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Background: Progress in immunotherapy for pancreatic ductal adenocarcinoma

(PDAC) has been slow, yet the relationship between microorganisms and

metabolites is crucial to PDAC development. This study compares the biliary

microbiota and metabolomic profiles of PDAC patients with those of benign

pancreatic disease patients to investigate PDAC pathogenesis and its relationship

with immunotherapy.

Methods: A total of 27 patients were recruited, including 15 diagnosed with PDAC

and 12 with benign pancreaticobiliary conditions, all of whom underwent surgical

treatment. Intraoperative bile samples were collected and analyzed using 16S

rRNA sequencing in conjunction with liquid chromatography-mass spectrometry

(LC-MS). Multivariate statistical methods and correlation analyzes were

employed to assess differences in microbial composition, structure, and

function between malignant and benign pancreatic diseases. Additionally, a

retrospective analysis was conducted on PDAC patients post-surgery regarding

immunotherapy and its correlation with metabolic components.

Results: PDAC patients exhibited a significantly higher abundance of bile

microbiota compared to controls, with notable differences in microbiota

structure between the two groups (P < 0.05). At the genus level, Muribaculum

was markedly enriched in the bile of PDAC patients and was strongly correlated

with phosphatidic acid (PA) (10:0/a-17:0). Both of these components, along with

the tumor marker CA199, formulated a predictor of PDAC. Furthermore, PA

(10:0/a-17:0) demonstrated a strong correlation with PDAC immunotherapy

outcomes (Rho: 0.758; P=0.011).
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Conclusion: These findings suggest that the biliary microbiota and associated

metabolites play a crucial role in the development of PDAC and may serve as

potential predictive biomarkers and therapeutic targets for disease management.
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1 Introduction

Pancreatic cancer (PC), which primarily arises from pancreatic

ductal epithelial cells, is an aggressive disease with subtle clinical

symptoms, often detected at advanced stages and associated with

poor outcomes (1). Global cancer statistics indicate that PC ranks as

the sixth most prevalent cancer worldwide, with 511,000 new cases

and 467,000 deaths recorded in 2022, marking it as one of the

deadliest cancers (2). Hence, timely identification and diagnosis of

PC are essential for enhancing patient outcomes and quality

of survival.

Recognized risk factors for PC include smoking, adiposity,

impaired glucose metabolism, and excessive alcohol consumption

(3). Additionally, emerging research suggests that dysregulation of

the gut microbiome might be contributing to developing and

progressing PC (4). A significant proportion of microorganisms

are also being recognized as potential risk factors for pancreatic

malignancy (5), further emphasizing the importance of studying the

relationship between microbiota and PC.

Traditionally, the pancreas was considered a sterile organ;

however, this notion has been increasingly challenged and

questioned as research progresses. Although anatomically

adjacent to the duodenum, the pancreas remains shielded under

normal physiological conditions by the Sphincter of Oddi (SO),

which effectively prevents intestinal microbiota from entering the

pancreaticobiliary tract, thus making microbial translocation to the

pancreas difficult (6). However, when the barrier function is

impaired due to factors such as increased intestinal permeability

due to inflammation (7, 8), or pathological states such as sphincter

of Oddi dysfunction (SOD), the transfer of microorganisms to the

bile and pancreatic ducts becomes easier (9). Studies using

duodenoscopy have demonstrated that SOD can cause pancreatic

bile reflux, which facilitates microbial translocation (10). It has also

been proposed that microorganisms may reach the pancreas via the

intestinal lymphatic system (11), and recent developments in

nanomedicine targeting PC via the intestinal lymphatic pathway

further support this hypothesis (12).

Currently, chemotherapy remains the primary treatment for

PDAC (13), yielding unsatisfactory results, with the clinical median

survival for first-line regimens not exceeding one year (14). While

immunotherapy is also a significant treatment modality, the unique

immune microenvironment of pancreatic cancer has unfortunately
02
hindered the progress of immunotherapy research for PDAC (15).

Recent studies have demonstrated a strong connection between the

microbiome and the immune environment of PDAC. A Mendelian

randomization analysis identified 20 microorganisms that influence

PC through mediators such as Interleukin-6 (IL-6) and CD4 (16).

Smruti Pushalkar and colleagues found that microorganisms can

inhibit monocyte differentiation through selective Toll-like receptor

activation, leading to T-cell inactivation, immunosuppression, and

promotion of PC. They also observed that different microbiomes

were associated with different stages of malignancy (17). Notably,

research has confirmed that Akkermansia and Muribaculum can

induce adaptive immune responses, with Muribaculum also

promoting pro-inflammatory cytokine production (18, 19). In a

study examining the immune efficacy of PD-1 inhibitors in mice

with melanoma, significant changes in the abundance of

Muribaculum and the Prevotellaceae NK3B31 group were

observed (20), further supporting the role of the microbiota in PC

development and its modulation of immune cell behavior.

Various methodologies are available for microbiological studies,

with 16S rRNA gene profiling being the primary technique to

characterize this diverse and distributed microbial community in

different human hosts (21). The 16S rRNA gene, a component of

the small ribosomal subunit RNA in prokaryotes, contains both

conserved and hypervariable regions, the latter reflecting species

specificity and phylogenetic relationships, making it an optimal

molecular marker for taxonomic classification (22). Analysis of

operational taxonomic units (OTUs) or amplicon sequence variants

(ASVs) generated from Illumina sequencing allows for

comprehensive characterization of microbial community

structures within samples (23). For example, Mitsuhashi et al.

found that Clostridium spp. was higher plentiful in PC people

compared to Individuals in good health using 16S rRNA

sequencing, and its abundance was independently associated with

poor prognosis in PC tissues (24). Other researchers have also

developed a disease diagnostic model for PC progression-free

survival by analysing PDAC patients into different groups such as

preoperative, postoperative, and progression-free survival (25).

In the mechanisms underlying PC tumorigenesis, various

metabolic pathways have been identified, with multiple specific

components recognized as potential targets for PC immunotherapy

(26). Currently, research focusing on PC metabolites primarily

employs metabolomics tools (27). LC-MS combines the
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advantages of liquid chromatography, including low sample

volume, simple sample preparation, low-temperature detection,

and efficient separation, with the identification capabilities of

mass spectrometry, making it the most widely used analytical

technique in metabolomics research (28, 29). For instance, a

lipidomic analysis of plasma from 361 PDAC patients identified

three distinct metabolic subtypes of PDAC (30). More recently,

Hyeonji Kim and colleagues analyzed 12 protein biomarkers in the

serum of PDAC patients using LC-MS and developed a predictive

model that, when combined with carbohydrate antigen 19-9

(CA19-9), demonstrated improved diagnostic performance (31).

In this study, we integrated 16S rRNA sequencing and LC-MS

non-targeted metabolomics to conduct a comprehensive analysis of

bile samples from patients with PDAC. Our aim was to assess the

influence of microorganisms and metabolites from the biliary

microenvironment on PDAC. We sought to provide novel

methodologies for the early diagnosis of PDAC in clinical practice

while exploring potential targets for immunotherapy.
2 Materials and methods

2.1 Cohort recruitment and
sample collection

This research complied with the ethical standards set forth in the

1975 Declaration of Helsinki and received approval from the Ethics

Committee of Fuyang People’s Hospital (approval number: [2024]

89). All participants were fully informed about the objectives and

procedures of the study, and written consent was obtained from each

individual. The study included patients diagnosed with PDAC

(Group A, n = 15) or benign pancreaticobiliary diseases, such as

intraductal papillary mucinous neoplasms (IPMN) and solid

pseudopapillary tumors of the pancreas (SPTP) (Group B, n = 12)

All patients underwent surgical intervention and were selected from a

cohort spanning January 2022 to June 2023. In total, 27 choledochal

bile samples were prospectively collected during surgery — 15 from

PDAC patients and 12 from patients with benign diseases. Exclusion

criteria included a history of cancer, prior chemotherapy, biliary

surgery or stent placement, acute or chronic pancreatitis, pancreatic

pseudocysts, pancreatic trauma, and cholangitis, as these conditions

could influence the study outcomes.
2.2 Specimen collection and preservation

After anesthesia and before any invasive bile duct manipulation,

5 mL of bile was collected from the lower bile ducts using a sterile 5

mL disposable syringe. Samples were promptly transferred into

liquid nitrogen and preserved at -80°C in a cryogenic freezer. For

analysis, samples were thawed and homogenized at room

temperature. Bile samples was dispensed in a sterile biological

safety cabinet, aliquoted into sterile anti-adhesion centrifuge tubes
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using pipettes, and preserved on dry ice for subsequent LC-MS

analysis and 16S rRNA sequencing.
2.3 16S rRNA sequencing workflow

The commercial kit employed for the extraction of genomic

DNA was subjected to analysis using the NanoDrop 2000 (Thermo

Fisher Scientific, USA), and the results were corroborated through

agarose gel electrophoresis. Subsequently, the sample was subjected

to polymerase chain reaction (PCR) amplification after being

diluted to a concentration of 1 ng/mL. The 16S rRNA gene was

amplified by Takara Ex Taq, with the primers 343F and 798R

employed to target the V3-V4 regions. The amplified product was

purified using AMPure XP beads (Agencourt) prior to

reamplification. Normalisation of the products was conducted

with the Qubit dsDNA assay, after which sequencing was

performed on Illumina NovaSeq 6000 platform.

Raw FASTQ sequences were subjected to adapter trimming

with cutadapt, followed by quality control (QC), denoising, and

chimera elimination through DADA2 in QIIME2 (version 2020.11)

to generate ASVs. The ASVs were annotated using the Silva

database (version 138).
2.4 Bile metabolomics analysis

A 200 mL aliquot of each bile specimen was extracted using 400

mL methanol (1:1, v/v), followed by 30 minutes of sonication at 40

kHz and 5°C. Following precipitation at -20°C and centrifugation

(13,000 g, 15 min, 4°C), the supernatant was evaporated under a

nitrogen stream. For UHPLC-MS/MS analysis, metabolites were

dissolved in 100 mL acetonitrile (1:1, v/v), centrifuged, and

transferred for analysis.

A pooled QC sample underwent creation through the

combination of equivalent parts from each of the samples to

ensure system stability and analytical consistency. QC samples

underwent identical procedural and analytical processing as that

applied to the analytical samples.

The LC-MS analysis was conducted on a Thermo Fisher

UHPLC-Q Exactive instrument. A 2 mL aliquot was injected onto

an HSS T3 column (100 mm × 2.1 mm i.d., 1.8 mm) and then

analyzed via mass spectrometry. The mobile phases used were 0.1%

formic acid in water (95:5 v/v) as solvent A, and acetonitrile:

isopropanol (47.5:47.5:5, v/v) as solvent B. Mass spectrometry

data covering the mass range of 70-1050 m/z were collected using

the Thermo UHPLC-Q Exactive mass spectrometer, with the

operating mode set to positive and negative electrospray

ionization (ESI). Data were acquired in Data -Dependent

Acquisition (DDA) mode.

The Progenesis QI software (Waters Corporation, Milford, USA)

was employed to process the LC-MS raw data, resulting in the

generation of a three-dimensional matrix. Internal standard peaks
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and noise were removed, and metabolites were annotated using The

Majorbio databases, Metlin (https://metlin.scripps.edu/), and Human

Metabolome Database (HMDB) (http://www.hmdb.ca/). The Data

were normalized, filtered, and log-transformed. Variables with a

relative standard deviation (RSD) > 30% in QC samples

were excluded.
2.5 Statistical analysis

All statistical evaluations were performed using R software

(version 4.3.0). Continuous variables were assessed for normality

with the Shapiro-Wilk test. Clinical baseline data for normally

distributed variables were presented as mean ± standard deviation

(SD), while those not meeting normality were expressed as the

median and interquartile range (IQR). Group comparisons for

continuous variables were conducted using the independent

samples t-test. For non-normally distributed variables,

comparisons were made using the Mann-Whitney U test.

Categorical data were analyzed through Fisher’s exact test.

Microbial diversity was assessed through alpha diversity

(Chao1, ACE, Shannon, and Simpson indices) and beta diversity

(weighted UniFrac). Non-metric multidimensional scaling (NMDS)

and principal coordinates analysis (PCoA) were applied to depict

group distinctions. The Wilcoxon statistical test was applied using

the R package, and significant differences between groups were

identified. Taxonomic abundance variation was assessed via the

linear discriminant analysis effect size (LEfSe) approach.

Metabolomic data underwent analysis through the R package

ropls, including orthogonal partial least squares discriminant

analysis (OPLS-DA) and principal component analysis (PCA),

with 7-fold cross-validation to confirm model robustness. The

student’s t-test and fold-change analysis identified significantly

different metabolites, with Variable Importance in Projection

(VIP) > 1 and p < 0.05, leading to the identification of 507

differential metabolites. These metabolites were integrated into

metabolic pathways via the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (http://www.genome.jp/kegg/).

Enrichment analysis evaluated metabolic pathways, and Fisher’s

exact test, along with Python’s scipy.stats package, was used to

identify statistically enriched pathways.

Correlation analyzes between microbial taxa, metabolites, and

clinical metrics were conducted using Spearman’s rank correlation

coefficients. P-values were corrected for multiple testing via the

Benjamini-Hochberg method, with an adjusted p-value (q-value) <

0.05 taken as statistically significant. ROC curves were generated

using R software, plotting sensitivity against 1-specificity at various

threshold levels to assess the predictive capability of significant

microorganisms, differential metabolites, and clinical indicators of

the disease. The area under the ROC curve (AUC) was calculated to

evaluate the diagnostic performance of the models. The standard

error (SE) of the AUC was estimated based on the sample size,

providing an indication of the variability in the AUC measurement.

Additionally, the 95% confidence intervals (CI) for the AUC were

estimated using the DeLong method to reflect the robustness of

the findings.
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3 Results

3.1 Comparison of clinical baseline data

This study evaluated the baseline clinical characteristics of 15

individuals diagnosed with PDAC (Group A) and 12 individuals

with non-malignant conditions (Group B). The specific process can

be referenced in the flowchart (Figure 1). The results indicated that

Group A had significantly higher levels of total bilirubin (TBIL), direct

bilirubin (DBIL), indirect bilirubin (IBIL), and gamma-glutamyl

transpeptidase (GGT), which reflect biliary obstruction, compared to

Group B. This was expected due to the obstruction of bile excretion.

Additionally, a notable difference in CA19-9 concentrations was

detected between groups (P<0.05), while no significant differences

were found in other clinical indicators (Table 1).
3.2 PDAC bile microenvironment exhibits
specific microbiological signatures

A total of 27 bile samples from both groups were subjected to

high-depth 16S rRNA sequencing, yielding 2,148,739 tags. After

processing with DADA2 in QIIME2, 1,541,001 high-quality tags

remained, with an average of 57,074 tags per sample, which were

clustered into 6,319 ASVs.

The microbial richness and diversity between the groups were

compared. The Chao, ACE, and observed species indices were

markedly elevated in Group A relative to Group B, indicating that

the microbial species in the pancreatic tumor microenvironment

were richer than in benign conditions (*P<0.05, Figures 2A–C).

Additionally, the Shannon index and Simpson index were also

significantly different, suggesting distinct microbial diversity

between the two groups (*P<0.05; **P<0.01, Figures 2D, E). From

the Goods coverage curve, it can be seen that the curve rises sharply

and then flattens out, which indicates that the sequencing depth is

more reasonable and basically covers all the species in the

samples (Figure 2F).

NMDS and PCoA of weighted UniFrac beta diversity showed

significant separation between samples from malignant and benign

conditions (Stress: 0.034; ANOSIM R: 0.613, P=0.001, Figure 2G;

PERMANOVA R²: 0.371, P=0.001, Supplementary Figure S1).

These findings suggest a clear structural difference between the

two microbiotas.

Further analysis of the microbial community structure revealed

that at the phylum level, Bacteroidota, Firmicutes, Proteobacteria,

Actinobacteriota, Desulfobacterota, and Deferribacterota were

dominant, with Bacteroidota and Firmicutes more abundant in

PDAC patients than in those with benign disease (Figure 2H).

At the genus level, Muribaculum, Escherichia-Shigella,

Lachnospiraceae_NK4A136_group, Lactobacillus, Clostridia UCG-

014, and Prevotellaceae_NK3B31_group were more prevalent in

PDAC bile (Figure 2I).

LEfSe and linear discriminant analysis (LDA) identified 38 distinct

taxa between the groups (Supplementary Table S1), with 22 taxa

significantly enriched in PDAC patients, including Muribaculum,

Prevotellaceae_NK3B31_group, and Rikenellaceae_RC9_gut_group
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(LDA score < -3.2, P<0.05, Figures 3A–C). In contrast, Escherichia-

Shigella and Lachnospiraceae_UCG_001 were among the 16 taxa

significantly enriched in Group B (LDA score > 3.2, P<0.05).
3.3 Pro-cancer metabolic components in
the PDAC biliary environment

The metabolic differences between PDAC and benign

pancreatic conditions were investigated using LC-MS. In positive

ionization mode, 6,096 metabolites were identified, and 6,499

metabolites in negative ion mode. After quality control, 1,954

positive-mode and 1,121 negative-mode metabolites were retained

for further analysis. It is evident that the RSD of the processed data

is below 0.3, with the cumulative peak occupancy exceeding 70%

(Supplementary Figure S2).
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OPLS-DA highlighted notable metabolic differences across the

groups, with good predictive ability and no overfitting (Q2(cum)

=0.727, R²Y=0.99, Figures 4A, B). Metabolites with VIP scores ≥1,

identified through the OPLS-DA model and volcano plots (p < 0.05,

|log2(FC)| > 0) based on differential quality data, were considered

significantly different (Supplementary Figure S3). Comparison of

these metabolites to the KEGG database resulted in the discovery of

507 unique metabolites. To visualize the relationships between

sample groups and the differential expressivity of metabolic

compounds, a hierarchical clustering analysis was conducted

utilizing all significantly different metabolites and on the top 50

metabolites ranked by VIP score (Figure 4C; Supplementary Table

S2). Querying the HMDB for classification of these top 50

differential metabolites at the superclass level revealed that lipids

and lipid-like molecules are the predominant components,

accounting for 44.74 percent. (Figure 4D).
FIGURE 1

Schematic flowchart of the study design. The flowchart includes patient selection criteria and enrollment status, as well as the processes for 16S
rRNA sequencing analysis and LC-MS non-targeted metabolomics. PDAC patients are subsequently assigned to different treatment groups
(chemotherapy + immunotherapy, chemotherapy alone). The flowchart concludes with a comparison of clinical indicators and the correlation
between CA19-9 levels and specific metabolic components.
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We classified the differential metabolites into metabolic

pathways and conducted enrichment analysis using the KEGG

database. The 20 most significantly enriched pathways (smallest

p-values) were visualized using a bubble diagram (Figure 4E). The

analysis identified key pathways, including tryptophan metabolism,

arachidonic acid metabolism, folate biosynthesis, steroid hormone

biosynthesis, antifolate resistance, choline metabolism in cancer,

one-carbon pool by folate, pancreatic cancer, and nine other

metabolic pathways (p < 0.05). Among these, PA (10:0/a-17:0)

was identified as the primary metabolite in the pancreatic cancer

pathway, and its levels were higher in samples from PDAC patients

(p < 0.001, Figure 4F).
3.4 Microbial and metabolic component
association analysis

The association between microbiota and metabolic components

was explored by integrating LC-MS data and 16S rRNA sequencing

results. The Procrustes test revealed a robust association linking

microbial alterations with metabolic changes. (M²=0.7542, P=0.039,
Frontiers in Immunology 06
Figure 5A). Spearman’s correlation analysis further revealed

significant associations between specific PDAC-related

microorganisms (e.g., Muribaculum, Prevotellaceae_NK3B31

_group) and metabolites such as PA (10:0/a-17:0) (Figure 5B;

Supplementary Table S3). Scatter plot analysis demonstrated a high

positive association (R=0.719, P<0.0001) linking Muribaculum with

PA (10:0/a-17:0) (Figure 5C). The combination of Muribaculum, PA

(10:0/a-17:0), and CA19-9 showed improved diagnostic efficacy for

pancreatic malignancy, yielding an AUC of 0.917 (P<0.001; 95%CI:

0.805-1), outperforming individual biomarkers (Figure 5D;

Supplementary Table S4).
3.5 Association between postoperative
immunotherapy for PDAC and
significant metabolites

Subsequently, we conducted a comparative analysis of 15 PDAC

patients based on their receipt of postoperative immunotherapy.

Regrettably, 3 patients did not undergo further adjuvant treatment

at our institution, and 2 patients were lost to follow-up, resulting in
TABLE 1 General characteristics and laboratory indicators of patients with PDAC (Group A) and benign pancreaticobiliary diseases (Group B).

Clinical Parameter A (n=15) B (n=12) P value

Age (years)* 68.0 (59.0 ± 72.0) 65.5 (47.0 ± 75.0) 0.494

Gender

Male, n (%) 11 (73.3) 7 (58.3) 0.448

Female, n (%) 4 (26.7) 5 (41.7)

BMI (kg/m2) ** 23.0 ± 3.6 22.0 ± 3.4 0.448

Smoking, n (%) 7 (46.7) 2 (16.7) 0.217

Drinking, n (%) 6 (40.0) 3 (25.0) 0.683

TBIL (umol/L) * 190.1 (69.0 ± 262.9) 19.4 (14.4 ± 90.6) 0.005

DBIL (umol/L) *
IBIL (umol/L) *
ALT (U/L) *

157.8 (50.4 ± 210.6)
30.8 (15.0 ± 54.9)
131.8 (71.8 ± 257.2)

5.1 (3.9 ± 79.2)
11.4 (9.9 ± 15.0)
50.3 (15.4 ± 173.2)

0.005
0.010
0.157

AST (U/L) * 107.4 (57.0 ± 165.6) 45.2 (18.3 ± 108.1) 0.079

ALP (U/L) * 382.7 (226.0 ± 527.6) 138.8 (99.6 ± 334.8) 0.057

GGT (U/L) * 609.4 (315.7 ± 837.5) 138.7 (14.8 ± 303.4) 0.015

TP (g/dL) ** 66.7 ± 5.7 70.5 ± 9.1 0.199

ALB(g/L) ** 38.1 ± 3.5 40.2 ± 3.8 0.167

GLU (mmol/L) * 5.4 (4.6 ± 7.5) 5.4 (4.8 ± 6.2) 0.608

Creatinin (mg/dL) ** 53.8 ± 10.0 60.8 ± 13.5 0.137

PT(S) ** 12.0 ± 0.9 12.7 ± 1.1 0.118

APTT (S) ** 28.9 ± 4.0 31.2 ± 5.3 0.204

CEA (ng/mL) * 3.3 (2.8 ± 4.7) 2.9 (1.7 ± 3.6) 0.087

CA19-9 (U/mL) * 166.1 (40.3 ± 1144.6) 18.0 (14.8 ± 52.3) 0.010

WBC(*10^9/L) * 5.9 (4.36 ± 6.6) 6.1 (4.5 ± 9.5) 0.188
ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; TP, Total Protein; ALB, Albumin; GLU, Glucose; PT, Prothrombin Time; APTT, Activated
Partial Thromboplastin Time; CEA, Carcinoembryonic Antigen. *The median and IQR; **Mean ± SD; Other data are presented as number (prevalence).
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incomplete clinical data. Consequently, these patients were

excluded from the current comparative cohort. The remaining

patients were stratified into two groups: Group C (n=5), who

received gemcitabine, nab-paclitaxel, and camrelizumab, and

Group D (n=5), who received gemcitabine and nab-paclitaxel

alone. According to the patient’s overall condition, standard

chemotherapy and immunotherapy were initiated 4-8 weeks

postoperatively. At the third follow-up visit following the second

round of adjuvant therapy, CA19-9 levels were re-evaluated and

compared to baseline measurements from the initial visit to

determine the extent of reduction. Furthermore, additional
Frontiers in Immunology 07
clinical parameters were assessed to provide a comprehensive

analysis (Table 2). Unfortunately, no significant differences were

found in these indicators between Groups C and D. However, box

plots illustrated that patients receiving combined chemotherapy

and immunotherapy experienced a greater reduction in CA19-9

levels compared to those treated with chemotherapy alone

(Supplementary Figure S4).

Furthermore, we observed that the preoperative levels of PA

(10:0/a-17:0) were significantly higher in Group C compared to

Group D (P=0.035). Spearman correlation analysis further revealed

a strong association between the magnitude of CA19-9 reduction
FIGURE 2

Characterization of biliary microbial community structure in patients with PDAC (Group A) and benign diseases (Group B). (A–E) Alpha diversity
analysis: Boxplots showing ACE index, Chao1 index, and observed species, which reflect microbial richness, while Shannon and Simpson indices
indicate community diversity. (F) Species accumulation curve: The curve plateaus as the number of extracted sequences increases, indicating
sufficient sequencing depth. (G) NMDS: Each point represents a sample, with colors denoting groupings. Closer proximity of points within the same
group, coupled with distinct separation between groups, indicates a strong clustering effect. (H, I) Composition of microbial communities at the
phylum and genus levels in bile samples from groups A and B. “Others” denotes species outside the top-ranked taxa.
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and PA (10:0/a-17:0) levels (Rho: 0.758; P=0.011; Supplementary

Table S5). These findings imply a potential relationship between PA

(10:0/a-17:0) and the effectiveness of immunotherapy in PDAC,

suggesting that it may represent a promising immunotherapeutic

target; however, additional evidence is required to substantiate

this association.
4 Discussion

In recent years, high-throughput genomic techniques have been

increasingly utilized in human microbiome research. These studies

have shown that microorganisms and metabolic component are

essential contributors to the development and advancement of

numerous diseases (32). Among these, the microbiota

significantly contributes to the pathogenesis of PDAC, influencing
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tumorigenesis, immune responses, and treatment outcomes (33,

34). Given the current slow progress in PC research, investigating

the impact of microorganisms on tumor development and potential

immune targets is crucial. This study compared the biliary

microenvironment and metabolic profiles between patients with

PDAC and those with benign conditions, in order to identify

specific microorganisms and differential metabolites, and to

explore their associations with the efficacy of immunotherapy.

Prior to this study, no comprehensive analysis had been

performed on microbial and metabolite profiles in PDAC by

obtaining bile samples during surgery via an abdominal approach.

In this study, 16S rRNA sequencing of bile collected from

individuals with PC and benign lesions revealed that microbial

diversity and abundance were significantly higher in the PC cohort

compared to the benign group. This result is consistent with the

findings of Erick Riquelme et al., who found that microbial a-
FIGURE 3

Microbial differences between patients with PDAC (Group A) and benign diseases (Group B). (A, B) LEfSe analysis: (A) Cladogram depicting the
taxonomic structure of differentially abundant species. Light green and light purple indicate significantly enriched species in groups A and B,
respectively, with yellow nodes representing taxa without significant differences. The node diameter is proportional to relative abundance, and nodes
correspond to taxa at the phylum, class, order, family, and genus levels from inner to outer rings. (B) LDA score plot: Light green and light purple
bars represent differential species in groups A and B, respectively, with higher relative abundance indicated. (C) Boxplot of differential species: Top 10
most abundant species differing between groups (*p < 0.05, **p < 0.01, ***p < 0.001).
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diversity were notably higher in long-term survivors (LTS) than in

short-term survivors (STS) of PC, with a-diversity serving as a

potential predictor of PC resectability (35). Additionally,

Beta analysis identified substantial variation in the overall

microbiological community structure between both cohorts,

mirroring trends observed in previous related studies (25).

Previous research has shown that microbial dysbiosis may be

closely linked to immune evasion, inflammatory responses, and

tumor microenvironment remodeling during PC development (36).
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These microbial communities may also influence the efficacy of

cancer immunotherapies, such as anti-PD-1 therapeutics (37).

Certain microorganisms, such as Porphyromonas gingivalis (P.

gingivalis), have been strongly associated with an increased

prevalence of PC, as demonstrated in meta-analysis (38). Other

bacteria promote PC progression by stimulating neutrophilic

chemokine and elastase secretion (39). In our analysis,

Bacteroidota, Muribaculum, and the Prevotellaceae NK3B31

group showed significant enrichment in PDAC, consistent with
FIGURE 4

Metabolomic analysis of bile from PDAC patients (Group A) and patients with benign Diseases (Group B). (A) OPLS-DA score plot demonstrates
distinct metabolite profiles between groups. (B) Model validation using a permutation test, with the horizontal axis showing permutation retention
and the vertical axis showing R² and Q² values. Dashed lines represent R² and Q² regressions. (C) Heatmap of metabolite clustering: Rows and
columns represent metabolites and samples, respectively. Colors indicate relative metabolite expression levels, with hierarchical clustering shown for
both metabolites (left) and samples (top). (D) HMDB compound classification: Differential metabolites were categorized using the HMDB, revealing
that lipids and lipid-like molecules dominate at the superclass level. (E) KEGG enrichment analysis: The x-axis represents the enrichment score, and
the y-axis represents the KEGG pathway. Bubble size reflects the number of metabolites enriched in each pathway, and color indicates p-value
significance. (F) Boxplot of PA (10:0/a-17:0) distribution: Significantly higher levels of PA (10:0/a-17:0) were found in PDAC patients compared to
controls (p < 0.001).
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prior studies characterizing the microbial community of PC (40–

42). This also reflects that the distinct compositions of microbial

communities within the biliary microenvironment may influence

the prognosis of PDAC in the context of immunotherapy.

Understanding these relationships could provide a foundation for

tailoring PDAC immunotherapeutic strategies based on individual

microbial profiles.

In addition to the microbiota, previous studies have identified a

robust correlation between various metabolic profiles and the

development of PC (43). Anatomically, the bile duct is connected

to the pancreas, and the composition of bile has a substantial impact

on pancreatic diseases. For instance, microRNAs in bile have been

shown to enhance the diagnostic accuracy of PC (44). Additionally,

volatile organic compounds in bile, as in as acetaldehyde and

acetone, can aid in PC diagnosis (45). In this study, we employed

metabolomic analysis to investigate the metabolic profiles of bile
FIGURE 5

Association analysis of biliary microbiota and metabolites in PDAC patients. (A) Procrustes analysis: Arrows show the relationship between microbial
(starting point) and metabolite (endpoint) samples. The M² value represents the sum of squared deviations, and the p-value indicates significance,
with smaller values suggesting stronger correlation. (B) Correlation heatmap: Spearman’s correlation coefficient is used to illustrate relationships
between microbiota and metabolites. Red indicates positive correlations, blue negative, with darker shades signifying stronger correlations
(*p < 0.05, **p < 0.01, ***p < 0.001). (C) Scatterplot of correlation between samples: Colors represent groupings, with linear fit and 95% CI displayed,
along with the correlation coefficient (R) and p-value. (D) Receiver Operating Characteristic Curve (ROC curve): This curve compares the diagnostic
performance of Muribaculum, PA (10:0/a-17:0), CA199, and their combined model. For clarity, we present the AUC as an integer and adjust its
decimal point two places to the left for accurate interpretation. A higher value indicates greater diagnostic accuracy.
TABLE 2 Clinical indicators of specific metabolites before surgery and
after chemotherapy or immunotherapy in groups C (Chemotherapy +
Immunotherapy) and D (Chemotherapy).

Clinical
Parameter

C (n=5) D (n=5) P value

WBC(*10^9/L) * 3.7 (3.5 ± 6.1) 4.4 (3.6 ± 4.8) 0.916

ALP (U/L) ** 109.2 ± 27.8 148.6 ± 61.3 0.227

CEA (ng/mL) ** 2.6 ± 1.30 3.7 ± 1.9 0.303

CA19-9 (U/mL) * 536.4 (66.6 ± 3733.9) 411.3 (213.0 ± 3426.4) 0.917

Ratio** 0.234 ± 0.319 0.008 ± 0.194 0.214

PA (10:0/a-17:0) ** 8.065 ± 0.326 7.034 ± 0.846 0.035
*The median and IQR; **Mean ± SD; The Ratio is calculated as the difference between the pre-
immunotherapy and post-immunotherapy CA19-9 levels, divided by the pre-immunotherapy
CA19-9 value.
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samples and found significant differences between PDAC and

benign lesions. In PDAC patients, the top 50 distinct metabolic

components were predominantly lipids and lipid-like components.

Some of these metabolites can be hydrolyzed into fatty acids and

glycerol, with gut microbes influencing pancreatic immunity

through short-chain fatty acids (46).

Metabolic pathway analysis identified PA (10:0/a-17:0) as a key

metabolite involved in several pathways related to pancreatic

diseases. In the pancreatic cancer pathway, for example,

mutation-activated KRAS signaling through RalGDS involves PA

via phospholipase D1/2 (PLD1/2). PA (10:0/a-17:0) is a

downstream metabolite of PLD1, which plays a more significant

role in pancreatic development than previously recognized. PLD1

has been shown to inhibit TGF-beta signaling, blocking G(1) cell

cycle progression and thereby promoting the anaplastic growth of

tumor cells (47). Moreover, the small scaffold protein can block

procedural death of Ins-1E pancreatic b-cells through PLD1 (48).

Phospholipases also contribute to advancing renal cell carcinoma by

facilitating angiogenesis (49). Additionally, PA (10:0/a-17:0)

participates in the phospholipase D signaling pathway,

contributing to glycosylphosphatidylinositol (GPI) cleavage,

which produces glypicans. These glypicans act as insulin

mediators, supporting glucose metabolism to supply energy to PC

cells (50). Thus, PA (10:0/a-17:0) is intricately associated with the

initiation and progression of PC.

Spearman correlation and regression analyzes revealed a

significant positive correlation between Muribaculum and PA

(10:0/a-17:0). Further multiple regression analysis showed that

combining these microorganisms and their metabolic components

with the PDAC biomarker CA19-9 enhanced diagnostic accuracy,

outperforming CA19-9 alone (AUC: 0.917vs.0.792).

Phospholipids are widely present in the cell membranes of

eukaryotic cells and have a significant impact on immunotherapy

for pancreatic tumors (51). They influence membrane fluidity and

signal transduction, regulating the activity and migration of

immune cells, while tumors can evade immune surveillance by

altering the composition of membrane phospholipids, thereby

impairing the function of T cells and other immune cells (52, 53).

The correlation analysis between postoperative chemotherapy

combined with immunotherapy and PA (10:0/a-17:0) also

suggests the potential application of this phospholipid component

in PDAC immunotherapy, indicating its possibility as a

therapeutic target.

In previous pancreatic microbiome research, samples were

primarily collected via the gastrointestinal tract, such as fecal

samples, which may not accurately represent the pancreatic

microenvironment. Alternatively, bile was extracted using endoscopic

retrograde cholangiopancreatography (ERCP) from a duodenal

approach, but contamination by intestinal microorganisms remains a

challenge. In this study, bile was collected directly from the biliary tract

using sterile surgical techniques, combined with metabolomic analysis,

providing a more accurate reflection of the pancreatic

microenvironment. Additionally, we prospectively divided PDAC

patients into two groups based on whether they received
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immunotherapy after surgery, revealing a potential connection

between specific metabolic components and immunotherapy.

However, it is important to acknowledge the existence of several

limitations that must be taken into account. First, the sample size

was small, and the study was single-center, limiting the generalizability

of the findings. Second, although associations between microbiota

alterations, metabolites, and PDAC were identified, the underlying

molecular mechanisms remain unclear and require further

investigation. Future research should increase the sample size and

focus on elucidating the molecular pathways through whichmicrobiota

and metabolites contribute to PDAC development, potentially offering

new insights into pancreatic cancer prevention and treatment.
5 Conclusion

In this study, 16S rRNA sequencing combined with untargeted

metabolomics revealed a complex interplay between biliary

microbiota and metabolites in the pathogenesis of PDAC.

Significant differences were identified in the composition and

metabolomic profiles within the biliary microbial communities

between PDAC patients and those with benign diseases. Notably,

the correlation between Muribaculum and the biliary metabolite PA

(10:0/a-17:0), along with associated metabolic pathways, suggests a

potential role in PDAC progression. These findings highlight the

potential of specific microbial taxa and metabolites as biomarkers

for the early detection and diagnosis of PDAC.
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