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The adaptive immune system generates a diverse array of B-cell receptors

through the processes of V(D)J recombination and somatic hypermutation. B-

cell receptors that bind to an antigen will undergo clonal expansion, creating a

Darwinian evolutionary dynamic within individuals. A key step in studying these

dynamics is to identify sequences derived from the same ancestral V(D)J

recombination event (i.e. a clonal family). There are a number of widely used

methods for accomplishing this task but a major limitation of all of them is that

they rely, at least in part, on the ability to map sequences to a germline reference

set. This requirement is particularly problematic in non-model systems where we

often know little about the germline allelic diversity in the study population.

Recognizing that delimiting B-cell clonal families is analogous to delimiting

species from single locus data, we propose a novel strategy of reconstructing

the phylogenetic tree of all B-cell sequences in a sample and using a popular

species delimitation method, multi-rate Poisson Tree Processes (mPTP), to

delimit clonal families. Using extensive simulations, we show that not only

does this phylogenetically explicit approach perform well for the purpose of

delimiting clonal families when no reference allele set is available, it performs

similarly to state-of-the-art techniques developed specifically for B-cell data

even when we have a complete reference allele set. Additionally, our analysis of

an empirical dataset shows that mPTP performs similarly to leading methods in

the field. These findings demonstrate the utility of using off-the-shelf

phylogenetic techniques for analyzing B-cell clonal dynamics in non-model

systems, and suggests that phylogenetic inference techniques may be potentially

combined with mapping based approaches for even more robust inferences,

even in model systems.
KEYWORDS

B-cell receptor repertoire, B-cell clonal family delimitation, species delimitation, AIRR-
seq, somatic hypermutation, benchmarking
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1505032/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1505032/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1505032/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1505032&domain=pdf&date_stamp=2024-12-02
mailto:mpennell@usc.edu
https://doi.org/10.3389/fimmu.2024.1505032
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1505032
https://www.frontiersin.org/journals/immunology


Voss et al. 10.3389/fimmu.2024.1505032
Introduction

B-cells and their diverse repertoires of receptors are a central

component of the adaptive immune response. Naive B-cells, which

have not previously encountered foreign antigens, can become

activated upon binding of their B-cell receptors (BCRs) to

antigens presented by pathogens (1). Upon activation, these B-

cells undergo proliferation and differentiation, ultimately leading to

the secretion of antibodies specifically designed to recognize and

bind the encountered pathogens (1). These antibodies play a crucial

role in the immune defense by either directly neutralizing

pathogens or triggering downstream immune responses that lead

to pathogen clearance (1). A diverse repertoire of BCRs is necessary

to recognize a broad spectrum of pathogens. This diversity is

achieved through two primary mechanisms (Figure 1A): V(D)J-

recombination and somatic hypermutations (SHM). B-cell

receptors are composed of two identical heavy chains and two

identical light chains. For this study, we concentrate on the heavy

chain. The heavy chain locus encompasses V, D, and J genes, and

through V(D)J-recombination, one V gene, one D gene, and one J

gene are joined together. In the human heavy chain locus we know

of approximately 129 V genes, 27 D genes and 9 J genes (2, 3).

Consequently the V(D)J-recombination contributes significantly to

the vast diversity observed in B-cells. Another big contributor to the

diversity of the BCRs is the addition or removal of P and N

nucleotides at the junctions of the genes during V(D)J-

recombination (1). The parts of the BCRs that bind to antigens

are called complementarity-determining regions (CDRs). There are

3 CDRS: CDR1 and CDR2 are encoded in the V-gene, the CDR3

region encompasses part of the V-gene, the junction regions, the D

gene and part of the J gene, and is a strong determinant of the

specificity of each receptor. Following antigen binding, a B-cell

undergoes affinity maturation, a process characterized by clonal

expansion and SHM. The point mutations enhance antibody

diversity and can lead to the production of antibodies with

increased affinity for the antigen (1). A clonal family refers to the

collective group of B cells originating from a single V(D)J

rearrangement event.

The human body harbors approximately 1011 B-cells (4),

suggesting a vast array of clonal families. Recent advances in

high-throughput sequencing technology have revolutionized the

field of BCR repertoire sequencing (5), enabling the analysis of the

clonal relationships of BCRs. One of the central challenges in B-cell

analysis lies in accurately delineating these clonal families within

sequencing data from each individual. As the sequences within a

clonal family originate from the same ancestral B-cell, they should

not be treated independently in statistical analysis. Only once the

clonal families have been identified, is it possible to infer which ones

have expanded in response to antigen binding. Subsequent analyses

can include examination of V(D)J gene usage, calculation of SHM

statistics, quantification of selection during affinity maturation, and

inference of the original receptor sequence and identification of the

original antigen target [for reviews see (6, 7)]. Furthermore, by

tracing the development and diversification of B-cell lineages, it is

feasible to identify the specific genetic and structural alterations that
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give rise to antibodies capable of neutralizing a wide spectrum of

pathogenic strains. This identification of broadly neutralizing

antibodies serves as the foundation of effective vaccine design

against challenging pathogens such as HIV (8, 9).

Rather than approach this problem from scratch, we start by

recognizing that the problem of B-cell clonal delimitation bears a

close resemblance to a well-studied problem in evolutionary

biology: species delimitation. Finding ways to objectively split

individuals into species has been a major preoccupation of

phylogeneticists for decades and there are a multitude of methods

for doing so (10–12). The majority of modern species delimitation

approaches use multi-locus approaches, leveraging information

from variation in the gene trees between different genomic

regions (12). However, in the cases of bacteria and other

organisms which do not have (frequent) recombination between

loci, researchers often rely on information from the branching

structure of a single gene tree to delimit species (13). [Single gene

tree approaches have also been used for taxa with limited genomic

information (14)]. Broadly speaking, the idea is that the pattern of

tree branching within a species will be distinct from that of the

branching between species. In principle, if one has an accurate

phylogenetic tree connecting all samples, one could identify the

places on the phylogeny where the branching structure transitioned

from the between species branching distribution to the within. The

most commonly used method that follows this logic is the Poisson-

Tree-Process (PTP) approach (15), which as the name suggests uses

a Poisson process to model evolutionary branching, both within-

and between species. This method has been expanded (16) to allow

for background rate variation across the tree in the rate of between-

species branching, which we know to be pervasive (17, 18). PTP and

multi-rate Poisson Tree Processes (mPTP)methods have collectively

been used hundreds of times to delimit species in cases such as free-

living amoebae (19), Plecoptera (20), radicine pond snails (21), and

freshwater mussels (22). And in general, the PTP methods have

been found to be superior to closely related alternatives, such as the

General-Mixed-Yule-Coalescent method (23), which tends to

oversplit taxa (12).

Here we explore whether we can use this method off-the-shelf to

delimit B-cell clonal families. The analogy here is if we were to build

a complete tree of all B-cell sequences, we should see the footprint of

two types of processes — the historical diversification of V genes

(24) (analogous to macroevolutionary speciation) and then,

following V(D)J recombination, SHM within a clonal lineage

(analogous to splitting within a population). Furthermore, there is

likely variation among B-cell families in the number of SHM events

[even, if just stochastically; see (25)], thus justifying the use of the

more general mPTP approach compared to the PTP approach. If

mPTP performs competitively to existing approaches, it would

present a valuable alternative for analyzing sequences from

organisms lacking a reliable reference genome. Additionally, it

could be integrated with existing methods to enhance the

accuracy of widely used approaches for B-cell clonal

family assignment.

In this investigation we will compare mPTP to four state-of-the-

art methods that all rely on a reference genome: MiXCR (26),
frontiersin.org
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Change-O (27), SCOPer hierarchical (SCOPer-H) (28), and

SCOPer spectral (SCOPer-S) (29) (Table 1). MiXCR (26) involves

an initial alignment of sequences to a reference genome, followed by

the assembly of clonotypes based on identical sequences for user-

defined gene features like the CDR3 region since it encompasses the

majority of the diversity of BCR sequences. By allowing fuzzy

matches MiXCR tolerates PCR and sequencing errors (26).

Change-O (27) requires a preceding alignment performed by

IMGT/HighV-QUEST (30), IgBLAST (31) or iHMMune-align

(32). Subsequently, Change-O utilizes these alignments to

reconstruct germline sequences and proceeds to group the

sequences by the same V gene, J gene, and junction region. The
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junction region is defined as the CDR3 region plus flanking amino

acid residues (29). Typically it is used with a user-defined cutoff

delineating the minimum similarity threshold for two junction

regions to be considered clonally related. It uses the assumption

that sequences sharing highly similar junction regions likely

originate from the same clonal ancestor, since it is unlikely that

different recombinations result in the same junction region. We

elected to use two approaches for Change-O: First we used Change-

O with no specified threshold, which results in clusterings where

only sequences with the same V-J group and identical junction

region are grouped together. And secondly we used it with the

threshold of 0.15 which is typically used in studies on human B-cell
FIGURE 1

(A) Development of B-cell receptors and their sequences. Mature B-cell clones stem from B-cell precursors. Their BCR sequences arise through V
(D)J-recombination on the light and heavy chain. During V(D)J-recombination N and P nucleotides are added and removed between the junctions
leading to more junctional diversity. Once a mature B-cell binds to an antigen it proliferates into more descendant clones within a clonal family.
During proliferation the rearranged IG genes undergo somatic hypermutations. (B) Overview of the methods and their requirements. We used two
types of methods: methods dependent on a reference genome and methods independent of a reference genome. For the independent method,
mPTP (16), we first build a phylogenetic tree of all sequences with RAxML-NG (42). mPTP then fits two Poisson Processes, one for speciation and
one for coalescence, to the data and groups the clones accordingly. The reference-genome-dependent methods first align the sequences to a
reference genome to find the used V and J genes. This alignment is either done by the methods themselves (MiXCR (26)) or done through IMGT
(39). MiXCR delimits the clones by the CDR3 region, accounting for PCR and sequencing errors. Change-O (27) delimits the clones by a common V
and J gene and either an identical CDR3 region or a 85% junction region similarity. SCOPer (28) uses the common V and J groups provided by
Change-O. The hierarchical method then further groups by 85% junction region similarity. The spectral method calculates an adaptive threshold for
junction region similarity. Created in BioRender. Voss, K. (2024) BioRender.com/b54j335.
frontiersin.org
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repertoires (33–36). SCOPer (28) is part of the Immcantation

framework specifically designed for the assignment of B-cell

clones. In our study, we employed two models of SCOPer: the

hierarchical model (SCOPer-H) and the spectral model (SCOPer-

S). Both of these models utilize the outcomes generated by Change-

O as their input. SCOPer-H is a different implementation of

Change-O with the specified cutoff. Therefore in all our results

Change-O (0.15) and SCOPer-H are shown together. In contrast to

SCOPer-H, SCOPer-S takes an adaptive approach by calculating the

optimal cutoff for each group with the same V and J genes and

identical junction region length (29). A comparison of the tools’

requirements can be found in Table 1. A recent study systematically

compared the performance of several tools on both empirical and

simulated data (37). The study also evaluated an alignment-free

method that does not depend on a reference genome, but this

method underperformed relative to others. Change-O with a

dissimilarity threshold was identified as the top-performing

method in this analysis.

We raise the unanswered question: How well does a phylogenetic-

based method perform for B-cell clonal delimitation compared to

current state-of-the-art methods? By conducting simulations of B-cell

repertoires focused on the heavy chain, considering variables such as

clonal family count, SHM, and average lineage count per clonal family,

we aim to comprehensively measure and compare the performance of

the state-of-the-art tools in B-cell analysis to a phylogenetic method.

An overview of the methods and a visualization of our pipeline is

shown in Figure 1B.We adopted a multifaceted approach to assess the

performance of each method, employing measures such as the Mean

Squared Error (MSE) of the median family size, the number of

discerned clonal families, recall/sensitivity, precision, specificity and

the F1-score. The MSE and the number of identified families offer

insights into overall trends, while recall, specificity and the F1-score,

provide a detailed understanding of method performance. The F1-

score serves as our primary performance metric. Additionally, we

investigated the impact of the tools’ performance on downstream

analysis, particularly focusing on ancestral sequence reconstruction.

Finally, we compared the phylogenetic-based method to a state-of-

the-art method on an empirical IgG repertoire dataset of cattle. This

serves as a standardized foundation for future studies delving into B-
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cell data analysis, providing valuable insights into optimal tool

selection under various conditions.
Materials and methods

Simulations

To conduct a thorough analysis of the diverse tools under

distinct conditions, we systematically simulated B-cell repertoires,

manipulating parameters such as SHM and lineage count per clonal

family. These simulations were executed with partis (38), a Hidden

Markov Model-based framework specifically designed for B- and T-

cell receptor sequence annotation. The utilization of partis in these

simulations ensures a reliable and standardized platform for

assessing the performance of the tools across a spectrum of

conditions within the B-cell repertoire. In our study, we used the

simulate-from-scratch option within partis to generate a

comprehensive dataset comprising 1200 simulated B-cell

repertoires. These repertoires were systematically simulated across

24 distinct parameter configurations. Specifically, we simulated 6

SHM rates: 0.001, 0.005, 0.01, 0.05, 0.1, 0.2 (mutation rate per

position), encompassing a broad spectrum of mutation scenarios.

The true SHM rate is estimated to be 1 in 103 base pairs per cell

division (1). This is challenging to rescale for a simulation setup,

primarily because the number of cell divisions per sample in nature

is variable and not always known. However, by simulating a

spectrum of SHM rates, we aim to capture trends in performance

across all methods. Antibody sequences may typically exhibit

divergence of on average 5-10% from their original germline

sequence (1, 6). Hence, we calculated the extent of divergence

between our simulated sequences and their true ancestral

counterparts to assess the variability. Our examination indicated

that the higher SHM rates adhere to this criterion (Supplementary

Figure S1). Thus, our simulations reflect a realistic degree of somatic

hypermutations. This approach allows us to explore how different

SHM rates impact the performance of each method and to identify

the most suitable method for various scenarios. Similarly, we

selected four values for the mean number of leaves per clonal
TABLE 1 Comparison of the different tools.

MiXCR Change-O
(identical)

Change-O
(0.15)/SCOPer-H

SCOPer-S mPTP

aligns sequence to reference genome ✓ ✓ ✓ ✓

creates groups based on common V and J gene ✓ ✓ ✓

compares CDR3/junction region
between sequences

✓ ✓ ✓ ✓

uses a threshold for sequence similarity ✓ ✓ ✓

requires a tree ✓
All presented methods have distinct preprocessing procedures and employ varied methodologies to address the clonal family assignment problem. Here we list the specific requirements of each
tool and the different approaches to this problem.
✓= yes
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family (10, 20, 50, 100), drawn from a geometric distribution, to

explore a range of simulation sizes while ensuring that the total

number of sequences remained manageable and did not excessively

impact runtimes. For our main simulation setup we chose to

simulate 16 different clonal families. We later also explored this

parameter by choosing 10, 20 and 50 clonal families. While

empirical datasets would typically involve larger scales, our

approach allows us to focus on the comparative performance of

the tools, with minimal impact on the statistical outcomes, aside

from differences in runtime. After observing that all methods tend

to oversplit families and result in many singletons, simulated clonal

families consisting of one sequence, we decided to remove

singletons for our analysis. Since the goal of our study is to test

the method’s ability to discern families and not singletons this

simplifies the analysis.

In order to further pinpoint the differences between the tested

tools we conducted additional simulations without partis, but using

an algorithm developed in our lab, across the same parameters. This

approach enabled us to simplify the simulations, focusing

specifically on scenarios where SHM exclusively impacts the

junction regions, excluding the V, D, and J genes within a clonal

family. This refinement was particularly motivated by the analytical

emphasis of SCOPer on the junction regions. To simulate realistic

sequences, we utilized the ImMunoGeneTics (IMGT) (39) reference

directory, which contains most of the known human V,D, and J

genes. For each naive sequence we randomly sampled from the

reference genes and joined them together, adding 6 N and P

nucleotides. This number was chosen for simplicity and since it

does not introduce frameshifts. For the generation of SHM,

targeting the junction regions within a clonal family only, we

employed the phangorn package (40) in R, leveraging its simSeq

function. This function facilitates the simulation of sequences based

on a specified phylogenetic tree. This targeted simulation approach

allowed us to craft scenarios precisely aligned with the questions

and considerations specific to SCOPer’s analytical focus on

junction regions.

We additionally created a separate simulation set to test how the

methods perform when the sequences do not align well with the

reference genomes. To achieve this, we took the original V gene

sequences from IMGT (39) and introduced three deletions and

three insertions of sizes varying from 1 to 4. We also included point

mutations as a parameter, ranging from 20 to 40. Due to the

relatively short length of the D and J genes, we did not modify

them. The rest of the simulation procedure remained the same as in

the previous setup, with 6 N and P nucleotides added at

each junction.
Tools

In this study we evaluated the performance of a phylogenetic

method compared to multiple state-of-the-art tools for clonal

assignment in B-cells. In the following we explain the approaches

and specify the parameters used for each tool in this study.
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mPTP
mPTP is a single-locus species delimitation method which uses

maximum-likelihood and Markov chain Monte Carlo sampling

(16). It takes a binary phylogenetic tree T as input. We used

Clustal Omega (41) to create the multiple sequence alignment

necessary for the tree building. We employed RAxML-NG (42) in

our study to infer the phylogenetic tree from the sequence data,

aligning with the recommended methodology for implementing the

mPTP approach by the authors. When applying mPTP to an

empirical dataset, we utilized VeryFastTree (43) for tree building,

as RAxML-NG was unable to handle the large number of sequences

in the empirical dataset. VeryFastTree provided an efficient

alternative, allowing us to process the data while maintaining

computational feasibility for such a large-scale analysis. We note

that there is a potential trade-off between computational efficiency

and statistical accuracy: we expect RAxML-NG (and alternatives,

such as IQTree (44)) to obtain a better estimate of the true pattern

of historical branching compared to VeryFastTree. However, given

that we have a huge number of short sequences, it is very difficult for

any method to obtain the correct phylogeny (45) — and it is

doubtful that a single solution even exists (46). Furthermore, we

are primarily interested in inferring the “backbone” of the

phylogeny and not the relationships among sequences within a

clonal family. At such, we argue that for our purposes the gain in

efficiency is worth the loss in accuracy (see (45) for similar lines of

reasoning); this may not be true of other types of problems where

inferring the granular structure of the phylogeny is critical

[e.g (25)].

The objective of mPTP is to find a binary subtree G of T such

that the likelihood of the branch lengths of G fitting an exponential

distribution and the branch lengths of each maximal subtree of T

formed by the remaining branches fitting an exponential

distribution is maximized. Here, G represents the speciation

process, while all other maximal subtrees of T represent the

coalescent processes. mPTP uses a dynamic programming

approach that traverses all nodes of T in postorder traversal. The

delimitation with the smallest Akaike Information Criterion score is

selected as the final result. To evaluate the confidence of the chosen

delimitation, mPTP utilizes an MCMC approach. We used flags

-ml and -single as is recommended by the authors.

MiXCR
MiXCR is a tool for immune data analysis (26, 47) for diverse

downstream analyses, one of them being clone identification. It

discerns the clonal families by sequence identity on specific gene

features. In our study, we specifically opted to assemble clonotypes

based on the CDR3 region, aligning with common practices in real-

world analyses. For aligning we used the -preset rnaseq-

bcr-full-length flag.

Change-O
Change-O is a toolkit with diverse applications in

immunogenetics. It depends on an alignment to a reference

genome for clonal family assignment. In our study, we chose to
frontiersin.org
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align the sequences using IMGT/V-QUEST (48). To streamline this

process, we adapted the vquest API provided by the ShawHahnLab

(49) for the required output type excel. We used the

DefineClones.py script twice: once without specifying a threshold,

which resulted in sequences being grouped by their V and J gene

and by an identical junction region; and a second time with the

commonly used threshold of 0.15, which groups sequences by their

V and J gene, and by 85% junction region similarity. This allowed us

to compare the performance of strict (identical) and relaxed (0.15

threshold) clonal definitions with Change-O.

SCOPer
SCOPer leverages the output of Change-O. There are two

models of SCOPer, that we chose to employ: SCOPer-H and

SCOPer-S. SCOPer-H is an alternative implementation of

Change-O and users must define a threshold. SCOPer-S

autonomously determines optimal threshold values for each

subgroup identified by Change-O. For our evaluation, we adhered

to the default cutoff of 0.15 for SCOPer-H, as suggested by Nouri

et al. (28). This threshold is commonly utilized in previous studies

on human B-cell repertoires (33–36). Since SCOPer-H and Change-

O (0.15) are different implementations of the same algorithm, the

results are shown together. For the SCOPer-S model we used the

parameter “novj” for the method. It has been shown in previous

comparisons that the difference in results between the methods

“novj” and “vj” is not very big (37), which we observed on our

datasets as well (data not shown).
Metrics for assessing performance

To comprehensively evaluate the performance of all tools, we

used various measures. In all our analyses, we opted to exclude

singletons, which are derived clonal families containing only a

single sequence, in order to reduce noise and because they are

disregarded in real-life analyses as well. For a broad overview and

indirect assessment, we computed the MSE of the Median Family

Size. This metric serves to determine whether the identified families

align closely in size with the actual families, providing valuable

insights into the overall accuracy of family size assignments across

the evaluated methods. To find the cause of large MSEs we also

counted the number of families that the methods derived for each

simulation and compared it to the real number of clonal families.

This helped us to understand whether the methods were over or

under splitting the clonal families.

For more direct and more interpretable metrics, we computed

precision, recall, and the F1-score. In our evaluation, analogous to

other studies with similar assessments (29, 50–52), we defined True

Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN) according to the following criteria:

For each sequence xi:

TP: # of sequences from the same family as xi that are correctly

identified as being in the same family

TN: # of sequences from a different family as xi that are correctly

identified as being in a different family
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FP: # of sequences from a different family as xi that are

incorrectly identified as being in the same family

FN: # of sequences from the same family as xi that are

incorrectly identified as being in a different family

We then calculated the precision, recall, specificity and F1-score

(harmonic mean of precision and recall) for each xi. Recall/

Sensitivity answers the question: Of all sequences that were

clustered together, how many actually belong to the same family?

Precision answers the question: Of all the sequences belonging to

the same family, how many were correctly clustered together?

Specificity calculates how many of all sequences belonging to

different clonal families were clustered together. The F1-score is

the harmonic mean of precision and recall and therefore increases

when reducing the instances where a single clonal family is divided

into multiple groups and the cases where multiple clonal families

are combined into a single group. For all quantities we averaged

them over all sequences to end up with one value per simulation.

Recall=Sensitivity xi :
TPxi

TPxi + FNxi

Precision xi :
TPxi

TPxi + FPxi

Specificity xi :
TNxi

TNxi + FPxi

F1‐score xi :
2TPxi

2TPxi + FPxi + FNxi
Ancestral sequence
Our downstream analysis consists of the evaluation of the

ancestral sequence reconstruction. For each inferred clonal family

comprising more than two sequences we first aligned the sequences

and subsequently constructed a phylogenetic tree using RAxML-

NG. Ancestral sequences were then reconstructed using RAxML-

NG with the GTR model. As input we used both an unrooted tree as

returned by RAxML-NG and a tree rooted using the midpoint root,

which roots the tree halfway between the longest two tips. We then

calculated the Hamming distance between the inferred sequence

and the correct naive sequence from the simulations. As a control,

we repeated this process for correct families, recognizing that a

correct family does not necessarily lead to the correct ancestral

sequence, owing to uncertainty in the ancestral reconstruction itself.
Empirical dataset

To evaluate mPTP on an empirical dataset, we applied it to a

cattle immunoglobulin repertoire from a study by Safonova et al.

examining vaccine responses (53). The data used for the empirical

data analysis is available at https://github.com/yana-safonova/

great_cattle_ab_repertoire and has been preprocessed by Safonova

et al. For our analysis, we selected individual 14007 and analyzed its

repertoire at timepoints day 0 and day 21. In the original study
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clonal families were delimited by V and J genes and an identical

CDR3 region. We compared the number of singletons inferred by

both their delimitation and by mPTP, as well as the overall clonal

family size distribution. Finally, we analyzed whether each sequence

was grouped into a similarly sized clonal family by both approaches.
Results

Change-O (0.15)/SCOPer-H outperform all
other methods

In our evaluation we considered multiple measures across the

parameters and tools. For all tools except mPTP, an increase in the

SHM rate resulted in fewer sequences being analyzed (Supplementary

Figure S2). We classified the missing samples as singletons— clonal

families with only one sequence. To mitigate the distortion caused by

singletons, which are often disregarded in real-life analysis (36), we

excluded all singletons from our analysis. Initially, we assessed the

MSE of the median family size for all tools. On average, Change-O

(0.15)/SCOPer-H exhibited the best performance based on the MSE

metric (Supplementary Figure S3). To further interpret this finding,

we analyzed the number of clonal families identified by each method

compared with the actual number of families. Across all methods we

observed a consistent pattern of overestimating the numbers of clonal

families, even after removing the discerned singletons as seen in

Figure 2. This indicates a tendency for all methods to oversplit clonal

families. Change-O (0.15)/SCOPer-H gets closest to the correct

number of clonal families across all leaf and SHM configurations.

SCOPer-S has the second best performance on this measure in most
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leaf configurations, but is outperformed by mPTP for the three lowest

SHM values. It is notable that on average SCOPer-S has the smallest

interquartile range whereas mPTP has the largest. MiXCR and

Change-O (identical) perform similarly to each other and poorly

relative to the other tools.

To provide a more nuanced assessment of the tools’

performances, we calculated the F1-score for each sequence—

representing the harmonic mean of precision and recall—and

then averaged these scores across all sequences in each

simulation. Across all parameter configurations, Change-O (0.15)/

SCOPer-H consistently outperformed all other methods by a

substantial margin (Figure 3, Supplementary Figure S4). mPTP

and SCOPer-S emerged as contenders for the second-best

performance. SCOPer-S exhibited superior performance at higher

leaf and SHM configurations, whereas mPTP demonstrated better

performance at lower leaf and SHM configurations (Supplementary

Figure S4). MiXCR and Change-O (identical) again demonstrated

the poorest performances, with MiXCR slightly outperforming

Change-O (identical). The same pattern emerges when examining

recall/sensitivity (Supplementary Figure S5). While most tools

maintain a specificity of 1 across the majority of simulations,

mPTP occasionally groups multiple clonal families together,

leading to false positives and slightly reducing its specificity in

those instances (Supplementary Figure S5). We have similar

explanations for the poor performance of both MiXCR and

Change-O (identical): MiXCR groups sequences solely based on

identical matches and then allows for fuzzy matches to

accommodate PCR and sequencing errors. However, the SHM

rate is high and likely surpasses what MiXCR’s fuzzy matching

can accommodate. As a result, MiXCR tends to oversplit clonal
FIGURE 2

Number of Clonal Families (log scale) discerned by the different tools. For this analysis we removed discerned singletons. We counted the number of
clonal families that the methods discerned for each simulation and compared it to the correct number of clonal families (in this case 16). The dashed
line represents the correct number of clonal families (ground truth). We can clearly see that all methods consistently return a higher number of
families, indicating the subdivision of one correct family into multiple. Change-O (0.15)/SCOPer-H on average perform the best.
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families. Similarly, Change-O (identical) initially groups sequences

by VJ-genes and then by identical junction regions, failing to group

sequences from the same clonal family with SHM in the junction

region. Consequently, Change-O (identical) also tends to oversplit

clonal families. The same patterns were consistently observed across

simulations with varying numbers of clonal families (10, 20, and 50)

(Supplementary Figure S6). Given that the primary simulation with

16 clonal families captures the trends seen in all other simulations, it

serves as an appropriate representation of the broader dynamics for

our analysis.

Our analysis clearly identified hierarchical clustering with a

cutoff at 0.15 to be the best method in our selection of tools across

parameters. We explored various thresholds for sequence similarity

which revealed a consistent trend: higher thresholds led to

improved performance for SCOPer-H (Supplementary Figure S7).

Across the range of thresholds tested, all options yielded superior or

comparable results compared to SCOPer-S. This contradicted the

anticipated superiority of SCOPer-S over SCOPer-H. SCOPer-S was

designed to enhance accuracy by dynamically calculating an

optimal threshold for similarity within each VJ-group obtained

from Change-O, rather than employing a fixed threshold for all

groups. However, our findings deviate from the anticipated

outcomes and contradict the results of the tool’s authors (28). To

delve deeper into this discrepancy, we designed a simulation set

specifically targeting the junction region, as this is the focal point of

SCOPer’s analysis for both models. We incorporated the parameter

“junction region length” into our setup, considering the developers’

indication that the performance of the hierarchical model depends

on the junction region length, which we had not analyzed in our

previous simulations. For these simulations we randomly sampled

V,D and J genes from the IMGT (39) reference directory and joined

them together, adding 6 N and P nucleotides in between to not

cause a frameshift. We also only simulated SHM at the junction
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region, to analyze the effect it has on the performance of SCOPer.

Analysis of the F1-score revealed a notable decline in performance

for Change-O (0.15)/SCOPer-H at an SHM rate of 0.2. Further

exploration pinpointed this decline to junction region lengths of 70

and above (Supplementary Figure S8). We were not able to replicate

the finding that the performance of SCOPer-H declines for shorter

junction regions (28), and in most of our new simulations SCOPer-

H still outperformed SCOPer-S (Supplementary Figure S8).

To validate our findings and ensure they were not biased by our

simulations, we also ran both models on subsets of the simulation data

provided by Nouri et al. (29). The results confirmed that SCOPer-H

generally outperforms the spectral model in typical scenarios

(Supplementary Figure S9). In Nouri et al.’s comparison of the

spectral and hierarchical model their validation primarily relied on a

limited simulation setup and empirical data (28). In their validation

process using empirical data, the emphasis was on confirming highly

homogeneous discerned clonal families. This favors SCOPer-S

because of its tendency to oversplit clonal families, resulting in each

discerned family being highly homogeneous. Although they later

conducted an extensive simulation, they only evaluated the

performance of SCOPer-S. Our simulations revealed that SCOPer-S

is overly stringent, resulting in the oversplitting of clonal families

(Figures 2, 3; Supplementary Figure S9). Interestingly, in their related

simulation study Balashova et al. observed the opposite issue, finding

that SCOPer-S tends to group multiple clonal families together,

making it the worst-performing method in their study (37). This

discrepancy could stem from the limited number of clonal families

simulated in our study. Given the small number of families, it is

unlikely that two clonal families share the same VJ-junction

configuration, which could cause SCOPer-S to calculate a higher

threshold and oversplit families. Regardless, SCOPer-S seems to

perform poorly in both contexts, suggesting that it may not be a

reliable option for real-world data analysis.
FIGURE 3

F1-Score yielded by the different methods. For this analysis we removed singletons. (A) different SHM rates (B) different average number of leaves
per clonal family. The F1-score is the harmonic mean of precision and recall, a score of 1 meaning perfect precision and recall.
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mPTP as a new alternative not reliant on a
reference genome

Across a majority of parameters we demonstrated that mPTP

outperforms all other methods but Change-O (0.15)/SCOPer-H.

Particularly noteworthy is its superior performance compared

with SCOPer-S, which shares a similar approach to mPTP but

relies on additional information from a reference genome. For low

SHM rates, mPTP has the second best performance on average

across all tools. This is particularly striking because it is the only

method that does not require any information except the

sequences. To explore the SHM rates in a more biologically

meaningful context, we calculated the distance of the sequences

to their ancestral sequences. In nature, it is estimated that the

average divergence between antibody sequences and their original

germline sequence is around 5-10% (6). Our simulations cover a

variety of sequence divergences, including ones with an average of

5-10% (Supplementary Figure S1). Our main goal was to examine

the performance of the tools across the parameter space to infer

trends. mPTP performs better than other methods across all

scenarios. As mPTP appears to be a promising alternative in our

simulation setting, we aimed to evaluate its performance in

situations where methods dependent on a reference genome fail.

To do so, we assessed the performance of the tools on a dataset

where a reliable reference genome is not available. We achieved

this by creating a simulation set with “fake” V genes, by

introducing insertions, deletions, and mutations to the known V

gene sequences from IMGT (39). We then applied all methods to

this simulation set using the same parameters as before. We

observed that all the tools relying on a reference genome did not

return a substantial number of input sequences in their results

(Supplementary Figure S10). While we had already noticed a

pattern of missing samples with an increase in the SHM rate in

the original simulations (Supplementary Figure S2), this pattern

was magnified with the fake V genes. mPTP, not being dependent

on a reference genome, consistently returned all input sequences

(Supplementary Figure S10). To evaluate the overall performance,

we classified the missing samples as singletons and calculated the

F1-Score with singletons included. For the three lower SHM rates,

mPTP outperforms all other methods (Supplementary Figure

S11). However, starting at a SHM rate of 0.05, the performance

of mPTP decreases significantly. This pattern was also observed in

the original simulations (Figure 3). By examining the number of

singletons per simulation, we found that this decrease in

performance is due to over splitting (Supplementary Figure

S12). At a SHM rate of 0.05 or higher, mPTP struggles to

correctly differentiate between sequence differences caused by

different V(D)J recombination events and those caused by SHM.

Our analysis revealed mPTP to be a valuable alternative to other

methods, particularly when the organism of interest lacks a robust

reference genome. This makes mPTP a valuable tool for analyzing

B-cell repertoire data in diverse contexts, including species with

poorly characterized genomes or non-model organisms.

Consequently, researchers can leverage mPTP to gain insights
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into clonal relationships and dynamics without being hindered by

limitations associated with reference genome availability

or quality.
Ancestral sequence reconstruction

The reconstruction of the ancestral sequence from sequences

within clonal families is a vital aspect of repertoire analysis. We

wanted to evaluate the extent to which errors in clonal family

assignment impact ancestral sequence reconstruction, a common

downstream inference. For each method, we assessed the ability to

reconstruct ancestral sequences from all identified clonal families

comprising more than two sequences. This reconstruction process

relied on phylogenetic trees constructed from the sequences of each

discerned family. We used RAxML-NG (42) for constructing all trees

and for reconstructing the ancestral sequence. We explored two

different approaches for reconstructing the ancestral sequence:

firstly, utilizing the unrooted tree returned by RAxML-NG, and

secondly, rooting the tree using midpoint rooting. This second

approach positions the root at the midpoint between the two

longest branches. Subsequently, we compared the inferred ancestral

sequences to the known ancestral sequences and calculated the

Hamming distance. As a point of comparison, we repeated this

process for the correct families. As expected, our findings align with

previous results: the distribution of sequence similarity for Change-O

(0.15)/SCOPer-H closely mirrors that of the correct families (Figure

4). Following closely are SCOPer-S and mPTP. This underscores the

significant impact of method selection on downstream analysis of

repertoire sequence data. Our analysis indicates that utilizing the

midpoint root yields superior results for ancestral sequence

reconstruction across all methods (Supplementary Figure S13).
Application of mPTP on empirical data

We tested mPTP on empirical datasets by applying it to a cattle

immunoglobulin repertoire from a study by Safonova et al. that

investigated vaccine responses (53). This study analyzed the IgG

repertoires of 204 Black Angus calves across four time points during

the vaccination process. We selected a random individual (14007)

and ran mPTP on their repertoire sequences at two timepoints: day

0 (the day of the first vaccination) and day 21 (three weeks after the

first vaccination and the day of the booster vaccination). The dataset

is available via the corresponding study’s GitHub repository, and we

utilized the preprocessed data where reads were merged and aligned

to an existing reference genome. This alignment allowed us to

compare their clonal family assignments to those generated by

mPTP. In the Safonova et al. study, clonal families were identified

by shared V and J gene segments and identical CDR3 regions, which

corresponds to the “Change-O (identical)” method used in our

simulations. For the sequence alignment, we employed Clustal

Omega (41), as in our simulations. Due to the large number of

sequences (>300,000, see Table 2), RAxML-NG could not be used
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1505032
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Voss et al. 10.3389/fimmu.2024.1505032
for phylogenet ic tree construct ion, so we opted for

VeryFastTree (43).

After constructing the tree, we ran mPTP and plotted the inferred

clonal family sizes (Figure 5A). A trend of larger clonal families was

observed after the three-week period, aligning with expectations that

certain clones would expand in response to vaccination. This same

trend was noted in the clonal families inferred using Change-O

(identical) (Figure 5A). Both methods returned a substantial number

of singletons for both time points, many of them shared (Table 2).

We further looked at individual sequences to determine

whether they were grouped into clonal families of similar sizes by

mPTP and the published clone assignments (Figure 5B). While

some discordances were present, a clear linear correlation emerged,

indicating that mPTP’s clonal family inferences were consistent

with the reference-based assignments. This demonstrates that

mPTP is applicable to empirical data for clonal family

assignment. Our analysis of this AIRR (adaptive immune receptor

repertoire) dataset highlights the potential of mPTP for clonal
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family assignment. Although the repertoire still required

preprocessing—such as alignment to an existing reference

database for generating informative multiple sequence alignments

—mPTP eliminates the need for a highly reliable reference genome

in the actual clonal family assignment process. For non-model

organisms, where reference genome issues, including naming

conventions, can impede accurate clonal inference, mPTP offers

significant advantages. Additionally, our analysis showed that both

mPTP and Change-O (identical) infer a big number of singletons.

While a majority of these singletons are shared between the two

methods, there are notable discrepancies where sequences classified

as singletons by one method are grouped into larger clonal families

by the other. The clear diagonal trend in Figure 5B suggests that

mPTP could also serve as a validation tool for clonal inferences

made by other methods, such as Change-O. Given these findings,

we believe that mPTP has a promising future in clonal family

inference for both organisms with well-curated reference genomes

and those without.
TABLE 2 Percentage of inferred singletons at each time point by method.

Time Point Total Sequences mPTP singletons Change-O singletons shared singletons

Day 0 421,288 39.5% 35.5% 21.7%

Week 3 311,248 35.1% 28.6% 17.3%
FIGURE 4

Sequence Similarity between the real ancestral sequence and the derived ancestral sequence based on the clonal families discerned by the methods.
If all 5 methods discerned a specific family the only difference being the amount of sequences in a family, we considered it in this analysis. The
“correct” column acts as a point of comparison, using the correct sequences of the clonal family for ancestral sequence reconstruction.
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Discussion

With the widespread adoption of BCR repertoire sequencing,

understanding the evolutionary relationships of B-cells has become

increasingly feasible. However, accurate delimitation of B-cell clonal

families is essential for any meaningful analysis. Numerous tools have

been developed to tackle this challenge, employing diverse

approaches. Our comparative analysis of four state-of-the-art tools

revealed Change-O (0.15)/SCOPer-H as the optimal choice for

delimiting B-cell clonal families in organisms with reliable reference

genomes, such as humans and mice. Change-O (0.15)/SCOPer-H

effectively accounts for both V(D)J-recombination and SHM utilizing

a reference genome, making it well-suited for model organisms.

Additionally, we found mPTP, a native phylogenetic method for

species delimitation, to be effective in delimiting B-cell clonal families

across various scenarios. Notably, mPTP does not rely on a reference

genome, making it particularly valuable for analyzing non-model

organisms lacking a robust reference genome. When applied to an

empirical dataset, mPTP identifies clonal families of sizes comparable

to those determined by Change-O (identical) and captures similar
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trends. These findings invite further exploration into the integration

of traditional methods with phylogenetic approaches like mPTP to

enhance the accuracy of B-cell clonal family inferences. mPTP could

serve as a valuable complement to currently employed methods. We

also suggest that it would be straightforward, at least in principle, to

integrate mPTP into established pipelines and protocols for B-cell

repertoire analysis [e.g (26, 27)]; mPTP is available as open-source

software under the GNU Affero 3 license.

We recognize that mPTP’s effectiveness as a B-cell clonal family

delimitation method depends on the quality of the multiple

sequence alignment of all sequences. When sequences are not

properly curated the resulting alignments can be less informative,

often containing many gaps. However, it is important to note that

other clonal delimitation methods are also susceptible to issues

caused by poor alignments, particularly when relying on alignment

to reference genes. Thus, alignment quality remains a critical factor

across all methods. In our investigation, we concentrated on the

accuracy of the tools rather than other aspects like computational

time. All methods demonstrated similar processing speeds in our

simulations. However, computational time might be an important
FIGURE 5

Clonal family size analysis on cattle repertoire. (A) Clonal family size distribution across time points day 0 and week 3 for mPTP and Change-O
(identical). Both tools capture a trend of bigger clonal families in week 3. (B) Comparison of inferred clonal family size for each sequence. Here we
calculated the size of the clonal family that the sequence was assigned to by mPTP and by Change-O and plotted them against each other on a log
scale. We can observe a diagonal, showing that the tools tend to group sequences into similar size clonal families.
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consideration for analyses involving empirical data. Our

investigation into the downstream effects of clonal assignment on

ancestral sequence reconstruction revealed that the choice of clonal

assignment tool significantly influences the accuracy of ancestral

sequence inference. This underscores the importance of selecting

the most appropriate tool for clonal family assignment, especially in

the context of vaccine design and other downstream applications. In

conclusion, we found that the phylogenetically explicit method of

using mPTP serves as a valuable alternative to current clonal family

assignment techniques, especially in non-model organisms where

germline reference data may be limited. This approach paves the

way for integrating traditional mapping-based methods with

phylogenetic techniques like mPTP to achieve more robust clonal

family assignment in B-cell research, even within model systems.
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