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Identification and validation of
the diagnostic biomarker MFAP5
for CAVD with type 2 diabetes
by bioinformatics analysis
Qiang Shen †, Lin Fan †, Chen Jiang †, Dingyi Yao, Xingyu Qian,
Fuqiang Tong, Zhengfeng Fan, Zongtao Liu, Nianguo Dong*,
Chao Zhang* and Jiawei Shi*

Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China
Introduction: Calcific aortic valve disease (CAVD) is increasingly prevalent

among the aging population, and there is a notable lack of drug therapies.

Consequently, identifying novel drug targets will be of utmost importance. Given

that type 2 diabetes is an important risk factor for CAVD, we identified key genes

associated with diabetes - related CAVD via various bioinformatics methods,

which provide further potential molecular targets for CAVD with diabetes.

Methods: Three transcriptome datasets related to CAVD and two related to

diabetes were retrieved from the Gene Expression Omnibus (GEO) database. To

distinguish key genes, differential expression analysis with the “Limma” package

and WGCNA was applied. Machine learning (ML) algorithms were employed to

screen potential biomarkers. The receiver operating characteristic curve (ROC)

and nomogram were then constructed. The CIBERSORT algorithm was utilized

to investigate immune cell infiltration in CAVD. Lastly, the association between

the hub genes and 22 types of infiltrating immune cells was evaluated.

Results: By intersecting the results of the “Limma” and WGCNA analyses, 727 and

190 CAVD - related genes identified from the GSE76717 and GSE153555 datasets

were obtained. Then, through differential analysis and interaction, 619 genes

shared by the two diabetes mellitus datasets were acquired. Next, we intersected

the differential genes and module genes of CAVD with the differential genes of

diabetes, and the obtained genes were used for subsequent analysis. ML

algorithms and the PPI network yielded a total of 12 genes, 10 of which

showed a higher diagnostic value. Immune cell infiltration analysis revealed

that immune dysregulation was closely linked to CAVD progression.

Experimentally, we have verified the gene expression differences of MFAP5,

which has the potential to serve as a diagnostic biomarker for CAVD.

Conclusion: In this study, a multi-omics approach was used to identify 10 CAVD-

related biomarkers (COL5A1, COL5A2, THBS2, MFAP5, BTG2, COL1A1, COL1A2,
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MXRA5, LUM, CD34) and to develop an exploratory risk model. Western blot (WB)

and immunofluorescence experiments revealed that MFAP5 plays a crucial role in

the progression of CAVD in the context of diabetes, offering new insights into the

disease mechanism.
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1 Introduction

Calcific aortic valve disease (CAVD) is a serious and

increasingly global pathology, which is a major cause of aortic

stenosis (1). The primary outcome was a composite of AS-related

events, including angina, syncope, heart failure and death. As a

result, transcatheter aortic valve replacement (TAVR) therapy and

surgical intervention remain the most effective options, but they

come with complications and no guarantee of long– term success

(2). Therefore, it is still necessary to explore effective therapeutic

methods to prevent the onset of CAVD and its progression (3).

However, the pathogenesis of CAVD remains unclear, and there are

currently no effective treatments (4). Type 2 diabetes is a common

metabolic disorder with numerous complications (5). Advanced

type 2 diabetes routinely requires treatment with subcutaneous

insulin (INS) injections. It is generally recognized that diabetes

mellitus is a major risk factor for the development of cardiovascular

disease (6).

Moreover, diabetes contributes to metabolic derangements,

immune dysfunction, and vascular damage, which are commonly

recognized as risk factors for CAVD (3, 7). It is very important to

pay more attention to cardiovascular system complications in

patients with T2DM.

The relationship between CAVD and diabetes has been partially

elucidated (8). Diabetes mellitus contributes to cellular damage and

causes apoptosis by oxidative stress and inflammation (9). Both are

important risk factors for CAVD (10). Recent evidence has emerged

that higher reactive oxygen species (ROS) levels induce osteoblastic

differentiation of human valvular interstitial cells (VIC), which are

the primary structural cells of the aortic valve (10). Some

inflammatory factors (such as TGF-b, TNF-a and IL-1b)
produced by the inflammatory response result in CAVD (11).

In this study, we searched for the hub genes using

bioinformatics tools in two CAVD datasets and two diabetes

datasets from the Gene Expression Omnibus (GEO) database. We

used the expression of 10 hub genes (COL1A1, COL1A2, COL5A1,

COL5A2, LUM, MFAP5, MXRA5, THBS2, BTG2, CD34) to build

models with satisfactory diagnostic value by machine learning

methods. Next, we explored the characteristics of immune cells in

CAVD. Finally, we found that the level of MFAP5 was significantly

increased in the disease group.
02
2 Methods

2.1 Microarray data retrieval

The outline of our research design is depicted in a flow chart

(Figure 1). The publicly available transcriptome datasets (GSE7014,

GSE29221, GSE76717, and GSE153555) can be retrieved from the

NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

detailed dataset information, including platform information and

sample descriptions, is presented in the Supplementary Materials.
2.2 Data processing and identification of
differentially expressed genes

The R package “limma” was used to detect differentially

expressed genes (DEGs) between various subtypes. The analysis

was carried out using the lmFit function for linear modeling,

followed by empirical Bayes moderation with the eBayes function.

The topTable function was then applied to identify DEGs, with the

screening criteria set to a P-value < 0.05 and a fold change > 1.5 (for

datasets GSE7014 and GSE29221) or fold change > 2 (for datasets

GSE76717 and GSE153555). Quantile normalization was applied

using the voom function to adjust for technical variation. The

Heatmap and volcano plots of DEGs were constructed, using

Pheatmap and ggplot2.
2.3 Weighted gene co-expression network
analysis was used for module
gene identification

Weighted gene co-expression network analysis (WGCNA) is a

systematics biology method used for integrating gene expression

and clinical traits, aiming to identify modules and genes related to

disease phenotypes and therapeutic targets (12). All subsequent

steps were based on R software (version: 4.3). We used WGCNA to

identify CAVD-related modules, constructed using the R package

“WGCNA” (12). The MAD (median absolute deviation) of each

gene expression value was calculated and genes with median

absolute deviation in the top 20% were chosen for WGCNA.
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GoodSamplesGenes function in the WGCNA R package was used

to eliminate outlier samples and genes. The soft threshold values

were selected using the pickSoftThreshold function within the

WGCNA package, which was then utilized to build the weighted

adjacency matrix that was converted into topological overlap matrix

(TOM). Several gene modules were detected through hierarchical

clustering with a dynamic tree-cutting algorithm. In order to

classify genes with similar expression profiles into gene modules,

average linkage hierarchical clustering was conducted according to

the TOM-based dissimilarity measure with a minimum size (gene

group) of 30 for the genes’ dendrogram. To further analyze the

module, we calculated the dissimilarity of module eigen genes,

chose a cut line for module dendrogram, and several modules were

chosen for further investigation. Several gene modules with the

strongest correlation to the target trait were selected for

further analysis.
Frontiers in Immunology 03
2.4 Function enrichment analysis

In order to further explore the protective mechanism of CAVD-

related differential genes (cDEGs) in CAVD, Gene Set Enrichment

Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway, and Gene Ontology (GO) analysis were

performed for biological functional analysis. For all analyses, p-

Value <0.05 was considered statistically significant.
2.5 Machine learning

Candidate genes for CAVD diagnosis were further investigated

using two machine learning algorithms. In the Lasso penalized

regression model, genes with non-zero coefficients were considered

to have strong prognostic potential, while variables with zero
FIGURE 1

Flowchart of the study design and multi - step analysis strategy for bioinformatics data.
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coefficients were excluded from the model (13). Random Forest

(RF) analysis, an effective approach with no restrictions on variable

conditions, offers improved accuracy, sensitivity, and specificity.

The R packages glmnet and randomForest were used to perform the

LASSO Cox regression and Random Forest analysis. iDEGs, defined

as the overlapping genes among cDEGs, dDEGs, and WGCNA,

were subsequently identified as hub genes through LASSO and

SVM-RFE analyses.
2.6 Nomogram construction and receiver
operating characteristic evaluation

The clinical value of potential hub iDEGs was evaluated using

the area under the curve (AUC) and 95% confidence interval (CI)

across three datasets: two for internal validation (GSE76717 and

GSE153555) and one for external validation (GSE55492). AUC >

0.7 was considered indicative of ideal diagnostic performance. The

construction of a nomogram provides valuable reference for the

diagnosis and prognosis of clinical CAVD. The rms R package was

used to develop the nomogram based on the candidate genes.
2.7 Immune infiltration analysis

CIBERSORT was utilized to estimate the infiltration ratio of

immune cell types in CAVD and normal valve samples. The bar

chart showed the proportion of immune cells in all samples.

Correlation analysis and visualization of several types of

infiltrating immune cells were performed using the “corrplot”

package in R.
2.8 RNA extraction and quantitative
polymerase chain reaction

Total RNA was extracted from human aortic valve tissue using

RNA-easy Isolation Reagent (Vazyme, Nanjing, China), and then

quantitative polymerase chain reaction (qPCR) was performed using

HiScript III RT SuperMix for qPCR (Vazyme, Nanjing, China).

Primers used in qPCR are listed in the Supplementary Table and

were synthesized by Wuhan Okobotai Biotechnology Co., Ltd.

(Wuhan, China). qPCR analysis was performed on a StepOne real-

time PCR system (Applied Biosystems, Singapore). The relative

changes in target gene expression were normalized to the expression

level of GAPDH and calculated using the 2(-DDCt) method.
2.9 Single-cell sequencing analysis

The single-cell RNA sequencing dataset (snRNA-seq,

PRJNA562645) was downloaded, comprising 3 young samples, 3
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elderly samples, and 3 CAVD samples (14). The “Seurat” packages

were employed to data embedding, visualization, clustering and

annotation Principal components. Dimensionality reduction and

embedding was per formed us ing Uni form Mani fo ld

Approximation and Projection (UMAP) by the Nebulosa.
2.10 Western blotting analysis

Total protein was isolated from human aorta tissue using

RIPA lysis buffer and boiled in loading buffer for fifteen

minutes. After separation on a 10% SDS-PAGE gel, the proteins

were transferred to PVDF membranes and subsequently incubated

with primary antibodies overnight at 4°C, followed by incubation

with the corresponding secondary antibodies for 1 h. Ultimately, the

protein blots were developed using the enhanced chemiluminescence

(New Cell & Molecular Biotech, P002), and the labeled bands were

quantified by Image J 1.8 (National Institutes of Health).
2.11 Immunofluorescence staining

After being dried at room temperature for 20 min, frozen

sections of aortic valves were fixed in 4% PFA for 30 min and

then permeabilized with 0.1% Triton X-100 in PBS for another 15

min. Next, the tissues were incubated with the primary antibody

(MFAP5, A23529; ABclonal, China), followed by incubation with

fluorescently conjugated secondary antibody and counterstaining

with 4′,6-diamidino-2-phenylindole (DAPI).
2.12 Antibodies and reagents

The following antibodies were used for western blotting and

immunofluorescence: RUNX2 (CST, 8486), ALPL (R&D,

MAB1448), GAPDH (Proteintech, 60004-1-Ig), MFAP5

(Proteintech, 15727-1-AP), goat anti-rabbit IgG (ab150077, 1:200

dilution), goat anti-mouse IgG (ab150115, 1:200 dilution).
2.13 Statistics analysis

Experimental data were analyzed using GraphPad Prism 9

(GraphPad Software, Inc., CA, USA). Values are presented as the

mean ± standard deviation (SD). The Shapiro-Wilk test was

performed to assess the normality of the data. If the data passed

the normality test (a = 0.05), parametric tests, such as the unpaired

t-test or ordinary one-way ANOVA, were applied. If the data did

not meet the normality assumption, non-parametric tests (such as

the Mann-Whitney test) were used. Statistical significance was

considered at P < 0.05.
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3 Result

3.1 Identification of CAVD-related DEGs
by “Limma”

Similarly, we used bioinformatics tools to identify CAVD-related

differential genes (cDEGs) in the two datasets. A total of 2238 cDEGs

were identified in the GSE76717 dataset, of which 1147 genes were

upregulated and 1091 genes were downregulated. Moreover, a total of

2217 cDEGs were identified in the GSE153555 dataset, of which 1053

genes were upregulated and 1164 genes were downregulated. The

differentially expressed genes (cDEGs) listed in the Supplementary

Table were identified using the Limma package in R and presented as a

volcano diagram and heatmaps with hierarchical clustering (Figure 2).
3.2 WGCNA and critical
module identification

WGCNA was used to construct scale-free networks, which were

then combined with phenotypic information to further identify key
Frontiers in Immunology 05
disease-related modules. (Figures 3B, G). The two samples

GSE76717 and GSE153555 were respectively clustered and

divided into two clusters (Figures 3A, D). The soft threshold

power values for datasets GSE76717 and GSE15355 were set to 12

and 9, respectively, for subsequent analysis. (Figures 3B, E).

WGCNA was used to construct scale-free networks, which were

then combined with phenotypic information to further identify key

disease-related modules. (Figures 3C, F). Heatmaps of module–

phenotype correlations were visualized based on Spearman

correlation coefficients to evaluate the relationship between

modules and features (Figures 3G, H). The heatmap of GSE76717

showed that blue (446 genes, r=0.91, p=3e−7) and turquoise (758

genes, r= 0.89, p= 2e−6) modules exhibited a strong positive

correlation with CAVD. Hence, the blue and turquoise modules

are considered important modules for subsequent analyses. In

contrast, the analysis result of GSE153555 showed that the blue

module exhibited the highest correlation with CAVD (744 genes, r

= 0.92, p = 6e−8). Therefore, the blue module was considered as the

module of interest for subsequent analyses. The genes contained in

these modules are presented in the Supplementary Table. The

scatter plot demonstrates a significant correlation between gene
FIGURE 2

Identification of CAVD-related differentially expressed genes (cDEGs). (A, B) Volcano plots of significantly differentially expressed genes based on fold
change (FC; |log2(FC)|) > 1 and P value < 0.05 from GSE76717 and GSE153555 datasets. Downregulated cDEGs are highlighted in blue and
upregulated cDEGs are highlighted in red. (C, D) Heatmaps of significant cDEGs identified in GSE76717 and GSE153555.
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significance for CAVD and module membership (Blue: correlation

coefficient = 0.89, p = 1.6e−153 and turquoise: correlation

coefficient = 0.87, p < 1e−200 in GSE76717 dataset, and blue:

correlation coefficient = 0.91, p < 1e−200 in GSE153555 dataset)

(Figures 3I, J). These results further demonstrate that the selected

modules are closely related to CAVD.
Frontiers in Immunology 06
3.3 Selection and functional enrichment
analysis of cDEGs

GSEA, GO and KEGG functional enrichment analyses were

implemented based on these genes. GSEA analysis revealed that

pathways associated with Cytokine - cytokine receptor interaction,
FIGURE 3

(A, D) Sample clustering of the GSE76717 and GSE153555 datasets. Samples were clustered into two significantly different clusters respectively.
(B, E) Selection of optimal thresholds for GSE76717 and GSE153555, with values of 12 and 9, respectively. (C, F) Gene co-expression modules
represented by various colors in the gene tree diagram. (G, H) Significant gene modules in GSE153555 and GSE76717 were identified in the heatmap.
Heatmap showing the correlation between module eigengenes and sample types. The correlation (upper) and p-value (bottom) between module
eigengenes and CAVD status are shown. (I, J). The correlation plot between the most significant module membership and gene significance
indicated that the selected modules were closely related to CAVD.
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IL - 17 signaling pathway, and Type I diabetes mellitus were

enriched (Figures 4A, B). In the KEGG analysis, processes such as

“Cytokine-cytokine receptor interaction”, “Rheumatoid arthritis”,

“Toll-like receptor signaling pathway” and “Type I diabetes

mellitus” were upregulated, while “PPAR signaling pathway”,

“Tyrosine metabolism” and “Insulin signaling pathway” were

downregulated (Figures 4C, D). GO analysis including biological

processes (BP), cellular components (CC), and molecular functions

(MF) was carried out. Upregulated genes were primarily involved in

the adaptive immune response at the biological process (BP) level,

while the pathogenic genes were mainly localized to antigen-

binding regions and extracellular matrix structural components at

the cellular component (CC) level (Figures 4E, F). Concerning MF

analysis, the results indicated that “collagen-containing

extracellular matrix” and “immunoglobulin complex” were the

most relevant items for the pathogenic genes. In general, the
Frontiers in Immunology 07
enriched pathways of upregulated genes were mainly involved in

inflammation, while the downregulated genes were mainly

associated with metabolic diseases. However, these are closely

related to diabetes (15, 16). Therefore, the focus of future research

will be on the shared genes that contribute to both diseases.
3.4 Identification of diabetes-related DEGs
by “Limma” and the overlapping genes

We used powerful bioinformatics analysis methods to identify

differentially expressed genes associated with type 2 diabetes

(dDEGs). According to the significance criteria, a total of 3363

differentially expressed genes (dDEGs) were obtained from the

GSE7014 dataset, including 2239 up-regulated genes and 1124

down-regulated genes. Similarly, 2549 dDEGs were generated from
FIGURE 4

Functional Enrichment Analysis of CAVD-related differential genes (cDEGs). (A, B) GSEA analysis of the cDEGs demonstrated the enrichment of pathways
associated with ECM- receptor interaction and AGE-RAGE signaling pathway in diabetic complications. (C, D) KEGG enrichment analysis of the cDEGs in
GSE76717 and GSE15355 datasets showed the enrichment of upregulated and downregulated pathways. (E, F) GO enrichment of the upregulated genes
in the GSE76717 and GSE15355 datasets is shown for biological processes (BP), molecular functions (MF), and cellular components (CC).
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the GSE29221 dataset, consisting of 535 up-regulated genes and 2014

down - regulated genes (Figures 5A, B). The dDEGs, listed in the

Supplementary Tables, were obtained using the Limma package. The

overlapping genes (ddDEGs) of two different diabetes datasets are

shown as a Venn diagram (Figure 5C). To further investigate the

genes associated with CAVD, the overlapping genes among cDEGs,

dDEGs and WGCNA were identified as iDEGs (Figures 5D, E).
3.5 Screening of hub genes with diagnostic
value via the PPI network and
machine learning

The PPI network was constructed using the STRING database

and visualized with Cytoscape (Figure 6A). The hub genes were

selected from the entire PPI network by using the MCC algorithm of

the CytoHubba plugin (Figure 6B). The 9 genes with the highest

MCODE score in the PPI network were defined as hub genes

(Figure 6C). Lasso regression algorithms and random forest were

employed to screen out candidate hub genes for CAVD diagnosis.

Using the LASSO Cox regression method, 5 genes in the GSE76717

and 4 genes in the GSE15355 were selected as optimal candidate

genes with the minimum lambda (Figures 6F, G). Gini scoring was

carried out, and finally, the top 8 genes in GSE76717 and the top 8

genes in GSE15355, based on their MeanDecreaseGini scores, were

selected as the core genes associated with CAVD (Figures 6D, E,
Frontiers in Immunology 08
H, I). Finally, we selected the overlapping genes predicted by two PPI

methods and ML algorithms as potential target genes (Figures 6J–L).

Subsequent analysis further explored the performance of the

combination of 6 hub genes.
3.6 Evaluation of the diagnostic value of
potential hub iDEGs

Finally, three datasets, including the GSE76717 dataset, the

GSE153555 dataset, and the GSE55492 dataset, were also used to

further evaluate the diagnostic value of these features. Genes with an

area under the curve (AUC) >0.7 were considered to have

diagnostic value. ROC curves were produced, and AUC values

were calculated for the candidates to assess their diagnostic value.

Internal validation showed that 12 of these hub iDEGs candidates

had AUC values > 0.7 (Figure 7A). External validation indicated

that 10 of these hub iDEGs candidates had AUC values greater than

0.7 (Figure 7B). Accordingly, a nomogram incorporating 5 genes

was constructed (Figure 7C).
3.7 Immune infiltration analysis in CAVD

Inflammatory components, such as adhesion molecules, are

associated with the pathogenesis of CAVD mediated by immune
FIGURE 5

Identification of diabetes-related differentially expressed genes (dDEGs). (A, B) Volcano plots of significantly differentially expressed genes based on
fold change (|log2(FC)| > 0.585) and P-value < 0.05 from the GSE7014 and GSE29221 datasets. (C) The differential genes common to the two
diabetes datasets (ddDEGs) are represented in a Venn diagram. (D, E) Venn diagrams representing differential genes shared between valves and
diabetes (iDEGs).
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FIGURE 6

Selection of diagnostic biomarkers for CAVD by PPI network and machine learning (ML). (A) The PPI network of IADEGs. (B) The top 10 hub genes
identified using the degree method with the CytoHubba plugin (Cytoscape). (C) The 9 genes with the highest MCODE scores in the PPI network
were defined as hub genes. (D, E) The DEGs corresponding to the lowest binomial deviance were identified as the most suitable candidates.
(F, G) Random forest was used to analyze the relationships between the number of trees and the error rate. (H, I) The plot shows iDEGs ranked
based on the importance score calculated from the random forest. (J) The 9 intersecting genes recognized by the two PPI-based methods. (K, L) 5
hub genes were respectively selected from two datasets by two ML algorithms as potential hub iDEGs for further evaluation.
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reactions (16). Considering the significant role of immune cell

infiltration in the CAVD microenvironment, the GSE76717 dataset

was employed to assess the degree of infiltration. The estimated

proportions of 22 immune cell types are shown (Figure 8A). M2-type

macrophages are the most abundant immune cells in CAVD
Frontiers in Immunology 10
(Figure 8C). The correlations between the infiltrating immune cell

types in CAVD are displayed (Figure 8D). Significant differences (P <

0.05) between the CAVD and normal groups were observed for four

types of immunocytes, namely, M2 macrophages and

neutrophils (Figure 8B).
FIGURE 7

Assessment of diagnostic value of each potential hub iDEGs. (A) Predictive ROC curves were generated using the 12 candidate biomarkers in the
internal validation sets, including the GSE76717 dataset and the GSE153555 dataset. (B) In the external validation set (the GSE148219 dataset), the
AUC of the ROC curve for each candidate hub iDEG was calculated. (C) 10 genes were selected for nomogram development and diagnostic value
assessment in the GSE148219 dataset.
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3.8 Relationship between hub iDEGs and
immune cells

The associations between the 10 hub iDEGs and infiltrating

immune cells are shown (Figure 9). Immune infiltration analysis

revealed that hub genes were associated with several immune cell

types. Immune cell infiltration in CAVD primarily involved M2

macrophages and neutrophils (Figure 9).
3.9 Single-cell analysis

UMAP shows the distribution of expression values for 10 genes

in the VIC cluster (Figure 10A). The expression of MFAP5 across

different cell types is visualized using a violin plot (Figure 10B).
3.10 Experimental verification of hub gene
in valve tissue of CAVD patients

The expression of 8 central iDEGs was verified in human aortic

valve tissue using qPCR (Figure 11A). Compared to normal valve

tissue, the expression of 9 genes in the disease group was

significantly increased and 1 gene was downregulated. Among
Frontiers in Immunology 11
these genes, THBS2, MFAP5, COL1A1 and LUM showed the

most significant upregulation. Previous studies have found that

THBS2, COL1A1, and LUM are closely related to aortic valve

calcification disease. MFAP5 was selected for subsequent Western

blot (WB) and immunofluorescence experiments. The results of

WB and immunofluorescence demonstrated that the levels of

MFAP5 in the disease group were higher than those in normal

tissues (Figures 11B–D).
4 Discussion

Calcific aortic valve disease (CAVD) often occurs in elderly

individuals (over 65 years old) and is one of the most common

cardiovascular diseases in developed countries (17). It is associated

with various risk factors, and patients with CAVD often have

comorbidities such as diabetes mellitus, obesity and plasma

lipoprotein(a) levels (18). As reported in earlier studies, individuals

with type 2 diabetes (T2DM) are at a higher risk for cardiovascular

disease compared to those without diabetes (19). Therefore, the aim

of our study was to identify new biomarkers associated with both

CAVD and diabetes through bioinformatics analysis.

Bioinformatics and differential expression analyses were utilized

to identify differentially expressed genes (DEGs) in CAVD and
FIGURE 8

Immune cell infiltration analysis. (A) Stacked histogram displaying the proportion of immune cell types between normal and CAVD groups. (B) A box
plot displaying the proportions of 22 kinds of immune cells between normal and CAVD groups. (C) The percentage of immune cells infiltrating in
CAVD was calculated. (D) A heatmap showing the correlations between the infiltrating immune cell types. The comparison between the two groups
was performed using the Mann-Whitney U-test, ns: no significance, p < 0.05, *p < 0.01.
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diabetes. To the best of our knowledge, this study is the first to

employ bioinformatics to discover diabetes-related pathogenic

genes and elucidate the association between diabetes and CAVD.

Enrichment analysis revealed that diabetes mellitus, as well as

inflammatory and immune processes, along with signaling

pathways such as the Toll-like receptor signaling pathway and

PPAR signaling pathway, may represent potential mechanisms

underlying diabetes-related CAVD.

Herein, we identified 10 biomarkers (COL1A1, COL1A2,

COL5A1, COL5A2, LUM, MFAP5, MXRA5, THBS2, BTG2, and

CD34) for diagnosing CAVD associated with diabetes.

Calcific aortic valve disease (CAVD) is a progressive disorder

characterized by the calcification and degeneration of the aortic
Frontiers in Immunology 12
valve, which can lead to stenosis and potentially heart failure. Two

genes, COL1A1 and COL1A2, play pivotal roles in this disease by

contributing to the extracellular matrix (ECM) composition and

stiffness in the valve, thus influencing the calcification process. The

mechanical properties and integrity of the valve tissue are critical

for maintaining the balance and quality of type I collagen, and these

are compromised in CAVD (20). In CAVD, the overexpression of

COL1A1 and COL1A2 is associated with increased deposition of

collagen fibers, resulting in fibrosis and a decrease in valve

compliance. COL5A1 and COL5A2 are involved in the synthesis

of type V collagen, which is a component of the extracellular matrix

(ECM) necessary for maintaining tissue integrity. Type V collagen

interacts with type I collagen and other matrix proteins to modulate
FIGURE 9

Lollipop plots showed the association of 10 hub iDEGs with infiltrating immunocytes.
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cell adhesion, migration, and signaling (21). Additionally,

mutations in these genes can lead to abnormal collagen fibers that

promote an environment conducive to calcification (22). The

interaction of these altered collagens with other ECM proteins

and signaling pathways further exacerbates the disease progression.

Lumican, encoded by the LUM gene, is a small leucine-rich

proteoglycan that plays a key role in the organization and regulation

of the extracellular matrix (ECM), particularly in collagen fiber

assembly and maintenance (23). Lumican affects the structural

integrity and function of the aortic valve, and is thought to play a

dual role in CAVD. Initially, it helps maintain normal valve structure

by inhibiting the formation of large, disorganized collagen fibers that

are characteristic of healthy valves (24). However, in disease states,

lumican may contribute to the pathogenesis of CAVD by promoting

matrix mineralization and calcification. Studies have shown that

lumican expression is dysregulated in calcified aortic valves, with

some reports suggesting that elevated expression levels are associated

with more advanced stages of the disease, and that this

overexpression is associated with activation of pathways leading to

calcium salt deposition. Therefore, understanding the precise

mechanism by which lumican affects CAVD is important for the

development of targeted therapies. Therapeutic strategies aimed at

modulating lumican expression or function may provide new ways to

prevent or slow the progression of valve calcification.

MFAP5 (Microfibril Associated Protein 5) is an extracellular

matrix (ECM) glycoprotein. Molecular investigations have revealed

that MFAP5 activates the Wnt/b-catenin signaling pathways,

promoting osteogenic differentiation in osteoporosis (25).

Notably, Wnt has been recognized as a crucial factor in

promoting a fibrocalcific lineage in CAVD (18). Given MFAP5’s
Frontiers in Immunology 13
role in activating Wnt signaling, it is plausible that MFAP5 may also

play a role in CAVD. Additionally, intriguing findings by Vaittinen

et al. indicate that MFAP5 contributes to reduced adipose tissue

plasticity, fibrosis inhibition, and alleviation of metabolic stress by

modulating inflammatory gene expression and ECM remodeling

(26). The findings imply that MFAP5 may also be involved in

metabolism-related diseases, such as diabetes. Further research is

warranted to elucidate the mechanisms underlying MFAP5’s

involvement in both CAVD and metabolic disorders.

ECM (extracellular matrix) proteins play a very important role

in the progression of CAVD. Recently, Bouchareb et al. studied the

relationship between changes in extracellular matrix proteins and

changes in metabolic proteins during the process of aortic valve

calcification (27). ECM proteins regulate interactions with MetS

(metabolic syndrome)-related proteins. It is worth noting that

MXRA5 plays an anti-fibrotic role in the pathological process of

aortic stenosis, which needs to be confirmed by further studies (27).

Previous studies have shown that MXRA5 has anti-fibrotic and

anti-inflammatory effects in kidney disease, so MXRA5 may be a

compensatory mechanism in the calcification process to promote

the production of ECM (28). Understanding the exact mechanism

by which MXRA5 contributes to cardiovascular disease, specifically

CAVD, is critical for the development of targeted therapies.

ECM (extracellular matrix) proteins play a crucial role in the

progression of CAVD. Recently, Bouchareb et al. investigated the

relationship between changes in extracellular matrix proteins and

metabolic proteins during aortic valve calcification (27). ECM

proteins regulate interactions with MetS (metabolic syndrome)-

related proteins. Notably, MXRA5 plays an anti-fibrotic role in the

pathological process of aortic stenosis, although further studies are
FIGURE 10

(A) The UMAP plot shows the expression of 10 genes. (B) The violin plot shows the proportion of MFAP5 across different subpopulations and groups.
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needed for confirmation (27). Previous studies have shown that

MXRA5 exerts anti-fibrotic and anti-inflammatory effects in kidney

disease; therefore, MXRA5 may serve as a compensatory

mechanism in the calcification process by promote ECM

production (28). Understanding the exact mechanism by which

MXRA5 contributes to cardiovascular diseases, particularly CAVD,

is crucial for the development of targeted therapies.

BTG2 is a member of the BTG/TOB gene family, and the

encoded protein plays a crucial role in cell proliferation,

differentiation, and apoptosis. Its relationship with cardiovascular

disease is multifaceted: BTG2 acts as a key regulator that suppresses

excessive cardiomyocyte proliferation. Inhibition of BTG2 has been

shown to decrease pro-inflammatory markers and myocardial injury

indicators, improve heart function, slow myocardial damage
Frontiers in Immunology 14
progression, inhibit apoptosis, and exert cardioprotective effects in

MI rats (29). Wang et al.’s study found that knockdown of BTG2

alleviated the senescence phenotype in cardiomyocytes induced by

the knockdown of SUV39H2 (30). Despite these insights, the role of

BTG2 in calcific aortic valve disease (CAVD) remains unexplored. In

the future, we will further focus on the role of BTG2 in CAVD,

opening up avenues for targeted therapeutic intervention.

Faiez Zannad from France presented the results of the Phase 1/2b

EXCELLENT trial, demonstrating that intramyocardial injections of

autologous expanded CD34+ stem cells (ProtheraCytes) for the

treatment of Acute Myocardial Infarction (AMI) promote reverse

remodeling. This therapy enhances angiogenesis, modulates

inflammation, apoptosis, and cardiomyocyte regeneration, showing

promise in facilitating the reparative processes in damaged
FIGURE 11

Confirmation of expression of MFAP5 in human aortic valve tissue. (A) Relative mRNA levels were detected by qPCR. (B) Immunofluorescence
analysis showed increased MFAP5 expression in calcified aortic valve tissue. (C) Representative Western blot (WB) analysis and quantification of
MFAP5 protein levels in human valve tissue. (D) Immunofluorescence staining of MFAP5 in aortic valves, scale bar: 100 mm. All statistical differences
were determined using two-tailed unpaired Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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myocardial tissue. Simultaneously, Corban et al. have shown that

intracoronary administration of autologous CD34+ cell therapy

effectively alleviates angina and endothelial dysfunction in non-

obstructive coronary artery disease, highlighting the potential of

this therapeutic approach to address these complex cardiovascular

conditions. These findings underscore the regenerative potential of

CD34+ stem cells, particularly in repairing heart tissue and

improving coronary artery function, offering novel therapeutic

strategies for patients suffering from AMI, angina, and other

coronary artery disorders (29). In a related study, Lis et al.

observed a significant depletion of CD34+ Valve Interstitial Cells

(VICs) in regions of the aortic valve prone to degenerative changes,

particularly calcification, at the base and proximal areas of the cusps.

This suggests that CD34+ VICs play a critical role in maintaining

local microenvironmental homeostasis in the healthy aortic valve,

counteracting pathological remodeling. Their hypothesis proposes

that these CD34+ VICs contribute to the valve’s intrinsic resistance

against disease progression by preserving the microenvironment’s

integrity, potentially offering a novel perspective on the protective

mechanisms within a healthy valve. This observation highlights the

importance of understanding the role of specific cell populations in

maintaining valve health and may provide insights into therapeutic

targets for valve disease (30). By deepening our understanding of

CD34’s functions and its impact on CAVD pathogenesis, we aim to

identify innovative therapeutic strategies that could potentially

transform the clinical management of this prevalent and

debilitating disease.

In this study, we investigated the role of diabetes in the

progression of calcific aortic valve disease (CAVD) using

bioinformatics analysis. To the best of our knowledge, we identified

key diabetes-related genes involved in the CAVD process, which may

serve as potential molecular targets for future research. Gene selection

was performed by integrating data from multiple machine learning

algorithms. Additionally, we constructed a prognostic nomogram

based on genes with an area under the curve (AUC) greater than 0.7,

further validating the clinical value of the risk score.

Finally, there are still some shortcomings in this study.

Although we identified 10 diagnostic biomarkers of CAVD

progression in patients with type 2 diabetes by test and validation

datasets, we only interpret these findings through bioinformatics

analysis. Therefore, further studies and clinical trials are still needed

to verify our results.
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