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Introduction: Challenges remain in reducing antigen escape and tumor

recurrence while CAR-T cell therapy has substantially improved outcomes in the

treatment of multiple myeloma. T cell receptor fusion construct (TRuC)-T cells,

which utilize intact T cell receptor (TCR)-CD3 complex to eliminate tumor cells in a

non-major histocompatibility complex (MHC)-restricted manner, represent a

promising strategy. Moreover, interleukin-7 (IL-7) is known to enhance the

proliferation and survival of T cells. C-C motif chemokine ligand 21 (CCL21) is a

ligand for chemokine C-Cmotif receptor 7 (CCR7) and exhibits strong chemotaxis

against naïve T cells and antigen-presenting cells such as dendritic cells.

Methods: The bispecific TRuC-T cells simultaneously targeting B cell maturation

antigen (BCMA) and CD2 subset 1 (CS1) were constructed by pairing two of five

subunits (i.e., TCRaC, TCRbC, CD3g, CD3d, and CD3e) in the TCR/CD3 complex

and were named C-AC-B-3E, C-BC-B-3E, C-3G-B-3E, C-3D-B-3E, C-3E-B-3E,

B-3E-C-3E, B-3G-C-3E, and B-3D-C-3E. Additionally, the BCMA/CS1 bispecific

TRuC-T cells secreting IL-7 and CCL21, named BC-7×21 TRuC-T cells, were

generated. All of the bispecific TRuC-T cells were characterized and tested in

vitro and in vivo.

Results: Following the optimization of various pairs of two subunits of TCR/CD3

complex, B-3G-C-3E TRuC-T cells, characterized by incorporating CD3g and

CD3e, exhibited the strongest myeloma-specific cytotoxicity. Furthermore, the

bispecific BC-7×21 TRuC-T cells had stronger proliferation, chemotaxis, and

cytotoxicity in vitro. Accordingly, the bispecific BC-7×21 TRuC-T cells showed

better persistence in vivo so as to effectively suppress tumor growth in the NCG

mouse xenograft model of MM.1S multiple myeloma.
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Discussion: This study demonstrated that BC-7×21 TRuC-T cells, engineered

through the optimization of the two subunits of TCR/CD3 complex and a co-

expression cytokine strategy, may offer a novel and effective therapy for

relapsed/refractory multiple myeloma.
KEYWORDS

multiple myeloma, T cell receptor fusion construct T cell, B cell maturation antigen,
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Introduction

Multiple myeloma is a plasma cell malignancy caused by the

abnormal proliferation of clonal plasma cells in the bone marrow to

produce monoclonal immunoglobulins and/or light chains,

resulting in end-organ damage (1). Monoclonal antibodies,

proteasome inhibitors, and immunomodulators provide new ideas

for the treatment of multiple myeloma. However, multiple myeloma

is prone to recurrence and remains predominantly incurable,

especially for high-risk patients who do not benefit from these

therapies (2, 3).

The history of chimeric antigen receptor-T (CAR-T) cell

therapy dates back three decades, and the field has rapidly

evolved from the first-generation to the fifth-generation of CARs

(4–7). Over these years, CAR-T cell therapy has been proven to be

highly effective in treating hematological malignancies (8–10). Two

US Food and Drug Administration (FDA)approved CAR-T cell

products targeting B cell maturation antigen (BCMA) for the

treatment of relapsed/refractory multiple myeloma, Idecabtagene

vicleucel (Ide-cel, bb2121, Celgene/BMS) and Ciltacabtagene

autoleucel (Ciltacel, JNJ-68284528/LCAR-B38M, Janssen), have

provided a new strategy to some extent. However, CAR-T cell

immunotherapies for relapsed/refractory multiple myeloma are

mainly of the second-generation, which are prone to lead to

cytokine release syndrome (CRS) and neurotoxicity after

treatment (11, 12).

Unlike CAR-T cells, T cell receptor (TCR)-T cells target solid

tumors primarily by recognizing intracellular tumor antigens

presented by major histocompatibility complex (MHC) and

engaging in CD3 signaling mechanisms (13). The TCR/CD3

complex comprises a peptide-MHC ligand-binding domain,

consisting of a TCRa and a TCRb chains, along with a CD3

signaling domain. The CD3 signaling domain mainly includes

dimers of CD3e and CD3g, dimers of CD3e and CD3d, as well as
CD3z homodimers (14, 15). Original CAR structures utilize only

the intracellular signaling domain of the CD3z chain, which is

isolated from other five subunits of the TCR/CD3 complex.

T cell receptor fusion constructs (TRuCs) contain antibody-

based binding domains fused to the TCR/CD3 complex subunit and

become a functional component of the TCR/CD3 complex,

enabling efficient reprogramming of the intact TCR/CD3 complex
02
to recognize tumor cell surface antigens. TRuC-T cells kill tumor

cells as effectively as CAR-T cells, but with lower cytokine release

(16, 17).

BCMA, a member of the tumor necrosis factor receptor

superfamily 17 (TNFRSF17), is preferentially expressed on plasma

cells but not on CD34+ hematopoietic stem cells, making it a

promising therapeutic target (18). However, the heterogeneity of

BCMA expression on multiple myeloma cells allows anti-BCMA

CAR-T cells to preferentially target multiple myeloma cells with

high BCMA expression, while to retain multiple myeloma cells with

low or no BCMA expression for clonal growth (19–21). Multiple

myeloma cells typically lose BCMA when the disease recurs after

anti-BCMA CAR-T cell infusion. This indicates that the CAR-T

cells have selected BCMA-negative multiple myeloma cell clones

(22–25). Therefore, dual-antigen targeting CAR-T therapies have

been evaluated in multiple early-stage clinical trials to improve

response rates and prevent relapse. A variety of strategies can be

employed to target multiple antigens with CAR-T therapy,

including co-administration of various CAR-T products, the use

of bicistronic or tandem CARs, or co-transduction with different

CAR constructs (26).

CD2 subset 1 (CS1), also known as signaling lymphocyte

activation molecule family member 7 (SLAMF7), is a glycosylated

cell surface protein that belongs to the signaling lymphocyte

activation molecule (SLAM) family. CS1 plays an important role

in the adhesion of myeloma cells to bone marrow stromal cells (27).

To address these challenges, we are committed to developing

new therapies for relapsed/refractory multiple myeloma that exhibit

both greater resistance to antigen escape and long-term anti-tumor

effects. In this work, we combined five subunits of TCRaC, TCRbC,
CD3g, CD3d, and CD3e in the TCR/CD3 complex to construct

BCMA/CS1 bispecific TRuC-T cells, named C-AC-B-3E, C-BC-B-

3E, C-3G-B-3E, C-3D-B-3E, C-3E-B-3E, B-3E-C-3E, B-3G-C-3E,

and B-3D-C-3E. Interleukin-7 (IL-7) is known to enhance the

proliferation and survival of T cells (28–30). C-C Motif

Chemokine Ligand 21 (CCL21) is a ligand for chemokine C-C

motif receptor 7 (CCR7) and exhibits strong chemotaxis against

naïve T cells and antigen-presenting cells (APCs) such as dendritic

cells (DCs) (31, 32). Additionally, we prepared BCMA/CS1

bispecific TRuC-T cells secreting IL-7 and CCL21, named BC-

7×21 TRuC-T cells. We found that the C-3G-B-3E, C-3D-B-3E, B-
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3G-C-3E, and B-3D-C-3E bispecific TRuC-T cells prepared by the

combination of either CD3g-CD3e or CD3d-CD3e had high

expression levels of TRuCs on T cells that could efficiently kill

multiple myeloma cells. In the NCG mouse xenograft model, B-3G-

C-3E TRuC-T cells exhibited stronger anti-tumor effects than B-

3D-C-3E TRuC-T cells. Furthermore, BC-7×21 TRuC-T cells were

substantially more effective than B-3G-C-3E TRuC-T cells in

improving the growth of TRuC-T cells in vitro, leading to a

persistence of TRuC-T cells in tumor-bearing mice. Thus, the

novel platform may provide a promising strategy for the

treatment of multiple myeloma.
Materials and methods

Cell lines maintenance

U266, MM.1S, IM9, Raji, and K562 cells were conserved by our

laboratory. HEK-293T cells were purchased from the Chinese

Academy of Sciences (Shanghai, China). Raji and K562 cells were

transduced to stably express human BCMA or CS1 with lentivirus

(designated as BCMA-Raji, CS1-K562). HEK-293T cells were

cultivated in DMEM medium (Sigma-Aldrich, St. Louis, MO,

USA) supplemented with 10% FBS (PAN Biotech, Adenbach,

Germany). U266, MM.1S, IM9, Raji, and K562 cells were

cultivated in RPMI 1640 (Sigma-Aldrich) supplemented with

10% FBS.
Plasmid construction and TRuC-T
cells generation

The BCMA or CS1 TRuCs consist of an anti-human BCMA

single chain variable fragment (scFv) or an anti-human CS1 scFv

tandem with the human TCRaC, TCRbC, CD3g, CD3d, or CD3e
domains via a linker (G4S)4. Anti-BCMA-CD3E TRuC was

combined with CS1-TCRaC, CS1-TCRbC, CS1-CD3G, CS1-

CD3D, or CS1-CD3E using a 2A self-cleaving peptide to

construct BCMA/CS1 bispecific TRuCs lentiviral vectors: C-AC-

B-3E, C-BC-B-3E, C-3G-B-3E, C-3D-B-3E, and C-3E-B-3E. B-3G-

C-3E TRuC was conjugated with IL-7 and CCL21 by 2A peptide to

form BC-7×21 TRuC. BCMA or CS1 scFv combined into a CAR

with fusion to CD8a hinge and transmembrane region and the

intracellular signaling domains of human 4-1BB and CD3zmotif in

tandem. Then all TRuCs and CARs were cloned into the pLenti-

CMV-Puro vector to obtain the recombinant plasmid.

HEK-293T cells were transfected with TRuC-expressing

recombinant plasmid together with the lentiviral packaging

plasmid pLP1, pLP2, and pMD2G by using polyethyleneimine

(Polysciences, Inc. Warrington, PA, USA). Lentiviral supernatant

was collected and lentiviral particles were concentrated 400-fold by

horizontal centrifugation. Peripheral blood mononuclear cells

(PBMCs) were isolated from whole blood of healthy donors by

Ficoll density gradient centrifugation. T cells were enriched with

anti-human CD3/CD28 beads (Invitrogen, Carlsbad, CA, USA) and

stimulated for 24 h in the KBM581 serum-free medium (Corning,
Frontiers in Immunology 03
NY, USA) supplemented with IL-2 (20 IU/ml, Peprotech, Rocky

Hill, NJ, USA). Activated T cells were infected with lentivirus at

multiplicity of infection (MOI)=40.
Flow cytometry

Human PE-BCMA and FITC-BCMA recombinant proteins

(ACRO Biosystems, Newark, USA) were used to detect the

expression of anti-BCMA scFvs. Human CS1-Biotinylated

recombinant protein (ACRO Biosystems) was used to detect the

expression of anti-CS1 scFvs and then followed by streptavidin with

APC fluorescein. Anti-human CCR7 antibody (PE), anti-human

CD45RO antibody (FITC), anti-human CD45RA antibody (APC),

anti-human CD8a antibody (PE-Cy7), and anti-human CD4

antibody (APC-Cy7) were used to detect TRuC-T cell subtypes.

Anti-human PD1 antibody (APC), anti-human LAG3 antibody

(PE), and anti-human TIM3 antibody (APC) were used to detect

TRuC-T cell exhaustion. Anti-human CD69 antibody (PE-Cy7) and

anti-human CD25 antibody (APC) were used to detect TRuC-T cell

activation and tonic signaling. Anti-human CD3 antibody (PE-Cy7)

was used to detect human T cells in NCG mice. All antibodies were

purchased from BioLegend (San Diego, CA, USA). Data were

analyzed with FlowJo 10 (FlowJo, USA).
Western blot

After TRuC-T cell lysis, protein samples were separated in 10%

SDS-PAGE and transferred onto PVDF membrane (Bio-Rad,

Hercules, CA, USA). Membranes were blocked in 5% skimmed

milk powder solution for 1 h at room temperature, followed by

overnight incubation at 4°C with rabbit anti-human CD3g, CD3d,
CD3e, or CD3z antibodies (Abcam, Cambridge, UK), Washed with

TBS-Tween 20, incubated with HRP-conjugated goat anti-rabbit

IgG (H&L) antibody (Beyotime, Shanghai, China) for 2 h at room

temperature. Chemiluminescence solution (BioVision, San

Francisco, CA, USA) was added on membrane followed by image

scan using imaging lab ™ software (Bio-Rad).
Enzyme-linked immunosorbent assay

Cell culture supernatant of BC-7×21 TRuC-T cells was collected

on day 7 to detect the IL-7 and CCL21 by ELISA kit

(MULTISCIENCES, Hangzhou, ZJ, China). Mock-T and TRuC-T

cells were co-incubated with U266 cells at an effector-to-target (E:

T) ratio of 1:1 for 24 h and supernatants were collected. ELISA kits

were used to detect IL-2 and IFN-g (MULTISCIENCES).
Proliferation analysis and apoptosis assay

BC-7×21 TRuC-T cells were labeled with CellTrace™

carboxyfluorescein diacetate succinimidyl ester (CFSE, Invitrogen)

and the mean fluorescence intensity (MFI) was detected by flow
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cytometry. Annexin V/7AAD apoptosis detection kit (BioLegend)

was used to determine the survival of TRuC-T cells.
Cell migration assay

T cells labeled with CellTrace™ CFSE were added to the upper

chamber of a 5-mm pore size polycarbonate filter transwell

(Corning). BC-7×21 TRuC-T cell culture supernatant was

collected and placed in the lower chambers. After 4 h incubation,

CFSE-labeled T cells migrating into the lower chamber were

observed with a fluorescence microscope and taken pictures

randomly. The CFSE-labeled T cells migrating from the upper

chamber to the lower chamber were counted.
In vitro cytotoxicity assay

Luciferase-expressing tumor cells were plated in triplicates in a

96-well plate with 10000 cells per well and T cells were added at the

desired E: T ratios. Tumor cells added with double distilled water

served as a positive control (Kmax), and tumor cells added with

complete medium served as a negative control (Kmin). After 8 h

culture, 0.5 mM D-luciferin (Sigma-Aldrich) was added to each

well, and the fluorescence intensity was measured by luminometric

measurement on a microplate reader after 10 min. The percentage

of tumor lysis was calculated as following formula: lysis (%) =

(Kmin – K)/(Kmin – Kmax) × 100%.
Animal experiments

All animal studies were approved by the Laboratory Animal

Ethics Committee of Wenzhou Medical University. All NCG mice

were housed under specific pathogen-free conditions at the

Wenzhou Medical University Experimental Animal Center

(Wenzhou, ZJ, China).

6-to-8-week-old female NCG (NOD-Prkdcem26Cd52IL-

2rgem26Cd22/Nju) mice were purchased from Gem Pharmatech

Co. Ltd (Nanjing, JS, China). On day 0, 1.0×106 MM.1S-Luc cells

were injected into the tail veins of NCG mice, and the mice were

randomly divided into three groups (N = 3 mice per group). TRuC-

T cells were injected intravenously (i.v.) on day 6.

In the rechallenged model, 6-to-8-week-old female NCG mice

were randomly divided into five groups (N = 6 mice per group).

When multiple myeloma was controlled, NCG mice were injected

i.v. with 1.0×106 MM.1S-Luc cells. Treatment with Mock-T cells

served as a negative control. Tumor progression was monitored by

bioluminescence imaging using an IVIS imaging system

(PerkinElmer, Shanghai, China), and the intensity of MM.1S-Luc

cells signal was measured as total photon/second/cm2/steradian(p/

sec/cm2/sr). To assess histopathological changes, tissues were fixed

with 4% paraformaldehyde and embedded in paraffin. The tissues

were sliced into 4-mm thick sections and then stained with

hematoxylin/eosin (H&E) for visualization of tissue structure.
Frontiers in Immunology 04
Statistical analysis

All data were analyzed using GraphPad Prism 9.0 software (La

Jolla, CA, USA). Statistical analysis was performed using unpaired

two-tailed Student’s t-test or ANOVA and multiple comparisons

were made using Bonferroni’s correction. All experiments were

repeated at least three times. P-values < 0.05 were considered

statistically significant and indicated as follows: ns, no significant

difference, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
Results

Preparation of BCMA/CS1 bispecific TRuC-
T cells

We fused scFv targeting human CS1 with human TCRaC,
TCRbC, CD3g, CD3d, or CD3e into CS1 single-target TRuCs via

linker (G4S)4 and designated them as CS1-TCRaC, CS1-TCRbC,
CS1-CD3G, CS1-CD3D and CS1-CD3E, respectively (Figure 1A;

Supplementary Figure 1A). Then peripheral blood T cells from

healthy donors were infected with the indicated lentiviruses. Low-

level expression of CS1 single-target TRuCs on T cells was detected

in CS1-TCRaC and CS1-TCRbC TRuC-T cells, while CS1-CD3G,

CS1-CD3D, and CS1-CD3E TRuC-T cells had high-level expression

of CS1 single-target TRuCs (Figure 1B). The MFI of CS1 single-

target TRuCs in CS1-CD3E TRuC-T cells was the highest

(Supplementary Figure 1B). These findings were consistent with

the observations from TRuCs targeting human BCMA

(Supplementary Figures 1C, D). The 2A self-cleaving peptide was

used to create various BCMA/CS1 bispecific TRuC constructs by

pairing BCMA-CD3E TRuC with different CS1 components, such

as CS1-TCRaC, CS1-TCRbC, CS1-CD3G, CS1-CD3D, or CS1-

CD3E (Figure 1C; Supplementary Figure 1E). Then BCMA/CS1

bispecific TRuCs expression level on the surface of T cells was

detected by flow cytometry (Figure 1D). BCMA scFvs were highly

expressed on C-AC-B-3E and C-BC-B-3E TRuC-T cells, whereas

CS1 scFvs were low or absent. Both BCMA scFvs and CS1 scFvs

could efficiently integrate into the TCR/CD3 complex of C-3G-B-3E

and C-3D-B-3E TRuC-T cells. CS1 scFvs exhibited a little

expression on C-3E-B-3E TRuC-T cells, whereas BCMA scFvs

were hardly expressed. Similarly, B-3E-C-3E TRuC-T cells had

only BCMA scFvs expression. The results suggested that only the

CD3e-TRuC at the upstream of the expression vector could

integrate into the TCR/CD3 complex so as to be expressed on the

surface of T cells. Two combinations of CD3g-CD3e and CD3d-
CD3e were assessed in subsequent experiments to discern the

distinctions among four bispecific BCMA/CS1 TRuC-T cell

constructs: C-3G-B-3E, C-3D-B-3E, B-3G-C-3E, and B-3D-C-3E.

Flow cytometric analysis revealed a lower expression efficiency of

the above four TRuC constructs in CD4+ T subsets than that in

CD8+ T subsets, especially for B-3G-C-3E and C-3G-B-3E TRuC-T

cells (Figure 1E). Western-Blot showed 55 kDa recombinant protein

molecules with anti-BCMA CAR-T (33) served as a negative control

(Supplementary Figure 1F). The B-3D-C-3E and C-3D-B-3E
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TRuCs showed instability, as indicated with a higher frequency of

single-positive cells after 16 days of in vitro culture. (Figure 1F).
Characteristics of BCMA/CS1 bispecific
TRuC-T cells in vitro

It has shown that effector cells derived from naïve CD8+ T cells

exhibit greater cytotoxic capabilities than those from central

memory T cells (34). We examined the CD4/CD8 ratio and cell

subtype of four BCMA/CS1 bispecific TRuC-T cells. Notably, flow

cytometric results showed that the CD8+ naïve T subset proportion

in C-3G-B-3E TRuC-T cell was the lowest (Figures 2A, B). C-3G-B-

3E and C-3D-B-3E TRuC-T cells had fewer CD8+T cells than those

of B-3G-C-3E and B-3D-C-3E TRuC-T cells (Figure 2C). In

addition to multiple myeloma cells, CS1 is expressed at low levels

on other hematopoietic cells such as CD8+ T cells (35, 36).The non-
Frontiers in Immunology 05
specificity of the antigen may result in a poorer response to

treatment of myeloma cells. Furthermore, the proportion of CD8+

T cells in anti-CS1 CAR-T cells was lower than that of CS1-CD3G,

CS1-CD3D, and CS1-CD3E TRuC-T cells, indicating lower

fratricide propensity by CS1 TRuC-T cells than anti-CS1 CAR-T

cells (Supplementary Figure 2A).

The exhaustion and survival of CAR-T cells are essential for the

persistence of CAR-T therapy in vivo (37). The exhausted T cell

phenotype is typically characterized by increased expression of

several inhibitory receptors, such as programmed cell death

protein 1 (PD1), lymphocyte activation gene 3 (LAG3), and T-cell

immunoglobulin 3 (TIM3) (38). Utilizing flow cytometry, we

assessed the levels of PD1, LAG3, and TIM3, alongside Annexin

V/7AAD to ascertain immune checkpoint expression and apoptosis

of four BCMA/CS1 bispecific TRuC-T cells, respectively. The results

depicted that the immune checkpoints expression level of B-3G-C-

3E and B-3D-C-3E TRuC-T cells were lower than that of C-3G-B-
FIGURE 1

Bispecific TRuC-T cells linked to CD3d and CD3e subunits exhibited unstable integration efficiency. (A) Schematic illustration of CS1 single-target
TRuCs and natural abTCR. (B) Flow cytometry was used to detect surface expression level of CS1 single-target TRuCs with human CS1-Biotinylated
recombinant proteins. (C) Schematic illustration of BCMA/CS1 bispecific TRuCs. (D) The surface expression level of BCMA/CS1 bispecific TRuCs on
T cells. (E) The expression level of four bispecific TRuCs in CD4+ T subsets and CD8+ T subsets. Statistical analysis diagram was illustrated (N = 4).
(F) Flow cytometry was used to detect the expression of bispecific TRuCs on T cells cultured in vitro for 16 days (N = 3). Statistical analysis values are
shown as mean values ± SD. The data shown are representative of results from at least three independent experiments performed with cells from at
least three different healthy donors. P-values in (E) were calculated by unpaired two-tailed Student’s t-test. P-values in (F) were calculated by one-
way ANOVA. Multiple comparisons were made using Bonferroni’s correction. ANOVA, analysis of variance; *P < 0.05, **P < 0.01, ****P < 0.0001.
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3E and C-3D-B-3E TRuC-T cells (Figures 2D, E). The C-3D-B-3E

TRuC-T cells had a significantly reduced survival rate compared

with B-3G-C-3E and B-3D-C-3E TRuC-T cells (Figure 2F).

Considering that tonic signaling from CAR, the spontaneous

CAR activation in the absence of tumor antigen stimulation, plays

a crucial role in controlling CAR-T efficacy (39), we measured

activation markers CD69 and CD25 and found that the MFI of

CD25 was significantly higher in the C-3G-B-3E TRuC-T cells than

in the B-3G-C-3E and B-3D-C-3E TRuC-T cells (Figures 2D, E).
BCMA/CS1 bispecific TRuC-T cells showed
effective cytotoxicity in vitro and in vivo

We established multiple myeloma cell lines expressing

luciferase (Luc) and detected their expression of BCMA and CS1
Frontiers in Immunology 06
antigen (Supplementary Figure 2B). The cytotoxicity of four

bispecific TRuC-T cells against several cell lines: MM.1S

(BCMA+CS1+) ce l l s , U266 (BCMA+CS1+) ce l l s , IM9

(BCMA+CS1+) cells, BCMA-Raji (BCMA+CS1-) cells, and CS1-

K562 (BCMA-CS1+) cells were assessed (Figures 3A–E). To

mimic the mixed expression of antigen on multiple myeloma,

BCMA-Raji and CS1-K562 cells were mixed at different ratios

(Supplementary Figure 2C). All four bispecific TRuC-T cells

demonstrated significant cytotoxicity which increased with higher

E: T ratios. At an E: T ratio of 1:1, B-3G-C-3E TRuC-T cells

exhibited better killing ability, particularly against BCMA-Raji and

U266 cells. However, no differences in the killing ability were

observed among the four bispecific TRuC-T cells with the

increase of E: T ratios. After 24 h incubation with U266 cells (E:

T=1:1), all four bispecific TRuC-T cells secreted higher levels of IL-2

and IFN-g than Mock-T cells (Figure 3F).
FIGURE 2

Bispecific TRuC-T cells showed phenotypic heterogeneity in vitro. (A) The expression of CD45RO and CD45RA in CD8+CCR7+ T cells were
measured by flow cytometry. Representative flow cytometric result was illustrated. Naïve T cells (CCR7+CD45RA+CD45RO-, naïve), central memory
T cells (CCR7+CD45RA-CD45RO+, Tcm), stem cell memory T cells (CCR7+CD45RA+CD45RO+, Tscm). (B) The proportion of CD8+naive T subsets in
four bispecific TRuC-T cells (N = 4). (C) Ratios of CD8+T phenotype in four bispecific TRuC-T cells (N = 4). (D, E) The expression level of PD1, LAG3,
TIM3, CD69 and CD25 on Mock-T and four bispecific TRuC-T cells. Representative pictures (D) and statistical analysis diagram (E) were illustrated (N
= 4). (F) Four bispecific TRuC-T cells were stained with Annexin V/7AAD and the apoptosis was detected by flow cytometry. Representative pictures
(left panel) and statistical analysis diagram (right panel) were shown. Data are presented as mean values ± SD. The data shown are representative of
results from at least three independent experiments performed with cells from at least three different healthy donors. P-values in (B, C, E) were
calculated by one-way ANOVA. Multiple comparisons were made using Bonferroni’s correction. ns, no significant difference, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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Intravenous injection of 1.0 × 106 MM.1S-Luc cells into NCG

mice established a multiple myeloma model by day 5 which was

confirmed by bioluminescence imaging. On day 6, NCG mice were

randomly grouped and injected with 0.5 × 106 Mock-T, B-3G-C-3E,

and B-3D-C-3E bispecific TRuC-T cells. Furthermore, a second

injection of 2.0 × 106 corresponding T cells was administered on

day 14 (Figure 3G). By day 28, mice in the Mock-T group had large

tumor burdens, while tumor remission occured in the mice of B-3G-

C-3E and B-3D-C-3E bispecific TRuC-T groups. On day 42, multiple

myeloma in mice treated with B-3G-C-3E bispecific TRuC-T cells was
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almost in complete remission, but multiple myeloma recurred in the

B-3D-C-3E bispecific TRuC-T group (Figures 3H, I). Eventually, one

mouse from the B-3D-C-3E TRuC-T group suffered hind limb

paralysis and died (Figure 3J). There was no significant change of

body weight in each group of mice (Supplementary Figure 2D). We

detected the relapsed tumor cells in the bone marrow of B-3D-C-3E

TRuC-T treated mouse and found that the MM.1S-Luc cells retained

antigen expression (Supplementary Figure 2E). Significantly higher

presence frequencies of human CD3+ T cells were detected in the

peripheral blood of mice treated with B-3G-C-3E TRuC-T cells
FIGURE 3

BCMA/CS1 bispecific TRuC-T cells linked to CD3g and CD3e subunits owned stronger killing capacity against multiple myeloma in vivo. (A–E). Cell-
lysis activity of BCMA/CS1 bispecific TRuC-T cells against MM.1S, U266, IM9, BCMA-Raji, and CS1-K562 cells at E: T ratios of 1:1, 2:1, and 5:1. The
specific lysis (%) was quantified after an 8 h coincubation (N = 3). (F). In vitro cytokine analysis of supernatants from co-culture of four bispecific
TRuC-T cells with U266 cells (E: T=1:1) for 24 h (N = 3). (G) Treatment scheme for MM.1S-luc tumor-bearing mice, intravenously (i.v.). (H) Mice were
engrafted with 1.0 × 106 MM.1S-Luc cells and then treated with 0.5 × 106 Mock-T or TRuC-expressing T cells on day 6 and 2.0 × 106 Mock-T or
TRuC-expressing T cells on day 14. Tumor progression was monitored by bioluminescence imaging. (I) Bioluminescence kinetics in each group of
mice (N = 3). (J) Kaplan-Meier survival curve. Log-rank tests were used (N = 3). (K) The count of human CD3+ T cells in the spleen (SP), peripheral
blood (PB) and bone marrow (BM) of mice after the treatment with B-3G-C-3E or B-3D-C-3E bispecific TRuC-T cells (N = 3). (L) T cell subtypes in
the peripheral blood of mice treated with B-3G-C-3E or B-3D-C-3E bispecific TRuC-T cells. Data are presented as mean values ± SD in (A–F) and
mean values ± SEM in (I, K). P-values in (A–D) were calculated by two-way ANOVA. One-way ANOVA was used in (F) and unpaired two-tailed
Student’s t-test was used in (K). Multiple comparisons were made using Bonferroni’s correction. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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(Figure 3K). Besides, flow cytometric analysis showed that mainly

memory T cells persisted in mice after the B-3G-C-3E and B-3D-C-3E

bispecific TRuC-T cells attacked the multiple myeloma (Figure 3L).
Autocrine production of IL-7 and CCL21
enhanced the proliferation and chemotaxis
of BCMA/CS1 bispecific TRuC-T cells

Initially, we engineered BCMA/CS1 bispecific TRuC-T cells to

secrete IL-7 and CCL21 (Figure 4A). Flow cytometric analysis revealed

that BCMA/CS1 scFvs were more abundantly expressed on CD8+ T cells

than those on CD4+ T cells (Figure 4B). Subsequent ELISA assays

verified that BC-7×21 TRuC-T cells produced a relatively greater amount
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of IL-7 andCCL21 comparedwith original BCMA/CS1 bispecific TRuC-

T cells (Figures 4C, D). Besides, BC-7×21 TRuC-T cells had a greater

decrease in CFSEMFI andmore absolute cell number counts than B-3G-

C-3E TRuC-T cells, indicating a faster proliferation (Figures 4E–G). The

CCL21 secreted by BC-7×21 TRuC-T cells possessed effective

chemotaxis and could recruit more CFSE-labeled T cells (Figures 4H, I).
BC-7×21 TRuC-T cells possessed superior
persistence in multiple myeloma-bearing
NCG mice

BC-7×21 TRuC-T cells exhibited effective cytotoxicity against

myeloma cell lines in vitro, and they outperformed B-3G-C-3E and
FIGURE 4

The effective secretion of IL-7 and CCL21 by BC-7×21 TRuC-T cells. (A) Schematic illustration (upper panel) and engineered domain architecture
(lower panel) of the BC-7×21 TRuC structure. (B) The expression of bispecific TRuCs in CD4+ T subsets and CD8+ T subsets of B-3G-C-3E, B-3D-C-
3E and BC-7×21 TRuC-T cells. Statistical analysis diagram was shown (N = 4). (C, D) The cell culture supernatants of conventional BCMA/CS1
bispecific TRuC-T and BC-7×21 TRuC-T were detected for concentrations of IL-7 (C) and CCL21 (D) by ELISA (N = 3). (E, F) B-3G-C-3E and BC-
7×21 TRuC-T cells were labeled with CFSE, and the dilution of CFSE was determined by flow cytometry after 5 days (N = 3). (G) Proliferative capacity
of TRuC-T cells was tested by counting (N = 4). (H, I) Transwell assays were used to verify the chemotactic effect of CCL21 secreted from BC-7×21
TRuC-T cells (N = 3). Data are presented as mean values ± SD. The data shown are representative of results from at least three independent
experiments performed with cells from at least three different healthy donors. Statistical analysis included one-way ANOVA in (C), (D), (H), two-way
ANOVA in (G), and unpaired two-tailed Student’s t-test in (B, F). Multiple comparisons were made using Bonferroni’s correction. ns, no significant
difference, **P < 0.01, ****P < 0.0001.
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B-3D-C-3E bispecific TRuC-T cells in killing MM.1S and IM9 cells at

an E: T ratio of 1:2 (Figures 5A–E). After 24 h incubation with U266

cells (E: T=1:1), all bispecific TRuC-T cells secreted more IL-2 and

IFN-g than Mock-T cells (Figure 5F). NCG mice were engrafted with

1.0 × 106 MM.1S-Luc cells on day 0. On day 6, the mice were

randomly grouped to receive injection with 5.0 × 106 cells from one of

the following T cells: Mock-T, BCMA-CD3E, B-3G-C-3E, B-3D-C-

3E, and BC-7 × 21 TRuC-T cells. Subsequent observations revealed a

significant inhibition of multiple myeloma growth following the

treatment with TRuC-T cells. The mice were rechallenged with 1.0

× 106 MM.1S-Luc cells on day 18 (Figure 5G). It was shown that

BCMA-CD3E TRuC-T cells exhibited inferior anti-tumor activity to

B-3G-C-3E, B-3D-C-3E, and BC-7×21 TRuC-T cells, since 50%

mortality occurred in this group on day 51. On day 61, a mouse

from the B-3D-C-3E TRuC-T group suffered from a relapse and

eventually died. In contrast, all mice in the B-3G-C-3E TRuC-T and

BC-7×21 TRuC-T groups survived (Figures 5H–J). There was no

significant change of body weight in each group of mice

(Supplementary Figure 3A). Additionally, flow cytometric results

showed that the BC-7×21 TRuC-T group mice had the highest

levels of human CD3+T cells in their spleen (Figures 5K–M).

Moreover, we tested the heart, liver, spleen, and kidney tissues

from each group of mice with hematoxylin and eosin (H&E)

staining, and no obvious inflammatory infiltrations were observed

(Supplementary Figure 3B).
Discussion

Although TCR is less expressed than CAR on T cell surface,

TCR signaling is 10- to 100-fold more sensitive than CAR. TCR-

induced signaling is slower but gentler than CAR and lasts longer

(40, 41). Many studies have shown that enhancing TCR pathway

signaling or stimulating alternative signaling pathways will further

improve the function and differentiation of CAR-T cells in vivo and

reduce tonic signaling caused by scFv-mediated CAR aggregation

(42–44). The above may explain why TRuC- T cells could mediate

competitive anti-tumor efficacy with CAR-T cells while reducing

the production of some cytokines associated with CRS (17, 45).

Recently, the first clinical trial of TRuC-T cell therapy has shown

promising outcomes in refractory solid tumors (46). Therefore, we

engineered TRuC-T cells targeting BCMA/CS1 by pairing two

subunits of the TCR/CD3 complex to develop a more effective T

cell therapy for multiple myeloma. Via systematic optimization, we

generated BC-7×21 TRuC-T cells secreting IL-7 and CCL21 that

could robustly eliminate multiple myeloma cells in vitro and in vivo.

In addition to TCRaC and TCRbC, the N-terminus of CD3g, CD3d,
and CD3e subunits of the TCR/CD3 complex could be fused to

BCMA or CS1 scFv using a linker sequence. All three BCMA or

CS1-specific TRuCs were integrated into the TCR/CD3 complex

and CD3e-TRuC showed the highest MFI of scFvs, in accordance

with abTCRs harboring two CD3e subunits (14, 15). Similarly, our

results showed that the bispecific TRuCs of CD3g-CD3e and CD3d-
CD3e were able to integrate into the endogenous TCR/CD3

complex with high expression efficiency on the surface of T cells.

Previous research highlighted e-TRuC (scFv fused to CD3e) T cells
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as the most effective (16), yet our findings indicate that only the

CD3e-TRuC at the upstream of the expression vector was detectable

on the surface of T cells in the constructed CD3e-CD3e panel.

Moreover, after 16 days of in vitro culture, the expression rates of B-

3D-C-3E and C-3D-B-3E TRuCs on T cells decreased, with the

emergence of single-positive T cells. This outcome suggests that the

fusion protein constituted by the CD3d subunit is not stably

integrated into the TCR/CD3 complex, as the isolated TCR

subunit fails to be effectively transported and expressed on the

surface of T cells (47).

Safety is one of the major challenges, including precise tumor

targeting to avoid off-target or on-target/off-tumor toxicity (48, 49).

Lymphocytes (including B, T, and natural killer cells) express CS1

to a lower extent than multiple myeloma cells (35, 36). Previous

study has found that TCR is a self-restrained signaling machinery

owing to mono-phosphorylation of CD3e ITAMs subpopulation

(50), suggesting that CS1 scFv-CD3e panel may work better. The

proportion of CD8+ T cells in anti-CS1 CAR-T cells was actually

lower than that of CS1-CD3G, CS1-CD3D, and CS1-CD3E TRuC-T

cells, indicating lower fratricide propensity by anti-CS1 TRuC-T

cells than anti-CS1CAR-T cells. Given the unique characteristics of

TCR/CD3 subunits and CS1’s expression on CD8+ T cells, four

bispecific BCMA/CS1 TRuC-T cells had been developed. We found

that C-3G-B-3E and C-3D-B-3E TRuC-T cells had fewer CD8+T

cells and exhibited increased expression of immune checkpoints,

with the C-3D-B-3E TRuC-T cells having poor survivability.

Although no serious toxicity or side effects were observed with

CS1 monoclonal antibody (51), we could integrate the suicide

molecule as a safety switch into our design (52).

In our in vitro cytotoxicity assays, we observed B-3G-C-3E

TRuC-T cells exhibited better killing ability at an E: T ratio of 1:1.

Our NCG mouse xenograft model also demonstrated that B-3G-C-

3E TRuC-T cells owned a stronger tumor-killing capacity than B-3D-

C-3E TRuC-T cells. Accordingly, the recurrence was detected in the

B-3D-C-3E TRuC-T group. Recurrence of multiple myeloma may

stem from various factors, such as loss of BCMA expression or the

residual of resistant multiple myeloma cells (53–55). We found that

the relapsed tumor cells retained antigen expression, but the intensity

of BCMA antigen expression decreased compared to the Mock-T

group. This result indicated that BCMA may be particularly

susceptible to antigen escape under selective pressure from TRuC-

T-cell therapy (Supplementary Figure 2E). Furthermore, the failure to

eradicate tumors was likely attributable to the low T-cell dose

administered which was potentially related to the unstable

integration of B-3D-C-3E TRuCs on T cells surface. For better in

vivo efficacy, TRuC-T cell dose exploration is needed.

Deficiency in CAR-T cell persistence has also been identified as

another factor contributing to recurrence in patients with multiple

myeloma. IL-7 is a potent immune regulatory protein (56), and thus

necessary for proliferation and survival of naïve and mature T cells

(57–59). Accordingly, IL-7 was demonstrated to increase the

proliferative capacity of BC-7x21 TRuC-T cells. Moreover, our

group have reported that BCMA or CD19 CAR-T cells expressing

IL-7 and CCL19 may represent a promising therapy for relapsed/

refractory multiple myeloma or B cell malignancies (33, 60). Similar

to CCL19, CCL21 is also a ligand of the homeostatic chemokine for
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FIGURE 5

BC-7×21 TRuC-T cells acquired enhanced persistence in vivo. (A–E) Cytotoxic activity of BCMA/CS1 bispecific TRuC-T cells against MM.1S, U266,
IM9, BCMA-Raji, and CS1-K562 cells at E: T ratios of 1:2, 1:1, and 2:1 for an 8 h coincubation (N = 3). (F) In vitro cytokine analysis of supernatants
from co-culture of three different types of bispecific TRuC-T cells with U266 cells (E: T=1:1) for 24 h (N = 4). (G) Treatment scheme for MM.1S-luc
tumor-bearing mice. (H) Tumor progression was monitored by bioluminescence imaging. The red arrow represented the mouse suffered from
multiple myeloma recurrence. (I) Bioluminescence kinetics in each group of mice (N = 6). (J) Kaplan-Meier survival curve. Log-rank tests were used
(N = 6). (K) The count of human CD3+ T cells in the peripheral blood from mice treated with BCMA-CD3E, B-3G-C-3E, B-3D-C-3E, and BC-7×21
TRuC-T cells on day 57. (L, M) The count of human CD3+ T cells in the spleen and bone marrow of mice in each group at the endpoint of
treatment. Data are presented as mean values ± SD in (A–F) and mean values ± SEM in (I), (K–M). One-way ANOVA was used in (F), (K–M). P-values
in (A) and (C) were calculated by two-way ANOVA. Multiple comparisons were made using Bonferroni’s correction. ns, no significant difference, *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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human CC chemokine receptor 7(CCR7), belonging to one of the G

protein-coupled receptor family which is absolutely required for the

directional migration of immune cells into the T cell zone (61–63).

CCL21 secreted by BC 7x21 TRuC-T cells possessed effective

chemotaxis and recruit more CFSE-labeled T cells. For the

rechallenged model, there was a good response in the early stages

of single BCMA-CD3E TRuC-T cell treatment while the multiple

myeloma relapsed in the later stages. Dual TRuC, which targets

both BCMA and CS1 simultaneously, provided better inhibition of

tumor relapse. Despite enhanced TRuC-T persistence in mice, the

survival of BC-7×21 TRuC-T cell treated mice was not significantly

better in the severely immunodeficient mouse model, that lacks

inherent environment of human immune system, compared with B-

3G-C-3E bispecific TRuC-T cells. Due to the absence of

costimulatory signals, the first-generation CARs containing scFvs

and an intracellular CD3z domain exhibit limited proliferative

capacity and anti-tumor effects (64). To improve the anti-tumor

activity and persistence of TRuc-T cells, we can also provide

additional costimulatory domains (65).

In this work, we took advantage of the integration of TRuC into

TCR/CD3 signaling to design bispecific TRuC-T cells by targeting

both BCMA and CS1. We systematically compared five different

subunits of TCR/CD3 complex and found the superiority of CD3g-
CD3e and CD3d-CD3e panels. BC-7×21 TRuC-T cells exhibited

stronger proliferation, chemotaxis and cytolytic activity,

highlighting the importance of additional secretion of cytokines.

In conclusion, we have presented a rational approach for the

engineering of BCMA/CS1 bispecific TRuC-T cells that can

effectively target multiple myeloma and substantially reduce the

probability of tumor antigen escape. BCMA/CS1 bispecific TRuC-T

cells secreting IL-7 and CCL21 may represent a novel therapy for

relapsed/refractory multiple myeloma.
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