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The intestinal epithelium, beyond its role in absorption and digestion, serves as a

critical protective mechanical barrier that delineates the luminal contents and the

gut microbiota from the lamina propria within resident mucosal immune cells to

maintain intestinal homeostasis. The barrier is manifested as a contiguous

monolayer of specialized intestinal epithelial cells (IEC), interconnected

through tight junctions (TJs). The integrity of this epithelial barrier is of

paramount. Consequently, excessive IEC death advances intestinal

permeability and as a consequence thereof the translocation of bacteria into

the lamina propria, subsequently triggering an inflammatory response, which

underpins the clinical disease trajectory of inflammatory bowel disease (IBD). A

burgeoning body of evidence illustrates a landscape where IEC undergoes

several the model of programmed cell death (PCD) in the pathophysiology and

pathogenesis of IBD. Apoptosis, necroptosis, and pyroptosis represent the

principal modalities of PCD with intricate specific pathways and molecules.

Ample evidence has revealed substantial mechanistic convergence and

intricate crosstalk among these three aforementioned forms of cell death,

expanding the conceptualization of PANoptosis orchestrated by the

PNAoptosome complex. This review provides a concise overview of the

molecular mechanisms of apoptosis, necroptosis, and pyroptosis. Furthermore,

based on the crosstalk between three cell deaths in IEC, this review details the

current knowledge regarding PANoptosis in IEC and its regulation by natural

products. Our objective is to broaden the comprehension of innovative

molecular mechanisms underlying the pathogenesis of IBD and to furnish a

foundation for developing more natural drugs in the treatment of IBD, benefiting

both clinical practitioners and research workers.
KEYWORDS

inflammatory bowel disease, intestinal epithelium, cell death, PANoptosis,
natural products
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507065/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507065/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507065/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507065/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507065/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1507065&domain=pdf&date_stamp=2025-01-07
mailto:zhao_cx@jscn.edu.cn
https://doi.org/10.3389/fimmu.2024.1507065
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1507065
https://www.frontiersin.org/journals/immunology


Zhao and Lin 10.3389/fimmu.2024.1507065
1 Introduction

Inflammatory bowel disease (IBD) is a chronic idiopathic

inflammation disease of the gastrointestinal tract, encompassing

ulcerative colitis (UC) and Crohn’s disease (CD) (1). Characterized

by inflammation and recurrent ulceration, UC dominates the colonic

mucosa, whereas CD manifests any parts of the entire gastrointestinal

tract (2). A global epidemiological survey has demonstrated the rise

prevalence not only inWestern nations but also in emerging countries

(3). Despite the ongoing ambiguity surrounding its etiology and

pathogenesis, recent studies have elucidated that the intricate

interplay between genetic, environmental and immune factors are

indispensable trigger for progression to intestinal epithelial barrier

damage (4). Consequently, the concept of “mucosal healing” that

necessitate the complete regeneration of the intestinal mucosa has

been raised as the therapeutic benchmark of IBD (5, 6). Mounting

evidence underscores that mismanaged intestinal epithelial cells (IEC)

death compromised barrier breach, which underlies instances of

widespread epithelial erosion (7, 8). So undoubtedly, a more

profound grasp of the IEC cell death paradigm is imperative.

Apoptosis, necroptosis, and pyroptosis are extensively studied

forms of cellular demise, each featuring unique morphological and

biochemical changes. These processes are meticulously choreographed

by tightly-structured signaling cascades of reactions and molecules in

response to a certain signal or stimuli, aiming at eliminating unwanted

or damaged cells to maintain tissue homeostasis (9). Apoptosis is a

non-lytic cell death with an integral cellular membrane and is

considered immunologically silent. In contrast, necroptosis and

pyroptosis are lytic and inflammatory form of unregulated and

accidental cell death (9). Historically, it has been viewed that

apoptosis, necroptosis, and pyroptosis act in parallel without overlap,

but the three PCDs have recently shown to be tightly interconnected

and interact with each other, laying a theoretical foundation for a novel

form of PCD known as PANoptosis (10, 11). Comprehensive research

has demonstrated abnormal apoptosis, necroptosis, and pyroptosis of

IEC during the onset and progression of IBD as well as the complex

crosstalk among them (7). Therefore, PANoptosis may represent an

innovative therapeutic target for the effective treatment of IBD.

In this review, we present a concise summary of apoptosis,

necroptosis, and pyroptosis, subsequently introducing a more

elaborate understanding about the intricate interplay among them

within IEC to investigate their potential relationship with IBD.

Building on this foundation, we further detail the recent advance of

PANoptosis in IEC and its regulation by natural products. We aims

to offer theoretical basis and reference for targeting PANoptosis in

IEC, thereby fostering the development of more effective

therapeutic regimens and pharmacological interventions to

improve the efficacy of IBD therapy in clinical practice.
2 The overview of apoptosis,
necroptosis, and pyroptosis

2.1 Apoptosis

Apoptosis, the first discovered form of programmed cell death,

is a physiological and proactive “conscious suicide” behavior (12).
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Under specific physiological or pathological conditions, apoptosis is

initiated through either receptor-mediated (extrinsic) or

mitochondria (intrinsic) pathways, marked initially by the cellular

shrinkage and rounding, nuclear fragmentation and chromatin

condensation (12). Subsequently, the apoptotic cell features the

plasma membrane blistering, tightly encapsulating the cellular

debris, culminating in forming the apoptotic bodies. Apoptotic

bodies are engulfed by adjacent parenchymal cells and

macrophages, and thus this process does not elicit an

inflammation response in surrounding tissues (9, 12).

The extrinsic apoptotic pathway is initiated by the binding of

extracellular death ligands (TNF family members or Fas ligand) to

their corresponding death receptors (DR) on the plasma

membrane. Following, the cytoplasmic death domain of death

receptors recruits adapter proteins (FADD or TRADD), and then

the precursor of caspase-8 is recruited to form the death-inducing

signaling complex (DISC), activating the initiator caspase-8 and

further activating effector caspases-3/7, ultimately leading to

apoptosis (9). The intrinsic (mitochondria) apoptotic pathway is

induced by internal apoptotic stimuli, such as oxidative stress,

hypoxia, toxic substances, or cytokine deprivation. These stimuli

cause the B-cell lymphoma-2 (Bcl-2) protein family to alter the

permeability of the mitochondrial membrane, releasing

cytochrome c within the mitochondria into the cytoplasm.

Subsequently, cytochrome c binds to apoptotic protease

activating factor-1 (Apaf-1), facilitating apoptosome assembly,

which ignites pro-caspase-9 (13, 14). Then, the activated

initiator caspase-9 further activates the effector proteins caspase-

3/7, amplifying downstream signals and culminating in

apoptosis (14).
2.2 Necroptosis

Necroptosis is a lytic and inflammatory form of PCD

independent of caspases, typically occurring when pathogens or

chemical mediators inhibit apoptosis (15). Morphologically,

necroptotic cells feature with necrotic cells, including swollen

mitochondria, the explosive rupture of plasma membrane and cell

lysis with the leakage of cytosolic constituent into the surrounding

tissues (9, 15).

Caspase-8 determines whether the cell undergoes apoptosis or

necroptosis. When caspase-8 is inactivated or inhibited by

pathogens or chemical mediators, the activated RIPK3-mediated

necrosome is formed (16). Primarily, the external stimulus (such as

TNF-a, Fas ligand and TLR ligands) binds to death receptors (such

as TNFR1 and Fas) and pattern recognition receptors (PRRs, such

as Toll-like receptor), which then recruits and activates receptor-

interacting kinase 1 (RIPK1). Following, the activated RIPK1

recruits and phosphorylates receptor-interacting kinase 3 (RIPK3)

to form the RIPK1-RIPK3 complex (necrosome), then recruiting

and phosphorylating mixed lineage kinase domain-like (MLKL) (9).

The phosphorylated MLKL translocates to cellular membranes and

lyses the cell by forming membrane pores (17). The consequent

membrane rupture results in the release of DAMPs, inevitably

triggering an inflammation response.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1507065
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao and Lin 10.3389/fimmu.2024.1507065
2.3 Pyroptosis

Pyroptosis is a lytic and inflammatory form of PCD dependent

of a series of caspase families to induce the assembly and activation

of inflammasome in response to bacterial or pathogen infections

(18). Pyroptotic cells exhibit the distinct and characterized

morphology with cell swelling, DNA fragmentation within the

intact nucleus and plasma membrane rupture, ultimately leading

to cell lysis with the release of inflammatory factors (9).

Pyroptosis is induced by two primary mechanisms: the

canonical (caspase-1 dependent inflammasome activation) and

the non-canonical (caspase-1 independent inflammasome

activation) pathways. In the canonical pathway, pattern

recognition receptors (PRR), such as TLRs and Nod-like receptors

(NLRs), sense pathogen-associated molecular patterns (PAMPs) or

damage-associated molecular patterns (DAMPs) to initiate

inflammasome sensors (19). The sensors generally comprise Nod-

like receptor protein 3 (NLRP3), NLR family pyrin domain-

containing 1 (NLRP1), NLR family CARD domain containing 4

(NLRC4), absent in melanoma 2 (AIM2), and pyrin proteins, with

NLRP3 being the most extensively studied. The activated

inflammasome sensor then enlists the adapter protein apoptosis-

related speck-like protein (ASC) and pro-caspase-1 to form

inflammasome (9). Then, pro-caspase-1 is hydrolyzed and

converted into the catalytically active form caspase-1, which

further cleaves gasdermin D (GSDMD), pro-IL-1b and pro-IL-18.

The processed GSDMD releases the N-terminal fragment of

GSDMD (GSDMD-N), which inserts into the cell membrane to

form pores to leaking the mature IL-1b and IL-18 as well as other

DAMPs, thereby amplify the inflammatory response (20).

The non-canonical pathway is launched by lipopolysaccharide

(LPS) from gram-negative bacterial. LPS directly interacts with and

activates human caspase-4/5 and its murine ortholog caspase-11 to

cleave GSDMD, thus inducing inflammation (21, 22). Beyond

forming membrane pores, GSDMD-N also facilitates the

activation of the non-canonical NLRP3 inflammasome and

caspase-1, which cleaves pro-IL-1b and pro-IL-18 in a cell-

intrinsic manner (23). With in-depth investigates, the caspase-3/

8-dependent pyroptotic pathway and the granzyme-mediated

GSDMD- independent pyroptosis pathway have recently been

revealed (24). When cell is treated with partial chemical inducers,

pyroptosis is induced by caspase-3-mediated cleavage of GSDME,

yielding a GSDME-N fragment with the pore-forming activity,

while caspase-8 specifically cleaves GSDMC to trigger cell death

pathway (24, 25). In addition, granzyme A/B involves in extensive

pyroptosis by cleaving GSDMB and GSDME, respectively (26, 27).
3 The crosstalk among apoptosis,
necroptosis, and pyroptosis in IEC
involving in IBD

The appropriate model of IEC death is crucial for maintaining

intestine homeostasis. However, excessive and abnormal IEC death

programmers can have catastrophic consequences, such as the onset
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of inflammatory bowel diseases. The epithelium of patients with UC

or CD manifests high level of cell deaths (7, 8). Substantial evidence

have well-established the involvement of apoptosis, necroptosis,

and pyroptosis of IEC in the onset of IBD. Simultaneously, the three

models of cell death described above are interconnected and

superimposed at multiple levels, which have been mostly

described as ‘crosstalk’. Caspase-8 and its adapter FADD are the

core molecular bridging apoptosis, necroptosis and pyroptosis in

IEC (7). In response to TNF and TLR, caspase-8 is activated, which

not only ignites the downstream executioner caspase-3/7 in the

apoptotic pathway, but also cleaves RIPK1 and RIPK3 in the

necroptotic pathway (28–31). Additionally, caspase-8 and FADD

process caspase-1, inflammasome assembly, and GSDMD

activation to launch pyroptosis (31–33).

Caspase-8 switches apoptosis and necroptosis (Figure 1A). An

early study demonstrated that TLR stimulation induced apoptosis

and increased shedding of IEC under inflammatory conditions,

which was related to the activated caspase-8 (34). The activated

caspase-8 also processed gasdermin-D-mediated pyroptosis-like

death of epithelial cells and ensuing ileitis (31). In situation where

caspase-1 was deleted in IEC, the inflammasome sensors NLRP1b

and NLRC4 triggered apoptosis by ASC-dependent caspase 8

activation (35). Under steady state conditions, caspase-8 curbs

RIPK1 and RIPK3 activity by proteolytic cleavage in IEC, thereby

impeding necroptosis (31). Thus, IEC lacking caspase-8 or FADD

due to epithelial cell-specific deletion underwent RIPK3-dependent

necroptosis instead of apoptosis in response to TLR or TNF

stimulation, leading to a complete absence of Paneth cell, serious

tissue damage, enteritis and severe erosive colitis in vivo (36–38).

Similarly, the deficiency of intestinal epithelial caspase-8 signaling

induced necroptosis-mediated enteritis and high lethality after

Salmonella Typhimurium infection (39). Regarding RIPK1, mice

suffering from the deficiencies in both RIPK1 and FADD in IECs

displayed RIPK3-dependent IEC necroptosis, Paneth cell loss and

focal erosive inflammatory lesions in the colon (40). In line with the

results observed in mice, patients with a biallelic 710A > Gmutation

in the caspase-8 gene presented the increased necroptosis instead of

apoptosis in the gut with non-resolving inflammation (41). The

imaging in vivo showed that IEC necroptosis is considered the basis

for the micro erosions and epithelial gaps observed in mice and

humans, which is consistent with the significantly high expression

of RIPK3 in the terminal ileum of CD patients (38, 42). Indeed, the

specific cell type of IEC necroptosis may be Paneth cell. Paneth cells

in humans and mice represented a high level of RIPK3 expression

(38). Interestingly, Paneth cells without caspase-8 do develop but

undergo necroptosis in vivo (38). As is well-known, Paneth cells are

predominantly rich in the ileum. This may provide an explanation

for why mice deficient in caspase-8 bear ileitis but no colitis (38). So

far, however, no study has illustrated RIPK3 as a susceptibility gene

for IBD in genetic research. This evidence hints that necroptosis of

Paneth cells is not a causative factor, but rather a contributing factor

supporting intestinal inflammation. In a word, necroptosis is

frequently encountered in Paneth cells when apoptosis fails to be

induced due to caspase-8 deficiency in IEC.

Although blocking apoptosis through restricting caspase-8 in

IEC and switching their death to necroptosis cause overt intestinal
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inflammation, it may be a self-protection mechanism evolved by the

body when the caspase-8-dependent apoptotic pathway has been

hijacked by microbes or viral infection. CrmA from the cowpox

virus or B13R from the vaccinia virus encodes caspase-8 inhibitor,

thus preventing infected cells from apoptosis; however, RIPK3-

dependent necroptosis serves as a backup mechanism for killing

infected cells and ensures host survival (43, 44). Nevertheless, some

pathogens prevent epithelial cell death by delivering effectors via the

type III secretion system to inhibit both apoptosis and necroptosis,

which can maintain their replicative niche and multiply within cells.

For example, Shigella flexneri hijacked colonic epithelium via a dual

mechanism: it yielded OspC1 to impede caspase-8, thus blocking
Frontiers in Immunology 04
apoptosis; simultaneously, it also yielded OspD3 to degrade RIPK1

and RIPK3, thereby preventing necroptosis (45).

Collectively, the afore-mentioned studies hint that co-inhibition

of caspase-8 and RIPK3 seemingly protects IEC from cell death.

Bewilderingly, mice with deletion of RIPK3 with the FLIP proteins-

induced caspase-8 inhibition in IEC protected from neither cell

death nor inflammation (46). However, the co-ablation of caspase-8

and MLKL downstream of RIPK3 or FADD and RIPK3 in IEC fully

protected against cell death and prevented ileitis in mice (31). These

evidence imply the involvement of additional molecules in inducing

cell apoptosis or necroptosis beyond caspase-8 or RIPK3,

respectively. Alternatively, the involvement of another form of
FIGURE 1

The mechanism of apoptosis, necroptosis and pyroptosis as well as the crosstalk among them in IEC. (A) The crosstalk between apoptosis and
necroptosis as well as necroptosis and pyroptosis in IEC. Beyond cleaving the effector caspases-3/7 in the apoptotic pathway, the apoptotic
molecule caspase-8 could cleave RIPK1, thus inhibiting necroptosis. In addition, the phosphorylated MLKL could foster ASC polymerization and
following lead to caspase-1 activation to trigger pyroptosis. (B) The crosstalk between apoptosis and pyroptosis in IEC. The apoptotic molecule
caspase-8 could process GSDMD activation and interact with ASC to launch pyroptosis. The apoptotic effector caspase-3 is indispensable for
GSDME-mediated pyroptosis. When GSDMD is absent, the pyroptotic molecule caspase-1 proceeds to activate caspase-3/7 and caspase-9. The
pyroptotic molecule GSDME-N fragment permeabilizes the mitochondrial membrane to induce cytochrome c release and ensuing activate the
apoptosome, fueling the mitochondrial apoptotic pathway.
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cell death in this process might provide another explanation for

this observation.

Although no knowledge about additional molecules to induce

cell necroptosis independent of RIPK3 has been established, some

evidence point out the regulation of pyroptotic molecules on

apoptosis beyond caspase-8 (Figure 1B). For instances, the

canonical molecule of pyroptosis, caspase-1, could cleave the

conventional aspartate activation sites (Asp23 and Asp198) of

caspase-7 in macrophages in response to Salmonel la

Typhimurium infection combined with LPS and ATP (47). When

GSDMD is absent, caspase-1 also proceeds to activate caspase-3 and

caspase-9 as well as trigger mitochondrial damage in macrophages,

thereby triggering the apoptotic signaling (48). In addition,

GSDMD-N and GSDME-N fragments permeabilized the

mitochondrial membrane to induce cytochrome c release and

ensuing activate the apoptosome in HEK293T cells, fueling the

mitochondrial apoptotic pathway (49). Further studies are required

to address whether the regulation of pyroptotic molecules on

apoptosis also exists in IEC and whether they affect

IBD pathogenesis.

As for the involvement of another cell death, mounting

evidence now point out significant contributions of pyroptosis in

IECs to the onset of IBD, which could be regulated by apoptotic or

necroptotic molecules (Figure 1). Elevated levels of GSDMB,

GSDMD and GSDME were obviously detected in the inflamed

colonic mucosa of IBD patients, predominantly localizing to the

intestinal mucosal epithelium (50–52). The apoptotic effector

caspase-3 is indispensable for TNBS-induced and GSDME-

mediated pyroptosis in IEC (52). Studies with mice carrying

enzymatically inactive caspase-8 revealed that the CASP8-RIPK1

platform shared by apoptosis and necroptosis was genetically

associated with ASC, the adaptor protein of inflammasomes. The

DED domain of caspase-8 in cells from these mice interacted with

ASC, triggering pyroptosis and severe inflammation in the intestine

(53, 54). Additionally, knockdown of caspase-8 or inhibition of its

function promoted RIPK3-mediated inflammasome NLRP3

activation in macrophage, independent of MLKL (55). Similarly,

MLKL could foster ASC polymerization and following lead to

caspase-1 activation in response to combined treatment of a

TLR3 agonist poly(I:C) and zVAD in macrophage (56). The

effector molecule of necroptosis MLKL activated NLRP3

inflammasome (57, 58). Therefore, the IEC death in mice with

co-ablating RIPK3 and caspase-8 could be rescued when the

pyroptotic mediator was deleted (53, 54).

In summary, the crosstalk of events underlying apoptosis,

necroptosis and pyroptosis in IEC can be succinctly outlined as

follows: caspase-8 switches apoptosis and necroptosis in IEC

(Figure 1). TLR or TNF immoderate stimulation induced the

activation of caspase-8 in IEC, thus initiating an apoptotic fate.

Concurrently, caspase-8 fosters gasdermin-D-mediated pyroptosis-

like death of epithelial cells. When caspase-8 is deleted or

dysfunctional due to pathogen-mediated or pharmacological

inhibition, caspase-8 mediated-apoptosis and pyroptosis could

not be triggered, resulting in RIPK3-mediated necroptosis of IEC

or additional molecules igniting apoptotic/pyroptosis signals in

IEC. For example, caspase-1, GSDMD and GSDME induced
Frontiers in Immunology 05
apoptosis, while caspase-3 or MLKL orchestrate pyroptosis. These

excessive cell death modalities, based on the crosstalk of molecules,

collectively cause catastrophic intestinal inflammation.
4 The role of PANoptosis in IEC and
its regulation by nature products

4.1 The role of PANoptosis in IEC

Based on the extensive cross-talk between PCD pathways, the

conceptualization of a united cell death modality, named

PANoptosis, was proposed in 2019 (59). PANoptosis (“P”,

pyroptosis; “A”, apoptosis; “N”, necroptosis) is induced by

multifaceted PANoptosome complexes with key features of

pyroptosis, apoptosis, and/or necroptosis, which could not be

fully accounted for by any other PCD pathway alone. The

PANoptosome components are tripartite, consisting of: 1)

PAMPs or DAMPs sensors like ZBP1, AIM2, and NLRP3; 2)

scaffolding proteins such as ASC and FADD; 3) catalytic effectors

including RIPK1, RIPK3, CASP-1 and CASP-8 (59). To date,

several distinct PANoptosome complexes have been identified,

featuring unique sensors and regulators, such as the ZBP1-,

AIM2-, RIPK1-, and NLRP12-PANoptosomes (10).

Given the crosstalk of apoptosis, pyroptosis and necroptosis in

IEC, the researches has demonstrated the important regulator of

PANoptosis in the pathogen-induced intestinal inflammation

(Figure 2). For example, S. Typhimurium effector SopF regulated

PANoptosis in IEC to attenuate intestinal inflammation.

Specifically, SopF inactivated caspase-8 through the PDK1-RSK

signaling, thereby inhibiting apoptosis and pyroptosis of IEC with

the promotion of necroptosis. Thus, SopF restricted the dislodging

of IECs to promote bacterial dissemination, which exacerbates

systemic infection (60). In addition, ventilator-induced lung

injury (VILI) substantially promoted the expression of caspase-3,

N-GSDMD and p-RIPK3 in the gut due to systemic cytokines,

suggesting that PANoptosis involved in VILI-induced gut injury

and inflammation in the mice (61).

Recently, PANoptosis has been implicated in the onset and

progress of IBD. Based on multiple transcriptome profiles of

intest inal mucosal biops ies from the GEO database ,

bioinformatics analysis identified that four pivotal PANoptosis-

related gene (ZBP1, AIM2, CASP1/8) were significantly activated in

UC patients, which regulated specific immune cells and interacted

with key signaling pathways contributing to the pathogenesis of UC.

These findings were validated in the DSS-induced mouse colitis

model (62–64). Another comprehensive study combining

bioinformatics, machine learning, and experimentation confirmed

that PANoptosis played an undeniable role in CD by regulating the

immune system and interacting with CD-related genes (65). The

abnormal activation of ZBP1 caused embryonic lethality and

intestinal cell death. In mouse models, the knockdown of key

sensor molecules of PANoptosis has been shown to rescue the

death fate of innate immune-induced epithelial cells (66).

Researches indicated the crucial role of IFN-g in inducing the

intestinal epithelial barriers (67). The result obtained from human
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intestinal organoid (enteorid) model has shown that PANoptosis is

the major mechanism of IFN-g-induced IEC damage. Furthermore,

bulk and single-cell RNA sequencing (RNA-seq) found that PCD-

associated gene expression was upregulated in enterocytes and

goblet cells, but not in intstinal stem cells and Paneth cells (68).

This finding demonstrates IFN-g-induced intestinal epithelial cell

type-specific PANoptosis. Mechanistically, NLRC5 could function

as an innate immune sensor in inflammatory conditions and

interact with NLRP12 to form a PANoptosome in response to

NAD+ depletion. Thus, deletion of NLRC5 protect mice from colitis

(69). However, this study did not illuminate whether NLRC5-

mediated PANoptosome formation bears intestinal epithelial cell

type specificity.

IFN regulatory factor 1 (IRF1) is a transcription factor of the

PANoptosome sensors ZBP1 and NLRP3, and knocking out IRF1

will reduce the expression of PANoptosome core molecules such as

NLRP3, CSAP1/3/8, and MLKL in the innate immune response (70,

71). In a UC mouse model, the knockdown of IRF1 also

significantly inhibited the expression of colonic apoptosis,

pyroptosis, and necroptosis executioner proteins CASP3/7,

GSDMD, and MLKL, thus inhibiting PANoptosis (72). Colitis-

associated cancer (CAC) is the most serious complication of

inflammatory bowel disease, which is driven by long-term

inflammatory damage. In the case of CAC, loss of IRF1

suppressed PANoptosis of colon, thereby increasing the

susceptibility of Irf1-/- mice to CRC (72). Hence, IRF1 functions

as a key upstream mediator of PANoptosis, which could potentially

be a therapeutic target for IBD. More in-deep and systematic

investigation is warranted to uncover the substantial insights into

the essential role of IRF1 in the PANoptosis process of IEC, which is
Frontiers in Immunology 06
beneficial for a momentously advanced understanding of the

etiology and pathogenesis of IBD.
4.2 Potential nature compounds targeting
IEC PANoptosis in IBD

It is widely acknowledged that in pathological contexts, three

distinct modalities of cell demise can coexist, exhibiting overlapping

mechanisms and functioning as complementary death strategies.

For instance, the inhibition of caspase-8 can effectively mitigate the

process of apoptosis; however, this intervention may precipitate

alternative forms of cell death, such as necroptosis or pyroptosis.

Notably, PANapoptosis encompasses all three types of cell death,

and thus, targeting PANapoptosis presents a strategic approach to

concurrently inhibit these three distinct modes of cell demise.

It’s well-established that natural products stemmed from

multifarious medicinal plants, vegetables and fruits orchestrate

different cell death modalities for IBD treatment with lower costs,

flexible dosage adjustments, fewer side effects and long-term

application (73, 74). However, no reports delineate natural

products regulating PANoptosis of IEC for IBD treatment.

Nevertheless, numerous natural products are currently being

investigated as PCD regulators for IBD therapy. Natural

compounds that modulate both apoptosis and necroptosis or

apoptosis and pyroptosis in IEC are listed in Table 1, setting a

precursor for research into PANoptosis of IEC in IBD.

HuanglianGanjiang Tang (HGT) is a renowned prescription of

traditional Chinese medicine (TCM). HGT obstructed necroptosis

in IEC by activating vitamin D receptor (VDR) signaling pathway,
FIGURE 2

The PANoptosis in IEC involving in the intestinal inflammation. S. Typhimurium effector SopF inactivates caspase-8 through the PDK1-RSK signaling,
thereby inhibiting apoptosis and pyroptosis of IEC with the promotion of necroptosis. Consequently, SopF attenuates intestinal inflammation,
however, promotes bacterial dissemination, which exacerbates systemic infection. Moreover, ventilator-induced lung injury (VILI) results in systemic
cytokines, which promotes the expression of Caspase-3, N-GSDMD and p-RIPK3 in the gut. Thus, apoptosis, necroptosis and pyroptosis can lead to
intestinal injury and inflammation in mice.
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thereby attenuating DSS-induced colitis. Furthermore, molecular

docking analysis has successfully proved the binding affinity of the

five compounds to VDR, including berberine, phellodendrine, 6-

Gingerol, ferulic acid and citric acid (75). Previous studies

uncovered that berberine could evidently lessen cytokine-induced

Caco-2 apoptosis in vitro by lowering JNK phosphorylation, thus in

turn promoting the recovery of colon epithelium in DSS-treated

mice (76, 77). Recently, a research found that berberine weakened

colitis-induced pyroptosis and intestinal mucosal barrier defects by

activating the Wnt/b-catenin pathway via modulating the miR-

103a-3p/BRD4 axis (78).

The natural compound polysaccharides from the edible

mushrooms Lentinus edodes showed therapeutic properties on

DSS-induced colitis. The carbohydrate-rich component of L.

edodes polysaccharides suppressed TNF-induced cell death of

Caco-2 cells in a dose-dependent manner by inhibiting pMLKL-

mediated necroptotic cell death, thus counteracting DSS-induced

colitis in mice (79). This study also revealed that L. edodes

polysaccharides prevented apoptotic cell death in Caco-2 cells

(79). The effect of L. edodes polysaccharides on pyroptosis is

reported in non-IEC. In human umbilical vein endothelial cells,

L. edodes polysaccharides dampened advanced glycation end

products (AGEs)-induced pyroptosis via regulating the LncRNA

MALAT1/miR-199b/mTOR axis and the NLRP3/Caspase-1/

GSDMD pathway (80).

Traditional herbal formula Wu-Mei-Wan (WMW) could

augment colonic O-GlcNAc transferase (OGT) activity and

inhibit O-GlcNAcase (OGA) activity, which may be regulated by

the compounds hesperidin, coptisine and ginsenoside Rb1 found in

WMW. As a result, WMW could prevent necroptosis through
Frontiers in Immunology 07
promoting RIPK3 O-GlcNAcylation and suppressing the binding

of RIPK3 and MLKL, ultimately alleviating TNBS-induced colitis in

mice (81). A previous study demonstrated that ginsenoside Rb1

abated LPS-induced apoptosis via activating Hrd1 signaling

pathway in intestinal cell line IEC-6, thus alleviating colitis

symptoms in DSS- and TNBS-treated mice (82). Additionally,

ginsenoside Rb1 diminished pyroptosis by activating mitophagy

in non-IEC, such as astrocytes, hepatocytes and renal cells (83–85).

Importantly, forthcoming research endeavors about the effect of

ginsenoside Rb1 on the IEC and colitis are necessary.

Cucurbitacin E (CurE), a natural product extracted from plants in

the Cucurbitaceae family. In the adrenocortical carcinoma cells, is a

CDK1 inhibitor. CDK1 regulated the PANoptosis of adrenocortical

carcinoma cells through binding with the PANoptosome in a ZBP1

−dependent way (86). Machine learning and integrated

bioinformatics identified possible hub genes (AURKB, CDK1, and

CCNA2) between bladder cancer and inflammatory bowel disease

(87). Further investigation is warranted to confirm whether

cucurbitacin E regulates PANoptosis in a ZBP1−dependent way in

the context of IBD specifically.

In a word, berberine, L. edodes polysaccharides, ginsenoside

Rb1 and cucurbitacin E are potential natural compounds that

regulate PANoptosis of IEC for the treatment of IBD. These

evidence pave the way for future pharmacological research.
5 Conclusion and discussion

Over the past decade, a wealth of evidence has established the

basic knowledge on apoptosis, necroptosis and pyroptosis and their
TABLE 1 Compounds that induce cell.

Natural compounds
Cell
death

In Vivo/Vitro Cell lines/Animals Mechanisms References

HuanglianGanjiang Tang (HGT)
and the compound berberine

Necroptosis In Vitro Mice with DSS-induced colitis
Activating vitamin D receptor
(VDR) signaling pathway

(75)

berberine

Apoptosis
In Vivo and
In Vitro

Caco-2 Cells/ Mice with DSS-
induced colitis

Lowering JNK phosphorylation (76, 77)

Pyroptosis
In Vivo and
In Vitro

Caco-2 Cells/ Mice with DSS-
induced colitis

Activating the Wnt/b-catenin
pathway via modulating the
miR-103a-3p/BRD4 axis

(78)

L. edodes polysaccharides

Necroptosis
In Vivo and
In Vitro

Caco-2 Cells/ Mice with DSS-
induced colitis

Inhibiting pMLKL-
mediated necroptosis

(79)

Pyroptosis In Vitro Human umbilical vein endothelial cells

Regulating the LncRNA
MALAT1/miR-199b/mTOR axis

and the NLRP3/Caspase-1/
GSDMD pathway

(80)

Traditional herbal formula Wu-
Mei-Wan (WMW) and the
compound ginsenoside Rb1

Necroptosis In Vivo Mice with TNBS-induced colitis
Promoting RIPK3 O-

GlcNAcylation and suppressing
the binding of RIPK3 and MLKL

(81)

Ginsenoside Rb1

Apoptosis
In Vivo and
In Vitro

IEC-6 Cells/ Mice with DSS- and
TNBS-induced colitis

Activating Hrd1
signaling pathway

(82)

Pyroptosis In Vitro
Non-IEC (astrocytes, hepatocytes and

renal cells)
Activating mitophagy (83–85)

Cucurbitacin E PANoptosis In Vitro Non-IEC Regulating ZBP1 (86)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1507065
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao and Lin 10.3389/fimmu.2024.1507065
roles in the pathogenesis of IBD. This review followed with interest

in the current understanding of the crosstalk between these cell

deaths modalities in IEC, particularly in the context of

inflammatory bowel disease. However, IEC constitute a

heterogeneous population along the gut, embodying absorptive

cells, goblet cells, enteroendocrine cells, Paneth cells, M cells, cup

cells, and Tuft cells. The significance of location-specific and cell

type-specific cell death along the length of the intestine has been

highlighted by various transgenic mouse models. Further

investigation is needful to unravel the cell death and their

crosstalk at single-cell resolution in different IEC types from the

intestine, which will potentially illuminate the underlying nature

of IBD.

Within the landscape about the crosstalk between apoptosis,

necroptosis and pyroptosis in IEC, this review further provided an

overview about the IEC PANoptosis in the context of IBD.

However, the body of literatures addressing this topic is scant.

The study of PANoptosis in IBD remains limited to in preliminary

experimental phases. As such, there is an imperative need to probe

more intricately into the underlying mechanisms governing

PANoptosis and the upstream modulators in IEC through both

foundational research and clinical trials. This endeavor will

undoubtedly foster the emergence of innovative and more

efficacious treatment strategies for IBD.

Given the well-established role of natural products in the

prevention and treatment of IBD, coupled with their minimal

adverse effects, this review also highlights potential nature

compounds targeting IEC PANoptosis for IBD treatment based

on the limited literatures. This merits further attention and

contemplation. We hope to provide a solid groundwork for

researchers in this field to explore the potential drugs for IBD

treatment in the foreseeable future.
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