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Vaccination remains the sole effective strategy for combating Japanese

encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust

immunogenicity. However, the production of these conventional vaccine

modalities necessitates extensive cultivation of the pathogen, incurring

substantial costs and presenting significant biosafety risks. Moreover, the

administration of live pathogens poses potential hazards for individuals or

animals with compromised immune systems or other health vulnerabilities.

Subsequently, ongoing research endeavors are focused on the development of

next-generation JE vaccines utilizing nanoparticle (NP) platforms. This

systematic review seeks to aggregate the research findings pertaining to NP-

based vaccine development against JE. A thorough literature search was

conducted across established English-language databases for research articles

on JE NP vaccine development published between 2000 and 2023. A total of

twenty-eight published studies were selected for detailed analysis in this review.

Of these, 16 studies (57.14%) concentrated on virus-like particles (VLPs)

employing various structural proteins. Other approaches, including sub-viral

particles (SVPs), biopolymers, and both synthetic and inorganic NP platforms,

were utilized to a lesser extent. The results of these investigations indicated that,

despite variations in the usage of adjuvants, dosages, NP types, antigenic

proteins, and animal models employed across different studies, the candidate

NP vaccines developed were capable of eliciting enhanced humoral and cellular

adaptive immune responses, providing effective protection (70–100%) for

immunized mice against lethal challenges posed by virulent Japanese

encephalitis virus (JEV). In conclusion, prospective next-generation JE vaccines

for humans and animals may emerge from these candidate formulations

following further evaluation in subsequent vaccine development phases.
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1 Introduction

The Japanese encephalitis virus (JEV) is a notable member of the

mosquito-borne viruses in the Flaviviridae family, responsible for

the most prevalent form of encephalitis in humans and horses across

the Asia-Pacific region (1). This region includes approximately 24

countries, including the two most populous nations, China and India,

as well as several densely populated countries such as Singapore and

Bangladesh (2, 3). JEV is primarily transmitted by mosquitoes of

the genus Culex (4). Pigs and wading birds play key roles in

maintaining viral circulation and transmitting the virus to humans

and horses (Figure 1) (6, 7). Annually, an estimated 68,000 to 100,000

clinical cases of Japanese encephalitis (JE) occur worldwide, resulting

in approximately 15,000 to 25,000 fatalities (8, 9). JEV is emerging in

new areas, with reported cases in Europe and Africa (10, 11).

Distinguishing JE from other encephalitis cases is challenging,

making laboratory confirmation essential (12). The WHO

recommends diagnosing JE using the IgM-capture ELISA (MAC-

ELISA) from a single cerebrospinal fluid (CSF) or serum sample,

with CSF preferred to reduce false positives from prior infections or

vaccinations (13). Other tests, such as the hemagglutination

inhibition (HI) test, indirect immunofluorescence assay (IFA),

plaque reduction neutralization test (PRNT), and nucleic acid

detection, may also be used (14, 15). There is no specific antiviral

treatment for JEV; management is supportive, focusing on

nutrition, airway maintenance, and anticonvulsants for seizure

control (16–18). Vaccination can effectively prevent JEV infection

in both humans and animals (19, 20).

Live attenuated and inactivated vaccines against JE have been

available for decades (Table 1), yet JEV remains the leading cause of

viral encephalitis in Asia (23). Approximately 3 billion people in

endemic regions are at risk, but only 80–100 million JE vaccine

doses are produced annually, highlighting a significant gap in

coverage (21). Vaccination costs range from $1.15 to $2.41 per

child per dose (24–26). A study in the Philippines found that

managing JE illness can cost between $859 and $1,209 per case.

JE’s impact drives vaccine demand, increases healthcare costs, and

emphasizes the need for public health initiatives and further vaccine
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development. Its spread into new territories also raises global health

security concerns, prompting greater international collaboration

and funding for surveillance and response (24, 27).

Live-attenuated vaccines induce strong immune responses but

can be risky for immunocompromised individuals (28), while whole

inactivated vaccines are safer but often have short-lived efficacy (29).

Both require large-scale pathogen cultivation, leading to high costs

and biosafety concerns (28, 30). Furthermore, traditional JEV

vaccines offer limited cross-protection against different strains due

to the virus’s genetic variability, undermining their efficacy against

emerging variants (15, 30). Consequently, there is an urgent need to

develop a safe, stable, durable, and cost-effective vaccine that elicits

robust immunogenicity across diverse JEV strains. Recombinant

pathogen-derived vaccines, coupled with nanoparticle (NP) delivery

systems, present a promising solution to meet this critical need (31).

Nanoparticle vaccines represent a breakthrough in vaccinology,

offering enhanced immune responses, safety, stability, and adaptability.

While research is ongoing, these vaccines show significant promise in

addressing a wide range of infectious diseases more efficiently than

traditional vaccines. NPs inherently contain pathogen-associated

molecular patterns (PAMPs) that are recognized by the immune

system as signals of potential danger, thereby improving antigen

presentation and enhancing immune responses (32). Additionally,

nanoparticles can carry multiple antigens, enabling the development

of multivalent vaccines. Types of NPs, such as protein nanocages, outer

membrane vesicles (OMVs), virus-like particles (VLPs), and polymeric

NPs, effectively overcome barriers to recombinant vaccine delivery (31).

During NP vaccination, innate immune cells, such as antigen-

presenting cells (APCs) like dendritic cells (DCs) and macrophages,

detect and engulf NPs, triggering antigen presentation on MHC Class I

and II molecules and activating T-helper (CD4+) and cytotoxic (CD8+)

T cells (31–35). CD4+ T cells promote B-cell differentiation

and antibody production, which inhibit viral replication (36), while

CD8+ T cells eliminate infected cells when humoral immunity is

insufficient (36–38). After endosomal uptake, NPs release antigens

into the cytoplasm, activating CD8+ T cells to target and destroy

infected cells (39). NP delivery systems also stimulate T- and B-cell

memory, contributing to a long-lasting immune response (40).
FIGURE 1

Transmission cycle of the Japanese Encephalitis Virus. Culex mosquitoes, along with amplifying hosts such as pigs and wading birds like waterfowl,
maintain the enzootic transmission cycle. Humans and horses are considered dead-end hosts. In domestic and wild mammals, poultry, reptiles, and
amphibians, JEV infection has been identified based on direct evidence (virus, viral antigen, or viral RNA) and indirect evidence (antibody) (5).
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Recombinant vaccines are particularly advantageous for incorporating a

limited set of B- and T-cell epitopes, as their ability to precisely engineer

specific immunogenic components results in targeted, efficient immune

activation (41). By focusing on well-characterized epitopes conserved

across JEV strains, developers can elicit stronger immune responses,

reduce immune tolerance, and potentially achieve cross-protection

against diverse strains (31). Encapsulating these epitopes in NPs

further enhances immune responses, minimizes adverse effects, and

enables cost-effective production (42).

Nanoparticle vaccine technology has progressed from laboratory

research to clinical application. Outer membrane vesicles (OMVs)

and virus-like particles (VLPs) have received approval from the Food

and Drug Administration (FDA) and are currently available on the

market, while additional vaccines are under investigation for safety

and efficacy (43). Researchers are developing a nanoparticle vaccine

for JEV, with promising results, though it has not yet reached clinical

trials or FDA approval. This review consolidates findings on

nanoparticle vaccine development for JEV, with the aim of

enhancing understanding and guiding future research.
2 Methods

2.1 Literature search and study selection

The methodology outlined in the PRISMA (Preferred Reporting

Items for Systematic Reviews and Meta-Analyses) declaration was

followed in the design and preparation of this systematic review (44).

English-language databases, including PubMed, Web of Science,

ScienceDirect, Google Scholar, Scopus, and EBSCO (Figure 2), were

systematically explored for research articles published between 2000

and 2023 that focused on the development of candidate nanoparticle

vaccines against JEV with in vivo/animal model immunogenicity

evaluation. Keywords such as “Japanese encephalitis,” “nanoparticle,”

“virus-like particle,” “self-assembled particle,” “immunogenicity,”

“antigenicity,” “vaccine,” and “candidate vaccine” were included in
Frontiers in Immunology 03
the comprehensive search. Additional searches were conducted by

reviewing the bibliographies of relevant primary and review

publications. Furthermore, a thorough manual search of the papers’

full reference lists was carried out to ensure no articles were

overlooked. Full-text articles published in the aforementioned

databases and those evaluating the proposed vaccine in vivo/animal

models were included. We excluded gray literature and abstracts of

papers presented at conferences. After a thorough evaluation of the

articles, studies were excluded if theymet any of the following criteria:

(1) studies that did not focus on vaccine candidates that form

nanoparticles; (2) studies that were not available in full text; (3)

studies not published in English; (4) reviews or descriptive studies;

and (5) articles that lacked sufficient information about the vaccine’s

immunogenicity and level of protection in an animal model.
2.2 Data extraction

The types of nanoparticles (NPs), antigenic components,

expression systems, virus strains used for challenges, NP sizes,

doses for single immunization, adjuvants, number of booster

doses, animal models, routes of administration, positive control

vaccines, methods for assessing immunogenicity, and key results

regarding immunogenicity were systematically compiled in a well-

structured data extraction Excel sheet. Additionally, bibliographic

details, including authors and publication years, were documented.
3 Results

3.1 Analysis of the included literature

This systematic review included a total of 28 articles (Figure 2)

published from 2001 to 2023 that studied potential candidate vaccine

development against JEV by incorporating particulate antigens into

NPs. Different NP formation techniques were employed in these
TABLE 1 Licensed Japanese encephalitis vaccines (21, 22).

Vaccine type Substrate Trade name Vaccine strain Licensing year
and country

Inactivated

Mouse brain BIKEN®, JE-VAX,
Sanofi Pasteur

Nakayama strain Beijing-1 strain Japan in 1954

Hamster kidney cells Beijing-3 or P-3 China in 1968

Vero cells JEBIK® Beijing-1 Japan in 2009

ENCEVAC® Beijing-1 Japan in 2011

JEVACTM Beijing P-3 strain China in 2008

IXIARO® (USA, EU);
JESPECT® (AUS, NZ); JEEV®

SA-14-14-2 USA, Australia, and Europe
in 2009

JENVAC® Kolar821564XY India in 2014

Live attenuated Hamster kidney cells CD.JEVAX® SA-14-14-2 China in 1988

Chimera Vero cells IMOJEV® JE SA-14-14- 2/Yellow fever 17 D Australia and Thailand in 2012
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studies (Table 2, Figure 3A): 16 VLPs, 3 Sub viral particles (SVPs), 2

chitosan-based NPs, and other NPs, including one study each on

colloidal gold, bio-nanocapsules, lumazine synthase-assembled

particles, lipid-based nanoparticles (LNPs), AB5-type toxin-based

nanoscaffolds, g-PGA, and polyethylene glycol-precipitated NPs.
3.2 Size and antigenic components of NPs

The primary goal of developing nanoparticle-based vaccines is to

deliver antigenic components that structurally and functionally

resemble live pathogens. These antigens cannot replicate or cause

infection, but they contain immunogenic elements of the pathogen

that can be recognized by APCs and are essential for fully activating the

immune system (43). Therefore, it is commonly understood that

particles containing antigenic components and sized similarly to

viruses are recognized by the body as viruses. Seven of the 28

compiled articles did not specify the size of the developed NPs. The

size of the NPs varied significantly across different antigen-particulate

approaches used in the articles. For example, chitosan-based NPs

ranged from 200–333 nm, while VLPs and sub-viral particles ranged

from 18–200 nm and 25–30 nm, respectively. The remaining NP types,

which ranged in size from 30 to 80 nm, were used in only one study. To

better understand the variations in NP size, the error bar (Figure 3B)

provides an overview of how nanoparticle sizes differ across various

antigen-particulate techniques.

Nanoparticles serve as carriers to facilitate the attachment of

antigens to their surface, thereby enhancing immune response by

promoting efficient trafficking and recognition by cellular receptors

(73). Structural proteins, mRNA or DNA encoding these proteins, as

well as inactivated or live whole pathogens, were utilized as antigenic

components in the development of NP-based vaccines in the studies

reviewed (Figure 4A). Among the 28 publications examined, Pre-

membrane and Envelope (prM and E) combined protein, E protein,

and E domain-III protein were employed in 12 (42.86%), 7 (25%),
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and 4 (14.3%) studies, respectively. Additionally, single articles

featured the use of Capsid, Pre-membrane and Envelope (CprME)

proteins, mRNA of prM & E proteins, DNA of prM & E proteins,

attenuated JEV, and inactivated JEV as antigenic components.
3.3 Expression systems of the
recombinant protein

The expression of recombinant proteins is a pivotal element in

the development of antigenic protein-based NP vaccines. Over the

years, recombinant protein expression has been successfully carried

out in a variety of host systems, including yeasts, bacteria, plants,

transgenic animals, as well as cultured insect and mammalian cells

(74). In the studies reviewed, E. coli, HEK-293T, BHK-21, and RK-13

cells were employed to express recombinant JEV antigenic proteins,

with respective study frequencies of 7, 4, 4, and 3. Additional

expression systems used in individual studies included yeast (Pichia

pastoris strain X33), silkworm Bm-N cells, COS-1, HS-deficient CHO

cells, C6/36, and AP-61 cells, as well as silkworm pupae (Figure 4B).
3.4 Laboratory animals

Mice are the most commonly used animals in JEV vaccine

development and pathogenesis studies, despite variations in their

susceptibility depending on factors such as viral strain, inoculum

dose, route of administration, and age (75, 76). All studies included in

this review used mice as the animal model; however, swine and

rabbits were also utilized alongside mice in 3 and 2 studies,

respectively. A total of six specified mouse strains, as well as one

unspecified strain, were employed across the studies (see Table 2).

BALB/c mice were used in the majority of studies (19), while C57BL/

6 and ICR strains were each used in 3 studies, and C3H/He, ddY, and

FVB/J strains were used in 2, 1, and 1 study, respectively.
FIGURE 2

Article searching and screening flow diagram of the systematic review (PRISMA 2020).
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TABLE 2 Nanoparticle-based JE vaccine development studies and their results.

enicity
nt

Main result Reference

nge

Strong NAbs
100% protection

(45)

High NAbs titer against the Muar and Nakayama
strains
Lower NAbs titer against the Beijing-1

(46)

nge

Speeds up the production of NAbs
I.V. and I.M. inoculation led to more rapid and
pronounced NAbs production.
Both active and passive immunization confer
100% protection

(47)

nge

Induced higher NAbs.
100% protection against intracerebrally inoculated
lethal dose challenges.

(48)

Exhibited high levels of NAbs, as did the licensed JE-
VAX.
Complete protection

(49)

bulin

nge

Three doses produced effective NAbs and neutralized
homologous GI and heterologous GIII
High level of IgG titers,
100% and 90% protection against GI and
GIII challenges.

(50)

assay
ssay

S.C. injection elicited significantly higher NAbs and
cytokine (IL-4 and IFN-ɣ) levels.
I.N. immunization only induced a higher specific anti-
JEV IgA level.

(51)

Induced considerably higher NAbs (52)

Induced NAbs following two immunizations (53)

Induced anti-JEV IgG
It abled to neutralize in-vitro infection

(54)

nge

Using g-PGA-NPs as an adjuvant boosted 10 times
higher NAb titers than the inactivated vaccine alone.
A single dose with and without g-PGA-NPs had 100%
and 50% protection, respectively.
Aluminum adjuvant also showed similar levels
of effectiveness.

(55)
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Antigen Expression host Delivery system Animal model Positive control Immunog
assessme

VLPs prM and E proteins BHK S.C., 4mg with
Montanide
ISA50V2 adjuvant

BALB/c Attenuated JEV
(SA14-14-2)

NAbs assa
Lethal
dose challe

VLPs E protein Silkworm pupae Unspecified dose
and route

BALB/c ———— NAbs assa

Rabbit

Colloidal gold prM and E
proteins DNA

——————— I.V., & I.D. 0.5mg BALB/c Inactivated
JEV vaccine

NAbs assa
Lethal
dose challe

VLPs E protein E. coli S.C., 10mg
without adjuvant

FVB/J ———— NAbs assa
Lethal
dose challe

VLPs prM and E proteins RK13 I.P., 503 ELISA
equivalent dose
without adjuvant

BALB/c Inactivated JE-VAX NAbs assa
Lethal dos
challenge

VLPs prM and E proteins HS-deficient
CHO cell

S.C., 0.04mg with
Freund’s adjuvant

BALB/c ———— Immunogl
(Ig) assay
NAbs assa
Lethal
dose challe

S.C., 5mg with
Freund’s adjuvant

Swine

Chitosan -based NPs live attenuated JE
chimeric
virus vaccine

————— I.N. & S.C., 104 PFU
using Chitosan (CS)
or Chitosan
maleimide (CM)

C57BL/6 Live attenuated
JE-CV

NAbs assa
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VLPs E protein E. coli I.M., 20 mg with
Adju-phos adjuvant
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SVP prM and E proteins RK13 S.C., 1mg with
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Nakayama

NAbs assa
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HEK-293T I.P., 20mg with Alum
or CpG
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as an adjuvant and
NPs forming unite

BALB/c Inactivated vaccine
(JE BIKEN)
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TABLE 2 Continued

Main result Reference

Induced NAb titers, as high as the licensed JE vaccine.
Total protection against challenges

(55)

Elicited the highest NAbs titers (57)

High levels of neutralizing antibodies
Abled to induce strong NAb titers when combined as a
tetravalent vaccine against four viruses (Zika virus
(ZiKV), Chikungunya (cHiKV), Yellow fever (YfV),
and JEV)

(58)

Induced NAbs (59)

Induced high total IgG level and similar IgG1 levels
with inactivated vaccine.
Induced comparable Nab titers with that of
inactivated vaccine.

(60)

Produced comparable Nab titers against GI and GIII
and substantially greater levels of specific IgG, IgG1,
and IgG2a antibodies than licensed vaccines.
Enhanced IFN- and IL-4 production

(61)

Induced efficient Nabs.
Elicited strong CD8+ T cells
Secreted higher IFN-g level
Protected 100% of the challenged mice

(62)

Higher level of cytokines (IFN-a, IL-12, and IFN-g),
and IgG1 and IgG2a antibodies were secreted.
Induced strong NAbs
The IgG1 and IgG2a levels hadn’t significant difference
between the EDIII-LS and SA14-14-2 groups.
100% protection was offered by EDIII-LS and SA14-
14-2 vaccines. Whereas the ED III subunit vaccine had
a 55% survival.

(63)

Using g -PGA NPs as adjuvants induced significantly
higher titers of NAb
NAb level of JE-VAC plus g -PGA NPs were
significantly higher than that of JE-VLP plus g -PGA
NPs.
Antibody titers in the serum were maintained for 6
months.
Single-dose immunization of JE-VLP and JE VAC with

(64)
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Nano
vaccine complex

Antigen Expression host Delivery system Animal model Positive control Immunogenicity
assessment

VLPs E protein RK13 I.P., 0.3mg
without adjuvant

ddY Inactivated virions
(JE-VAX)

NAbs assay
Lethal
dose challenge

PEG
precipitated Particle

prM and E proteins COS-1 cell S.C., 1mg (virus
equivalent) with
Freund’s adjuvant

ICR JE-VAX NAbs assay

VLPs CprME proteins HEK-293T I.M., 1mg with
Alum adjuvant

BALB/c NAbs assay

VLPs prM and E proteins Lepidopteran
insect cells

I.M., 10mg with
Alum adjuvant

C3H/HeN NAbs assay

AB5-Type toxin
based nanoscaffold

ED-III Protein E. coli I.V., 25mg with
Alum adjuvant

Balb/c Inactivated
JEV VAX

Ig assay
NAbs assay

VLPs prM and E proteins AP-61 cells S.C., 1mg
without adjuvant

BALB/c IMOJEV
(live, attenuated)

Ig assay
NAbs assay
Cytokine assays

mRNA-LNP prM and E proteins HEK-293T I.M., 15mg
without adjuvant

C57BL/6 SA14-14-2
(live-
attenuated vaccine)

NAbs assay
Lymphocyte
proliferation assay
Lethal
dose challenge

Lumazine synthase
assembled NPs

ED-III Protein E. coli S.C., 0.04mg with
Montanide IMS-
1313 adjuvant

BALB/c SA14-14-2 Ig assay
NAbs assay
Cytokine assays
Lymphocyte
proliferation assay
Lethal
dose challenge

VLPs E protein RK13 I.P., 1mg with g-
PGA-NPs or Alum

BALB/c Inactivated JE-VAC NAbs assay
Lethal
dose challenge
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TABLE 2 Continued

nicity Main result Reference

either g -PGA-NPs or alum protected 90% and 100%
of the challenged mice, respectively.
Single-dose JE-VLP or JE VAC without adjuvant
confers only 20% protection.

assay

Produced detectable level of antibody against
Nakayama strain and any of the examined JEV GV
strains, except R84K, whereas JEVAX didn’t develop
for any of the GV JEV strains.
A mixture of JEVAX with Mu-SVP led to the
production of higher NAbs against GV and GIII.
Th2-dominant cellular responses observed

(65)

NAbs against the Nakayama, Beijing-1, and Muar
strains were induced.
A higher tendency to react with the Muar strain than
the Nakayama strain was observed.

(66)

Elicited NAbs against GI, GII, and GV strains
Induced higher IgGs
A second dose after a month of the prime injection
greatly boosted antibody titers
Immunization of piglets with two doses induced high
titers of antibodies

(67)

assay

e

Induced a similar NAbs level to that of the live
vaccine.
Induced IgG antibodies more rapidly than the live
vaccine.
T-cell response was lower than that of SA 14-14-2
Passive transfer of VLP antisera protects 100% of
challenged
Induces a protective immune response in pigs.

(68)

e

Elicit desired specific NAbs
Conferred 100% and 50% protection With and without
adjuvants, respectively.

(69)

ay

assay

e

Induced NAbs and cytokine level however it was
significantly lower than from SA14-14-2 vaccine
Both the candidate and positive control vaccines
protected 100% of the challenged mice

(70)
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Nano
vaccine complex

Antigen Expression host Delivery system Animal model Positive control Immunoge
assessmen

SVP E protein C6/36 cells &
BHK-21

I.P., 0.4mg
without adjuvant

ICR Inactivated JE VAX Ig assay
NAbs assay
Lymphocyte
proliferation

VLPs prM/E protein Silkworm Bm-
N cells

Unspecified route,
20mg with
Freund’s adjuvant

Unspecified mice NAbs assay

Unspecified route,
40mg with
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3.5 Dosage and routes of administration

For new vaccine candidates, dose-response studies are

often conducted to determine the optimal dose for inducing

the highest antibody production in animal models. Several studies

(45, 47, 50, 61, 67, 68) included in this review carried out dose-

optimization experiments at the animal model level during the

development of NP-based JEV vaccines. Another key aspect of

dosage evaluation is determining whether a single immunization or

additional booster doses, along with adjuvants, are necessary to

elicit a protective immune response. In nanoparticle-based vaccines,

synthetic nanoparticles, such as inorganic and liposome-based

particles, typically require multiple doses and the addition

of adjuvants, while biologically derived nanoparticles often

have intrinsic properties that enhance their ability to stimulate

the immune system independently, reducing the need for artificial

adjuvants (43). Consequently, many of the studies reviewed focused

on self-assembled VLPs and sub-viral particles, which required

booster immunizations and the use of adjuvants. Of the 28 articles

reviewed, 4 studies used only a single-dose immunization, while 7

studies did not incorporate adjuvants. The remaining studies

administered 1–3 booster doses (Figure 4C) and utilized various

adjuvants, including Alum, Freund’s, Montanide ISA50V2 & IMS-

1313, and Cytosine-phosphoguanine (CpG).

The adjuvanticity of nano-vaccines, which is influenced by the

route of administration, depends on the specific properties of the

antigen-carrying nanoparticles. For example, the slow degradation

of hard nanoparticles promotes antigen uptake when

administered intravenously (I.V.), while soft nanoparticles are

more efficient at stimulating antigen uptake when delivered via

subcutaneous (S.C.) injection (76). However, testing of new

vaccines typically begins in small animal models, which have

different anatomies from humans or other animals, and as a

result, the route of administration cannot be fully evaluated in

these models. Thus, studies using different vaccine administration

routes in small animals are insufficient for determining the most

effective immunization routes for other animals or humans (77).

Researchers in the studies reviewed have used various routes of

administration for their candidate NP vaccines, including

intramuscular (I.M.), subcutaneous (S.C.), intradermal (I.D.),

intraperitoneal (I.P.), and intranasal (I.N.) (Table 2).
3.6 Immunogenicity assessment methods

To obtain “proof of concept” data supporting clinical trial

development, assessing the immunogenicity of potential vaccines

in animal models is essential (78). The induction of adaptive

immunity can be evaluated through humoral or cellular immune

responses. The most widely used methods for evaluating vaccine

immunogenicity include seroconversion rates, neutralizing

antibody titers, and immune cell proliferation assays (79).

Additionally, the efficacy of new vaccines is typically evaluated

based on protection against a lethal dose of the pathogen. As

indicated in Table 2, the majority of the reviewed studies assessed

immunogenicity using virus-neutralizing assays, immunoglobulin
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G (IgG) titers, and protection against lethal dose challenges. Virus-

neutralizing and seroconversion assays are crucial for vaccine

evaluation, as they quantify neutralizing antibodies that inhibit

viral infections and indicate potential protective immunity (2).

However, these assays primarily focus on antibody responses,

potentially overlooking other key components of immunity, such

as T-cell responses and non-neutralizing antibodies, which also

contribute to protection (80, 81). Non-neutralizing antibodies
Frontiers in Immunology 09
enhance immunity by facilitating opsonization, activating the

complement system, and promoting antibody-dependent cellular

cytotoxicity (ADCC), which targets infected cells for destruction.

Additionally, non-neutralizing antibodies influence immune cell

activation and differentiation, shaping the overall immune

response. While not directly neutralizing pathogens, these

antibodies play critical roles in pathogen clearance and immune

regulation (82).
FIGURE 3

Types of developed JEV NP vaccines and measured particle size: (A) Types of developed anti-JEV NP vaccines and the frequency of studies; (B) Size
range of developed NPs in nanometers, categorized by their respective NP type. PEG, Polyethylene glycol; LSA, Lumazine synthase-assembled; BNC,
Bio-nanocapsules.
FIGURE 4

Antigenic components, expression hosts, and number of booster administrations applied in studies on new JE NP vaccine development: (A) Antigens
and their corresponding study frequencies; (B) Expression hosts used for the production of target antigenic proteins and their corresponding study
frequencies; (C) Types of developed NP vaccines and the number of booster immunizations administered, along with the frequency of studies.
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Most of the recent studies also included lymphocyte

proliferation assays (62, 63, 65, 68, 70, 71) and cytokine assays to

further evaluate vaccine immunogenicity (52, 61, 63, 70, 83).

Lymphocyte proliferation assays are essential for assessing

immune responses to new vaccine candidates, as they measure

the activation and expansion of T and B cells upon antigen

exposure. Using techniques like radiolabeled thymidine

incorporation or flow cytometry, these assays evaluate T-cell

activation and differentiation into effector and memory cells (84).

A robust proliferation response indicates effective immune

activation and suggests strong immunogenicity (85, 86). However,

these assays do not directly assess the functionality or effectiveness

of the immune response, such as antibody or cytokine production.

Therefore, while lymphocyte proliferation assays provide valuable

information, they should be complemented with other

immunological assessments for a comprehensive evaluation of

vaccine efficacy (87). Cytokine assays are also crucial for

evaluating immunogenicity, as they measure key cytokines that

reflect immune cell activation. Cytokines like IL-12, TNF-a, IFN-g,
and IL-4 help assess the strength and type of immune response,

including Th1 (cellular immunity) and Th2 (humoral immunity)

responses, which are critical for vaccine efficacy (88, 89). Cytokine

assays also provide insights into immune memory by detecting

markers such as IL-2 and IFN-g, which are associated with memory

T-cell differentiation (90).
3.7 Immune response and protection

This systematic review reveals that all of the studies reviewed

employed a virus-neutralizing assay, and in nearly all cases, the

candidate vaccines elicited higher neutralizing antibody titers.

Additionally, elevated levels of IgG, IgG1, and IgG2a were

observed in immunized mice (50, 54, 60, 63, 68) (Table 2). The

VLP-based candidate vaccine, engineered from JEV prM and E

proteins in BHK-21 cells, induced higher neutralizing antibody

titers compared to live attenuated vaccines (45). VLPs mimic the

viral structure, enhancing antigen presentation and boosting

immune responses (91). They also stimulate humoral immunity

through a T-helper cell-independent pathway (92) and activate

CD8+ cytotoxic T cells via the MHC class I pathway, bypassing the

need for extracellular antigens (93). This process involves antigen

uptake by CD8− dendritic cells and transfer to secondary lymphoid

organs, where it is presented via TAP-dependent and independent

pathways (94). Similarly, g-PGA-based nanoparticles containing

inactivated JEV (55) induced higher neutralizing antibody titers

than live vaccines. g-PGA stimulates innate immunity, promotes

Th1 responses, and enhances cytotoxic T lymphocyte (CTL) activity

(95). Its adjuvant properties further amplify the immune response

by activating antigen-presenting cells and T cells, leading to

increased antibody production and stronger immune memory (96).

Cytokine concentrations induced by the NP vaccines were also

analyzed, with results showing elevated levels of IL-4, IL-12, IFN-a,
and IFN-g (61, 63, 70, 83). The candidate NP vaccines effectively

activated both innate immune cells (dendritic cells and

macrophages) and adaptive immune responses, providing robust
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protection against pathogens. Activation of APCs stimulates pro-

inflammatory cytokine production, primarily through PRRs such as

TLRs (97, 98). This activation drives the differentiation of CD4+ T

cells into Th1 and Th2 subsets: IL-12 from APCs promotes Th1

differentiation and IFN-g production, while IL-4 drives Th2

differentiation, enhancing antibody responses (32, 99, 100). NPs

also stimulate type I interferon production, including IFN-a,
through signaling pathways activated by viral components or

adjuvants. Cytokines such as IL-12 and IL-4 create feedback loops

that amplify cytokine production, with IFN-g further stimulating

IL-12 production. Enhanced antigen presentation by NPs improves

T-cell activation and cytokine production, particularly for CD8+

cytotoxic and CD4+ helper T cells (101). This cross-talk between

immune cells leads to a coordinated cytokine response, contributing

to improved vaccine efficacy and protection (102, 103).

Furthermore, the candidate JE NP vaccines induced significant T-

cell proliferation in the spleen (62, 65, 71). This immune cell

proliferation is linked to the process in which, upon antigen

administration, APCs present processed antigen peptides on MHC

molecules, which is critical for T-cell activation. Naive T cells in

lymphoid tissues encounter these antigen-MHC complexes,

triggering the first signal necessary for activation. For full

activation, T cells also require co-stimulatory signals from APCs,

such as the interaction between CD80/CD86 on APCs and CD28 on

T cells (104). Additionally, activated APCs secrete inflammatory

cytokines, including IL-12, IL-6, and TNF-a, which further

enhance T-cell activation and proliferation. Other cytokines, such

as IFN-g and IL-4, promote T-cell differentiation into effector subsets,

increasing their proliferative capacity and the number of antigen-

specific T cells in lymphoid tissues. Some of these proliferating T cells

differentiate into memory T cells, which persist and provide long-

term immunity, ensuring a rapid response upon re-exposure to the

antigen (37). These findings suggest that NP-based candidate

vaccines can effectively enhance both humoral and cellular adaptive

immune responses against JEV. The next-generation NP vaccines

provided 70–100% protection for immunized mice against a lethal

dose of virulent JEV, despite variations in adjuvants, doses, NP types,

antigens, and animal models used across studies (Table 2).
4 Discussion

Developing vaccines against viral infections is generally more

straightforward than creating antiviral drugs, and vaccines are far

more effective at preventing disease progression before significant

damage occurs. JE is viral encephalitis for which no proven antiviral

treatment exists; therefore, vaccination remains the primary

strategy for effectively controlling and preventing the disease. As

noted in the introduction, both live-attenuated and inactivated

vaccines are utilized in several countries and play a crucial role in

JE prevention (20), despite concerns regarding cost, safety, and

challenges related to cross-protection (30). The high genetic and

antigenic variability of the JEV complicates the development of a

universally protective vaccine. JEV’s diverse genotypes, which

exhibit variations in the E protein, result in differences in

immune recognition, making vaccines designed for specific strains
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less effective against others (15, 105). For instance, while inactivated

and live-attenuated vaccines show strong efficacy against genotype

III, they offer reduced protection against genotype I (106, 107). This

variability, along with the risk of immune escape due to antigenic

mutations, presents significant challenges in developing a universal

JEV vaccine (108).

To address these issues, recombinant vaccines present a

promising solution, as they enable precise targeting of conserved

epitopes across multiple JEV strains. Using recombinant DNA

technology, specific viral proteins, such as the E protein from

different strains, can be produced and purified. This reduces the

risk of immune escape and facilitates the creation of multivalent

vaccines that provide broader protection (31, 41). The adjuvant

requirements and early degradation problems often associated with

recombinant vaccines can be mitigated through nanoparticle-based

delivery systems (39, 109). By encapsulating multiple epitopes from

different JEV strains, nanoparticles can contribute to the

development of multivalent vaccines that offer more durable and

comprehensive immunity, effectively addressing cross-strain

protection. Thus, the combination of recombinant vaccine

technology and nanoparticle delivery systems holds considerable

promise for overcoming JEV’s genetic diversity and enhancing

global vaccine coverage (31). This review consolidates findings on

the development of nanoparticle-based vaccines for JE, aiming to

improve understanding and guide the future development of safe,

effective, multivalent, and affordable vaccines. A variety of

nanoparticles, including self-assembled proteins, biological
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polymers, synthetic compounds, and inorganic nanoparticles, are

being explored as antigen carriers for JE vaccines (110, 111).
4.1 Self-assembled protein-based JE
NP vaccines

Over 50% of the reviewed articles focused on VLP-based

vaccine development, utilizing structural JEV proteins as antigens.

Figure 5 provides an overview of the antigenic components,

adjuvants, animal models, and administration routes used in JE

VLP vaccine studies. Recombinant technology enables the in vitro

production of viral structural proteins (112), leading to the

formation of smaller entities known as sub-viral particles, which

elicit robust innate, humoral, and cellular immune responses in

both animals and humans (113). The majority of these in vitro-

generated sub-viral particles retain the characteristics of VLPs,

composed of one or more full-length viral structural proteins. In

contrast, some consist of smaller sub-viral particles formed from

truncated capsid proteins (114).

In conjunction with mRNA and viral vector-based vaccines, VLP

technology provides an alternative platform for developing effective

vaccines against major infectious diseases. Both SVPs and VLPs elicit

robust immune responses by activating innate and adaptive

immunity. Upon uptake by DCs and other APCs, VLPs and SVPs

trigger TLR-mediated signaling pathways, promoting the release of

pro-inflammatory cytokines and enhancing antigen presentation
FIGURE 5

Antigenic proteins, animal models, and administration systems employed in JE VLP vaccine studies: (A) Types of antigenic proteins with frequency of
studies; (B) Animal models with frequency of studies; (C) Routes of administration with frequency of studies; (D) Types of adjuvants with frequency
of studies.
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(115). Their repetitive structure efficiently activates B cells, leading to

the production of high-affinity antibodies that neutralize pathogens

(116). Additionally, these particles stimulate CD4+ T-helper cells,

which facilitate B cell differentiation and activate CD8+ cytotoxic T

cells via cross-presentation, offering strong protection against

infections (117). Moreover, the particulate nature of VLPs and

SVPs enhances long-term immunity by promoting the formation

of memory B cells and T cells (118).

Virus-like particles (VLPs) are considerably more immunogenic

due to their repetitive antigenic epitopes, which provide a more

authentic signal for immune system recognition. As summarized in

the main findings section (Table 2), VLP-based candidate vaccines,

both with and without adjuvants, were able to elicit immune

responses comparable to those induced by live and inactivated

vaccines. Five studies—conducted by Yang et al. (68), Chang et al.

(61), deWispelaere et al. (67), Mutoh et al. (119), and Saini and Vrati

(48)—demonstrated that VLPs, even without adjuvants, could induce

neutralizing antibodies against JEV. In contrast, subunit vaccines

typically require adjuvants and booster doses to elicit an adequate

immune response. The reviewed articles also indicated that mice

immunized with sub-viral particles, with or without adjuvants,

developed neutralizing antibodies against JEV (53, 65).
4.2 Biopolymer based JE NP vaccines

Chitosan is a positively charged, biocompatible polymer that

acts as a natural mucoadhesive agent. As a result, over the past

decade, chitosan-derived nanoparticles (CS NPs) have gained

widespread use for delivering vaccine antigens via the mucosal

route (120). CS NPs enhance immune activation by promoting the

uptake of antigens by DCs and macrophages, which, in turn,

stimulates TLR-mediated signaling and the production of pro-

inflammatory cytokines (121). In studies focused on NP vaccine

development against JEV, chitosan facilitated the administration of

live attenuated vaccines via the I.N. route and the DNA of prM and

E protein genes via the I.D. route. The findings revealed that I.N.

administration resulted in significantly higher levels of specific anti-

JEV IgA. However, cytokine levels and neutralizing antibodies were

markedly lower compared to those achieved via S.C. administration

(83). In the case of I.D. delivery of DNA, specific antibodies were

generated, conferring 100% and 50% protection with and without

adjuvant, respectively (69).

Lumazine synthase (LS) is a family of enzymes that plays a

crucial role in versatile vaccine delivery systems due to its

oligomeric structure, which exhibits remarkable conformational

stability. Lumazine synthase nanoparticles, with their self-

assembling properties, facilitate the presentation of antigens to B

cells and CD4+ T-helper cells, inducing antibody production and T

cell responses (122). The antigens are displayed in a well-organized

array on the surface of LS, creating a high local concentration of

antigens. These repetitive patterns facilitate the cross-linking of B-

cell receptors through an avidity effect, leading to robust immune

responses (123). A study by Yao and colleagues (63) demonstrated
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that LS-assembled EDIII JEV protein significantly increased

neutralizing antibody titers (IgG1 and IgG2a) and cytokine levels

(IFN-a, IL-12, and IFN-g). The antibodies elicited by EDIII-LS were
comparable to those produced by the live attenuated vaccine (SA14-

14-2) and substantially higher than those from the EDIII subunit

vaccine. Both EDIII-LS and SA14-14-2 vaccinations achieved 100%

protection in challenged mice, whereas only 55% of mice vaccinated

with the EDIII subunit vaccine were protected.

AB5 toxins are critical virulence factors for major bacterial

pathogens, consisting of a catalytic A-subunit that disrupts host

functions and a B-subunit that binds to specific glycan receptors on

target cell surfaces. The non-toxic B5 component of the holo-toxin

(AB5) provides a pentameric scaffold for assembling antigenic

proteins, mimicking the native five-fold axis (124). AB5 toxin-

based nanoparticles exploit the unique ability of the AB5 toxin to

bind to ganglioside receptors on host cells, leading to enhanced

antigen uptake by APCs, triggering both humoral and cellular

immune responses (125). Ahn et al. hypothesized that genetically

fusing the B-subunit of the AB5 toxin with a viral antigenic protein

would facilitate pentameric self-assembly while preserving the

conformational epitopes necessary for an effective immune

response. Their study led to the development of a pentameric

nanoscale JEV EDIII protein vaccine using cholera toxin B (CTB)

and heat-labile enterotoxin B (LTB). The results indicated that both

CTB-EDIII and LTB-EDIII recombinant proteins induced high

total IgG levels and similar IgG1 levels compared to the

inactivated vaccine, as well as comparable neutralizing antibody

titers (60).

Bio-nanocapsules, derived from bacterial Nano cellulose, also

promote antigen delivery to dendritic cells (DCs), activating CD8+

cytotoxic T cells and enhancing the cross-presentation of antigens,

which is crucial for effective cellular immunity (126). A bio-

nanocapsule NP-based anti-JE candidate vaccine was constructed

by loading the JEV E protein domain 3 onto the surface of two

tandem repeats of the Z domain (ZZ-BNC) derived from

Staphylococcus aureus protein A. However, the protection conferred

against lethal JEV challenges in immunized mice was relatively low

(44.4% without adjuvant and 70% with alum adjuvant), while the

inactivated JE vaccine provided complete protection (127).

Poly (g-glutamic acid) (g-PGA) is a biopolymer composed of

repeating units of D- and L-glutamic acid, naturally polymerized via

g-amide bonds. g-PGA possesses excellent biocompatibility and

stability, which enhance the adjuvant properties of vaccines by

improving immune cell recruitment and antigen persistence,

leading to strong long-term immunity (128). It is non-toxic and

biodegradable, allowing for easy uptake by DCs, which leads to

cytokine secretion that enhances Th1 immune responses and boosts

cytotoxic T lymphocyte (CTL) activity (96). Okamoto et al.

evaluated the adjuvanticity of g-PGA NPs in combination with an

inactivated JEV vaccine, demonstrating that a single dose of the JE

vaccine with g-PGA NPs significantly enhanced neutralizing

antibody titers. This resulted in all immunized mice surviving a

normally lethal JEV infection, whereas only 50% of those receiving a

single dose of the JE vaccine without g-PGA NPs survived (55).
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4.3 Synthetic and inorganic NP-based
JE vaccines

Lipid nanoparticles (LNPs) represent a groundbreaking class of

nanoparticles with immense potential for the delivery of nucleic

acids and eliciting robust immune responses. LNPs are efficiently

taken up by antigen-presenting cells (APCs) via endocytosis or

phagocytosis, leading to the release of the encapsulated antigen in

the endosome, where it is processed and presented on major

histocompatibility complex (MHC) class I and II molecules. This

stimulates both CD8+ cytotoxic T cells and CD4+ helper T cells

(129). The antigen presentation activates the adaptive immune

response, leading to the production of neutralizing antibodies by

B cells and the elimination of infected cells by CD8+ T cells.

Additionally, LNPs interact with pattern recognition receptors

(PRRs), such as TLR7 and TLR8, on APCs, which recognize viral

RNA. This interaction triggers the production of inflammatory

cytokines, including IL-6, TNF-a, and type I interferons, enhancing
APCmaturation and promoting a stronger immune response (130).

Furthermore, the particulate nature of LNPs serves as an adjuvant,

boosting the immune response by mimicking viral membranes,

which improves both the delivery of antigens and the activation of

immune cells (131). LNPs also facilitate the formation of memory B

cells and T cells, ensuring long-term immunity and protection upon

re-exposure to the pathogen (130). This combination of efficient

antigen delivery, activation of both innate and adaptive immunity,

and adjuvant effects makes LNPs highly effective in vaccines,

particularly for viral infections (132).

The promise of LNPs has been underscored by the recent

emergency use authorization (EUA) granted by the US FDA for two

mRNA-based SARS-CoV-2 vaccines: mRNA-1273 (Moderna) and

BNT162b2 (Pfizer-BioNTech). Consequently, researchers involved in

vaccine development have become increasingly interested in the

mRNA-LNP vaccine platform (129). Wide arrays of mRNA-

encapsulated LNPs are currently under investigation in clinical

settings for various applications, including hereditary disorders, viral

infections, and cancer (28, 133). In a similar vein, Chen et al. developed

an mRNA vaccine encoding the JEV prM and E proteins, rigorously

evaluating its immunogenicity and protective efficacy. Their findings

demonstrated that mRNA immunization could elicit robust JEV-

neutralizing antibodies and potent CD8+ T-cell responses, effectively

safeguarding mice against JEV infection (62).

Polyethylene glycol (PEG) is a versatile polyether molecule that is

non-ionic and has multiple applications within the pharmaceutical

industry. PEG is commonly used to modify the surface characteristics

of nanoparticles (NPs) and enhance their molecular weight (MW)

(134). PEG improves the bioavailability of antigens by reducing

clearance through the reticuloendothelial system (RES), allowing

for more efficient delivery to APCs. Once internalized, PEG NPs

promote the activation of PRRs, including TLRs, on the surface of

APCs. This triggers intracellular signaling pathways, such as NF-kB
and MAPK, leading to the release of pro-inflammatory cytokines like

IL-1b, IL-6, and TNF-a, which help recruit additional immune cells

to the site of antigen presentation (135, 136). After processing the

antigen, APCs present it on MHC class I and II molecules, activating
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CD8+ cytotoxic T cells and CD4+ helper T cells, respectively.

PEGylation also serves as an adjuvant, improving the overall

immune response by enhancing antigen delivery, stabilizing the

vaccine components, and providing controlled release (137).

Moreover, PEG coating can mitigate immune responses against

the nanoparticles themselves, which could otherwise reduce the

efficacy of repeated vaccinations (136, 138). Hunt et al. utilized

PEG to precipitate purified recombinant JEV protein particles.

Immunogenicity evaluations revealed that PEG-precipitated

recombinant proteins, in conjunction with Freund’s incomplete

adjuvant, induced higher neutralizing antibody titers against

JEV (57).

Well-functionalized gold nanoparticles (AuNPs) are among the

most promising nanomaterials for the next generation of vaccines

(134, 139). Their reliable surface functionalization, biocompatibility,

customizable size and shape, and unique optical properties have

generated considerable interest in the field of vaccinology. Upon

administration, AuNPs are taken up by immune cells, including DCs,

macrophages, and B cells, via receptor-mediated endocytosis. The

nanoparticles are then transported to lymph nodes, where they

present antigens to T cells, initiating the adaptive immune response

(88, 140). AuNPs also interact with immune cells through pattern

recognition receptors (PRRs), such as Toll-like receptors (TLRs)

and C-type lectin receptors (CLRs), which activate the innate

immune system and trigger the release of pro-inflammatory

cytokines (TNF-a, IL-1b, IL-6). These cytokines recruit additional

immune cells and create a pro-inflammatory environment that

supports adaptive immune activation (88). Furthermore, gold

nanoparticles act as adjuvants, enhancing the immune response to

co-administered antigens by increasing both the strength and

duration of the response (88, 141, 143). AuNPs also stimulate

the production of type I interferons (IFN-a/b) and promote

the activation of B cells, CD4+ helper T cells, and CD8+ cytotoxic

T cells, which are critical for both humoral and cell-mediated

immunity (139, 142).

Nucleic acid strands can be covalently bonded to the cores of

gold nanoparticles (typically 13–15 nm) through thiol moieties

(144–146). This innovative strategy applies to both DNA and

siRNA, which can be directly conjugated to gold cores or to

polymer-modified gold cores (147). Two decades ago, Zhao and

colleagues conducted a JE immunization experiment using colloidal

gold to inoculate plasmid DNA encoding the prM and E proteins. It

remains unclear whether the gold served primarily as a carrier or as

an adjuvant in this case. Nevertheless, this immunization approach

facilitated a more rapid production of specific anti-JEV neutralizing

antibodies via intravenous (I.V.) and intramuscular (I.M.) routes

compared to alternative methods. Both active and passive (anti-JEV

sera) immunization conferred 100% protection against JEV

challenges at 105 LD50 (47).
5 Conclusion

Epidemiological data indicate that JEV is steadily expanding

into new territories across Europe and Africa, in addition to its
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established presence in the Asia-Pacific region, with the potential

for global dissemination in the near future (7). While the

widespread use of traditional vaccines has successfully reduced

the incidence of JE among children in endemic areas, there has

been a noticeable rise in cases among adults (148, 149). JEV also

poses significant threats to animal health and the economy, as it not

only causes illness and mortality in livestock but also leads to

substantial financial losses for farmers due to reduced productivity.

As a result, there is an ongoing demand for effective and safe

vaccines that can be produced at scale with minimal financial

investment. In response, scientists are actively exploring

innovative approaches to develop novel JE vaccines. This review

highlights the growing array of nanoparticle-based vaccine

candidates that have emerged from the dedicated efforts of

researchers. In the foreseeable future, these promising candidates

could pave the way for next-generation JE vaccines for both humans

and animals as they progress through subsequent stages of the

vaccine development pipeline.
5.1 Limitations

The quality of the studies included in this review varied

considerably, with some exhibiting methodological weaknesses

that could impact the robustness of the findings. The

heterogeneity among the studies—particularly regarding

administration systems (route, dose, booster immunization, and

use of adjuvants) and the methods for evaluating immunogenicity

—may limit the comparability of results and their interpretation.

Additionally, the review was confined to studies published in

English, which may have excluded valuable research published in

other languages that could offer further insights.
5.2 Future directions for JEV
vaccine development

Future research on JEV vaccines should address key challenges

to improve efficacy and broader applicability. A major focus should

be developing broad-spectrum vaccines that provide cross-

protection against all five JEV genotypes. Enhancing antigen

presentation systems and optimizing antigen combinations could

also boost vaccine effectiveness. Additionally, exploring cross-

protection against other flaviviruses and improving immunization

strategies for broader flavivirus threats will be critical. Tackling

these issues will be essential for advancing JEV vaccine development

and preparing for emerging flavivirus-related diseases.
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