via iNOS. (A) Graphical illustration of the experimental setup:
Infected AOs were incubated with or without the specific iNOS inhibitor L-NIL during the 16h gentamicin-protected infection phase. Afterwards,
mRNA was extracted. (B) Differential mRNA expression of bacterial genes associated with denitrification, in PA infecting AOs versus PA infection of
AOs in the presence of the iNOS inhibitor L-NIL after 16h of gentamicin protected infection. Data is shown as mean ± SD of three independent
experiments. (C) Quantification of intracellular bacteria after 24h of gentamicin-protected infection of AOs treated with 50µM iNOS inhibitor L-NIL,
100µM NO-donor NOC-18 or left untreated. Infected organoids were lysed, and lysates were plated onto LB-agar plates for CFU quantification.
Data from three independent experiments performed in triplicates are shown as a scatter plot with mean ± SD, normalized to infection control (PA).
* denotes p < 0.05 for unpaired t-test, *** denotes p < 0.001 for ANOVA with post-hoc statistical testing.
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corticosteroids in COPD patients is associated with an increased

pneumonia rate, potentially due to decreased epithelial NO

production (41).

To determine the role of epithelial iNOS production in immune

defence against PA in our airway organoid model, we used the

specific pharmacological iNOS inhibitor L-NIL or the NO-forming

drug NOC-18. We observed enhanced clearance of PA upon

addition of NOC-18, whereas treatment with L-NIL increased

bacterial numbers in our organoid infection model. Together,

these findings confirmed that upregulation of iNOS activity upon

PA infection plays critical part in epithelial infection control. The

upregulation of iNOS in epithelial cells by both viable and heat-

inactivated PA suggests that bacterial cell wall components, as well

as interaction with intracellular PAMPs induce iNOS expression.

An improved understanding of innate immune responses

mediated by airway epithelial cells is pivotal to effectively combat

early infection and impede PA persistence, especially given the

rising burden of anti-microbial resistance. This may contribute to

the development of adjunct therapeutic concepts by modulating

specific innate immune pathways, including the stimulation of

iNOS-mediated antimicrobial effector mechanisms, in order to

improve infection outcomes.
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