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Sterile inflammation has been increasingly recognized as a hallmark of non-

infectious kidney diseases. Induction of pro-inflammatory cytokines in injured

kidney tissue promotes infiltration of immune cells serving to clear cell debris and

facilitate tissue repair. However, excessive or prolonged inflammatory response has

been associated with immune-mediated tissue damage, nephron loss, and

development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic

effects including a major role in inflammation. IL-6 signals either via membrane-

bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting

distinct cell types and eliciting various metabolic, cytoprotective, or pro-

inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been

developed for therapy of autoimmune and chronic non-renal inflammatory

diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-

6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the

IL-6 trans-signaling add to the available therapeutic options. Animal data and

accumulating clinical experience strongly suggest that suppression of IL-6

signaling pathways bears therapeutic potential in acute and chronic kidney

diseases. The present work analyses the renoprotective potential of clinically

relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and

kidney transplantation with focus on current achievements and future prospects.
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GRAPHICAL ABSTRACT
Principal interleukin-6 signaling

Interleukin-6 (IL-6) is a pivotal cytokine with pleiotropic cell

biologic and physiologic functions ranging from immunomodulatory

to metabolic effects. Structurally, IL-6 belongs to the four-helical

cytokine family and shares homology with IL-11, ciliary

neurotrophic factor (CNTF), leukemia inhibitory factor (LIF),

oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like

cytokine (CLC), IL-27, and IL-31, together referred to as the IL-6

cytokine family (1, 2). The IL-6 family members exert partially

overlapping, as well as distinct effects with IL-6 being a major player

in mediating inflammation. The cytokine promotes T-cell and B-cell

immune responses via enlarging the pro-inflammatory T-helper 17

(Th17) andM1macrophage subsets, boosting the antibody production

by B-cells, and suppressing the anti-inflammatory regulatory T cells

(Treg) and M2 macrophages (3–5). Along with the aggressive pro-

inflammatory effect spectrum in immune cells, IL-6 exerts adaptive,

cytoprotective, and proliferative effects in non-myeloid cells

contributing to tissue repair but also provoking malignant cell

growth (2, 6–8). Dysregulation of IL-6 signaling has been implicated

in autoimmunity and immune-mediated organ damage during sterile

inflammation (9).

IL-6 can be produced by T and B lymphocytes, fibroblasts,

monocytes, keratinocytes, mesangial cells, endothelial cells, and

subsets of epithelial cells (1). IL-6 expression in intact tissues is

typically low but strongly induced during inflammation. Effects of the

cytokine are mediated by three distinct signaling pathways referred to

as the classic, the trans, and the trans-presentation or cluster modes

(10). In the classic signaling, IL-6 first builds a dimer with the
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glycoprotein 80 (gp80) residing in the plasma membrane and

constituting the membrane-bound IL-6 receptor alpha subunit

(mIL-6R). The ensuing recruitment of the membrane-bound gp130

(mgp130) acting as the beta IL-6R subunit, followed by the assembly

of two IL-6/IL-6R/mgp130 trimeric complexes into a functional

hexamer initiate the signal transduction (11, 12). In view of the

ubiquitous gp130 expression pattern, the classic signaling is restricted

to the cell types possessing mIL-6R. This signaling mode has been

primarily implicated in intact cell metabolism and functionality,

whereas the pro-inflammatory cytokine effects are predominantly

mediated by the trans-signaling (10, 13). The latter is enabled by the

circulating soluble IL-6R form (sIL-6R) interacting with IL-6 followed

by binding of the resulting IL-6/sIL-6R dimer with mgp130.

Therefore, the trans-signaling mode does not depend on mIL-6R

and exerts broad effects on all mgp130 expressing cells. The sIL-6R

form originates from proteolytic cleavage of mIL-6R provided by

metalloproteinases ADAM17 and ADAM10. Alternative IL-6R

splicing may contribute to a minor extent to the sIL-6R generation

in human (14). Shedding of IL-6R occurs mainly in neutrophils,

monocytes, T helper cells, and hepatocytes and is enhanced during

inflammation prompting initiation of the trans-signaling. Notably, a

naturally occurring soluble gp130 variant (sgp130) acts as

endogenous inhibitor of the trans-signaling by buffering the

circulating IL-6/sIL-6R complexes and downregulating pro-

inflammatory responses in normal conditions (14). In addition to

the trans-signaling, sgp130 blunts the trans-presentation (cluster

signaling), which is a paracrine interaction requiring a close spatial

contact between a mgp130-expressing cell and a cell presenting

preformed IL-6/mIL-6R complexes to the former (15). Specifically,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1502299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gubernatorova et al. 10.3389/fimmu.2024.1502299
the trans-presentation has been implicated in acquisition of the Th17

phenotype during neuroinflammation and development of cytotoxic

CD8(+) T cells in the liver (16, 17). It is tempting to speculate that

renal dendritic cells may mediate such effects on the infiltrating

immune cells as well. Finally, an autocrine intracellular IL-6 signaling

inaccessible to sgp130 has been identified ex vivo but its contribution

to inflammatory processes in vivo requires further investigation (15).

All IL-6 signaling modes share the downstream signal transducing

pathway mediated by Janus Kinases (JAK) providing activating

phosphorylation to the Signal Transducer and Activator of

Transcription 3 (STAT3) (1). The cellular response to IL-6 is

further modulated by Suppressors of Cytokine Signaling (SOCs)

that integrate distinct effects of pro- vs. anti-inflammatory

cytokines downstream of STAT3 (18). Figure 1 depicts the IL-6

signaling pathways with a focus on the kidney.
Clinically relevant inhibitors
of IL-6 signaling

IL-6 signaling suppressing agents that have been approved or

are in development for clinical use can be classified according to

their modes of action. Monoclonal antibodies targeting IL-6 include

clazakizumab, olokizumab, siltuximab and sirukumab. These
Frontiers in Immunology 03
antibodies suppress the classic and the trans-signaling pathways,

whereas the trans-presentation (cluster) signaling remains active

due to preforming of the IL-6/IL-6R complex inside the presenting

cells (16). Only olokizumab is potentially able to suppress the

cluster signaling along with the classic and trans-pathways due to

specificity of the targeted IL-6 epitope (site III) prohibiting

formation of functional hexamers from the two neighboring IL-6/

IL-6R/gp130 complexes. To this end, olokizumab may bind with

and inactivate the IL-6/IL-6R complex at the surface of the

presenting cell thereby inhibiting the trans-presentation pathway

(11, 19). Since the trans-presentation has been shown to promote

development of Th17 and cytotoxic T cells (16), its suppression may

add to the anti-inflammatory and immunosuppressive effects of

olokizumab. Furthermore, occupation of mgp130 with inactive

olokizumab/IL-6/IL-6R complexes may to a certain extent

attenuate effects of other IL-6 family cytokines signaling via

mgp130. Monoclonal antibodies to IL-6R such as tocilizumab or

sarilumab bind to both membrane-bound and soluble receptor

form, thereby suppressing the classic and the trans-signaling

pathways. In contrast to the former two groups, a modified

soluble gp130 variant (olamkicept) binds with the circulating IL-

6/sIL-6R complex thereby selectively inactivating the IL-6 trans-

signaling (10). Since at least IL-11 signals via soluble receptors and

gp130 as well, olamkicept suppresses the trans-signaling of both

cytokines. Next generations of IL-6 trans-signaling inhibitors with
FIGURE 1

Interleukin-6 (IL-6) signaling modes and their renal targets. The classic signaling takes place in podocytes expressing the membrane-bound IL-6
receptor (IL-6R) and may help maintaining the integrity of the glomerular filtration barrier. The trans-signaling recruits the soluble IL-6R (sIL-6R)
generated by proteolytic cleavage involving the proteases ADAM17 and ADAM10. This type of signaling affects any kidney cell expressing gp130
independently on the presence of mIL-6R. The trans-presentation (cluster) mode may involve renal dendritic cells in local interactions with
proinflammatory Th17 cells, in analogy to the reported trans-presentation setting in the brain tissue (16). The autocrine IL-6 signaling may occur
intracellularly in cell types expressing IL-6, IL-6R, and gp130 simultaneously and likely contributes to pro-inflammatory immune cell reactions;
although its role in the kidney requires further elucidation (15). While effects of the classic and trans-signaling pathways in the kidney have been well
documented, the relevance of the trans-presentation and autocrine signaling modes in the renal physiology and pathophysiology
remains speculative.
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improved selectivity for IL-6 over IL-11 and higher bioavailability

have been developed and are in the preclinical testing (10). Finally, a

number of small molecules acting downstream of IL-6R such as JAK

inhibitors have been identified and clinically approved including

abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib,

oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and

upadacitinib (20). Figure 2 presents distinct mechanisms of IL-6

signaling targeted by the aforementioned agents.
Frontiers in Immunology 04
Interleukin 6 in renal
(patho)physiology

Renal expression and function of the IL-6
signaling components

Among kidney epithelial and vascular cells, expression of mIL-

6R takes place only in podocytes and glomerular mesangial cells
FIGURE 2

Distinct types of interleukin 6 (IL-6) signaling inhibition in therapeutic approaches. The four panels depict mechanisms of IL-6 signaling suppression
utilized by monoclonal antibodies to IL-6 (left upper panel), monoclonal antibodies to IL-6 receptor (IL-6R; right upper panel), modified soluble
glycoprotein 130 (gp130) variant (olamkicept; left lower panel), and small molecule inhibitors of Janus Kinases (JAK) – Signal Transducer and
Activator of Transcription 3 (STAT3). The representative clinically relevant drugs are mentioned at respective panels.
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conferring them responsiveness to the classic IL-6 signaling mode

(21, 22). No IL-6R shedding was detected in cultured human

glomerular epithelial cells suggesting that podocytes or glomerular

mesangial cells provide no significant contribution to circulating or

urinary sIL-6R levels in vivo (21). Further experimental studies in

cell culture and animal models demonstrated the IL-6-induced

STAT3 activation in podocytes corroborating the functionality of

mIL-6R in this cell type (21–24). The classic IL-6 signaling

promotes proliferation of glomerular mesangial cells and mediates

podocyte hypertrophy (25, 26). Therefore, IL-6 may contribute to

the integrity of the glomerular filtration barrier upon challenge and

participate in glomerular hypertrophy and matrix expansion during

pathophysiological hyperfiltration. Consistent with the latter

assumption, blocking the JAK-STAT3 signaling downstream of

IL-6 has been associated with protective effects in various

experimental models of glomerular injury and kidney diseases

(13, 22–24, 27). The cytokine is obviously dispensable for the

intact embryonic kidney development, since pharmacologic IL-6

blockade or genetic IL-6 knockout produced no overt renal

phenotype in mice (28). In contrast, embryonic overexposure to

IL-6 during pregnancy due to maternal obesity has been implicated

in reduction of kidney to body weight ratio in newborns (29).

Likewise, administration of IL-6 to mice during gestation resulted in

decreased kidney weight and suppression of nephrogenic zone, but

facilitated glomerular maturation in pups suggesting that

dysregulation of IL-6 signaling during embryonic kidney

development may predispose to adult kidney pathology (29).

Notably, enhanced circulating IL-6 levels frequently correlate with

albuminuria, renal hypertrophy, tubular injury, and intestinal

fibrosis suggesting that exaggerated stimulation by IL-6 may

deplete the functional podocyte reserve and promote glomerular

damage (30).

In contrast to mIL-6R that is expressed solely in glomeruli,

production of IL-6 can take place virtually in all kidney epithelial

and endothelial cells to a variable extent (21, 31–34). While immune

cells are mainly responsible for circulating IL-6 levels under

homeostatic conditions, the kidneys become a major cytokine

source in pathophysiological situations associated with acute

kidney injury (AKI) or chronic kidney disease (CKD) (35). Both

injured kidney tissue and infiltrating immune cells significantly
Frontiers in Immunology 05
contribute to elevated local and systemic IL-6 levels in kidney

disease (36). Experimental studies implicate IL-6 in mediating

tubular damage since selective suppression of the downstream

JAK-STAT3 signaling reduced acute kidney injury and alleviated

diabetic kidney fibrosis in mice (37, 38). Furthermore, excessive IL-

6 signaling may promote the epithelial-mesenchymal transition

(EMT) thus enhancing risk of the clear-cell renal cell carcinoma

(ccRCC) (39). These pathophysiological effects are predominantly

mediated by the trans-signaling. From the physiologic point of view,

local production of the cytokine may be involved in functional and

structural adaptations of glomerular and tubular epithelia to

perturbations of water-, electrolyte- or protein load. The available

data on distribution and functions of IL-6 and IL-6R in the kidney

are summarized in the Table 1.

Expression of gp130 appears to be ubiquitous in the kidney

since the classic or trans IL-6 signaling modes were readily detected

in renal cell cultures or animal models of kidney diseases (35).

Finally, SOCs interfering with IL-6-induced STAT3 activation are

broadly expressed across the kidney epithelia as well (27).
Effects of IL-6 on the kidney function
and hemodynamics

Blood filtration is critical to the body homeostasis. To fulfil this

task, renal blood perfusion is maintained at constantly high levels

(20-25% of cardiac output) by means of autonomous regulation and

systemic feedback (40). Experiments in IL-6 knockout mice

suggested only minor effects of the cytokine on the intact renal

blood flow and glomerular hemodynamics (41). Nevertheless,

hormones regulating renal hemodynamics and function such as

angiotensin II (AngII) or vasopressin induce changes in IL-6

expression suggesting that the cytokine may mediate some

endocrine signaling events (42, 43). Kidney disorders frequently

induce or aggravate hypertension and vice versa (44). IL-6 levels

have been associated with elevated blood pressure in humans and in

experimental animal models (41, 45–49). Increase in physiologic

blood pressure in response to physical stress involves IL-6 signaling

as well (48). The cytokine may enhance the blood pressure via

synergism with the Renin-Angiotensin Aldosterone System (RAAS)
TABLE 1 Expression, physiologic functions, and pathophysiologic implications of interleukin-6 signaling in kidney cells.

Cell type IL-6 mIL-6R Physiology Pathophysiology Citations

Podocytes + + Functional and structural adaptations Hypertrophy, overload stress (21–24)

Mesangial cells + – Proliferation Matrix expansion (31–33)

Tubular epithelia + – Functional and structural adaptations Sterile inflammation. tubulo-interstitial damage, fibrosis (36, 37, 136)

Endothelial cells + – Cytokine and chemokine
release, coagulation

Vascular leakage, oxidative stress, abnormal coagulation,
tissue damage

(34,
202, 203)

Fibroblasts + – Proliferation Proliferation, fibroblast-to-mesenchymal transition, fibrosis (204)

Dendritic cells + – Innate immunity Immune-mediated damage (35, 59)

Macrophages + – Innate immunity Immune-mediated damage (58, 205)
+, readily detectable expression levels.
-, undetectable expression.
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since IL-6 deletion blunted the angiotensin II (AngII)-induced

hypertension in mice (41, 45, 50). Surprisingly, vasoconstrictive

response to AngII was largely preserved in IL-6 knockout mice

suggesting non-vascular mechanisms (41). AngII is not only a

potent vasoconstrictor but also stimulates tubular salt

reabsorption via induction of the aldosterone biosynthesis in the

adrenal glands. However, IL-6 knockout mice were not protected

against the aldosterone-dependent hypertension (46). Alternatively,

pro-hypertensive and pro-fibrotic effects of IL-6 may be mediated

by immune cells with pathogenic phenotypes accumulating in the

kidney tissue, as suggested by beneficial effects of IL-6 blockade in

rats with salt-sensitive hypertension (51). Although details linking

IL-6 to the blood pressure remain to be clarified (43, 52, 53), the

cytokine has been increasingly recognized as a key player

connecting chronic inflammation to hypertension (47, 54, 55).
IL-6 signaling in the immune-mediated
kidney damage

Sterile inflammation is a common pathogenetic feature of acute

and chronic non-infectious kidney diseases (56, 57). Kidney injury

leads to release of multiple membrane, intracellular, and nuclear

compounds from dying cells (urate, ATP, heat-shock proteins,

cyclophilins, lipoproteins, histones, etc.) serving as Danger-

Associated–Molecular Patterns (DAMPs) and inducing infiltration

of immune cells into the kidney tissue independent of primary

etiology (58). This process is mediated by dendritic cells and

macrophages, which abundantly express Pattern Recognition

Receptors (PRR) and release proinflammatory cytokines including

IL-6 in response to DAMPs (58–60). The IL-6 induction in immune

cells is likely potentiated by paracrine interactions with injured renal

cells producing IL-6 as well (36). Therefore, along with protective

functions such as clearance of cellular debris and antigen

presentation, macrophages contribute to sustained intrarenal

exposure to IL-6 via a positive paracrine feedback. Pathophysiologic

roles of macrophages in acute and chronic kidney damage are well

established (58, 60, 61), whereas the impact of macrophage-derived

IL-6 on the development, course, and resolution of kidney disease is

less clear. The extent of macrophage invasion and acquisition of

distinct macrophage phenotypes in the kidney tissue appear to be

critical for the outcome of Acute Kidney Injury (62). Depletion of

macrophages before the AKI event has been shown to alleviate kidney

damage and promote repair of the kidney tissue in the ischemia-

reperfusion AKI mouse model. At the same time, suppression of

macrophages several days after the AKI event delayed the tubular

repair (62). Suppression of proinflammatory, cytokine-releasing M1

macrophages and promoting their switch to the anti-inflammatory

M2 phenotype was shown to reduce inflammation and promote

repair of kidney tissue in AKI models (63). Importantly, optimal AKI

resolution minimizes the risk of late interstitial fibrosis and transition

to CKD. However, translation of experimental data to human disease

is complicated by differences in details of immune responses between

the human and murine species (64). Examination of macrophage

phenotypes in kidney biopsies from patients with acute tubular injury

revealed enrichment in both HLA-DR+ M1 macrophages and
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CD163+ M2 macrophages (65). Furthermore, increased

macrophage density in kidney biopsies correlates with the severity

of Chronic Kidney Disease (CKD) and progression to the End-Stage

Renal Disease (ESRD) (66). Renal M1 macrophages secrete pro-

inflammatory cytokines such as IL-6, which, in turn, switches the

differentiation balance of peripheral blood monocytes from dendritic

cells to macrophages (35, 67). It is tempting to speculate that M1

macrophage-derived IL-6 is implicated in pathogenesis of AKI and

CKD. An enhanced number of the IL-17-producing T helper (Th17)

cells along with reduction in the regulatory T cells (Treg) have been

further recognized as crucial pathogenetic events in the immune-

mediated kidney damage (68, 69). Although TGF-b regulates T-cell-

mediated tolerance and immunity through both Treg and Th17 cells,

excessive IL-6 availability shifts the CD4-positive T cell differentiation

toward Th17 rather than Treg thereby inducing a pathogenic pro-

inflammatory imbalance between the two T-cell phenotypes (5).
Components of IL-6 signaling as
kidney disease biomarkers

The serum levels of IL-6 in healthy adults are typically below 5

pg/ml (1-5 pg/ml) being in the lower detection range for the most

commercial assays (9). In contrast, circulating levels of sIL-6R (40-

75 ng/mL) and sgp130 are much higher (250-400 ng/ml).

Calculations based on the molecular weights of IL-6 (~20 kDa),

sIL-6R (~55 kDa), and sgp130 (~100 kDa), their circulating levels,

and mutual binding affinities imply a limited buffering capacity for

suppression of the trans-signaling by sgp130. Thus, initiation of the

trans-signaling mainly depends on changes in circulating IL-6 and

sIL-6R concentrations (9). Moreover, the balance between

circulating IL-6, sIL-6R, and sgp130 may favor either the classic

or trans-signaling pathways, as well as permit both signaling modes

simultaneously (70). Accordingly, IL-6, sIL-6R, and sgp130 have

been receiving growing attention as potential serum or urinary

biomarkers in kidney pathology. Several aspects need to be taken

into consideration for interpretation of their predictive and

prognostic values. The clearance of circulating IL-6 and sIL-6R

occurs mainly via their filtration into the urine. Due to the relatively

small molecular weights both IL-6 (~20 kDa) and sIL-6R (~55 kDa)

pass through the glomerular filtration barrier. In contrast, the IL-6/

sIL-6R complex with the molecular weight over 70 kDa, as well as

sgp130 (~100 kDa) or the IL-6/sIL-6R/sgp130 complex are mostly

retained in the blood assuming the intact glomerular filtration

barrier. Therefore, urine of a healthy individual is expected to

contain low to moderate levels of IL-6 and sIL-6R. Due to the

urine concentration process, the urinary levels of IL-6 and sIL-6R

may exceed their plasma concentrations, despite proximal

reabsorption of filtered protein. Kidney diseases are frequently

associated with impaired glomerular function resulting in

proteinuria. Considering the concomitant induction of IL-6

expression in the injured kidney tissue along with impaired

proximal protein reabsorption due to tubular damage, significant

increases of circulating and especially urinary IL-6 and sIL-6R are

typically detected in renal patients even by the reduced GFR.

Glomerular damage may, in turn, enhance the urinary IL-6
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excretion while reducing its serum levels due to proteinuria. Taken

together, urinary IL-6 levels have shown predictive value in adult

and pediatric kidney diseases (30, 71). More systematic clinical

studies are required to standardize the diagnostic implementation

of urinary IL-6 tests in various kidney pathology.
IL-6 signaling in acute kidney injury

Acute Kidney Injury (AKI) or Acute Renal Failure (ARF) is

defined as a sudden loss of kidney function occurring within a short

time frame of several hours to several days and leading to

insufficient waste filtration from the blood. AKI complicates renal

and non-renal diseases in approximately 5% of hospital admissions

and 30% of intensive care unit (ICU) admissions being a major

cause of morbidity and mortality in hospitalized patients (72). AKI

may result from an acute hemodynamical or toxic kidney damage

or reflect a decompensation in various chronic kidney disorders.

Inadequate AKI resolution may lead to persistent morphological

and functional kidney damage with ensuing transition to CKD or

ESRD (72). Approximately 40% of patients with renal disease

develop acute tubular necrosis manifesting as AKI with ensuing

nephron loss. In this light, prediction, early recognition and

targeted etiologic and pathogenetic therapy of AKI is of high

clinical relevance (72).

Ischemia-reperfusion injury and inflammation of the kidney

tissue have been linked with induction of IL-6 expression in AKI

patients and experimental animal models (73–75). The damaged

kidney is the major source for circulating IL-6 originating both from

injured kidney cells and infiltrating immune cells (76). At the same

time, the ability of the proximal tubule to reabsorb and metabolize

filtrated small proteins including IL-6 is reduced in AKI. Enhanced

IL-6 production and impaired renal metabolism of the cytokine lead

to substantially elevated urinary IL-6 levels in AKI patients despite

the reduced filtration of circulating IL-6 into the urine due to

decreased GFR (71). Local IL-6 induction in response to tissue

injury followed by reciprocal systemic induction of the cytokine

expression in a wide range of white blood cells increase the renal

exposure to IL-6 primarily via the trans-signaling mode mediated

by sIL-6R (77). Despite numerous reports of enhanced serum or

urinary IL-6 levels in association with AKI (71, 78–82), data on

simultaneous detection of IL-6 and sIL-6R in serum or urine is

rather scarce and mostly derived from kidney transplant recipients

experiencing acute graft rejection (83). Synchronized detection of

IL-6 and sIL-6R in patients with or at risk of AKI are mandatory for

improved understanding of relevant IL-6 signaling modes in this

condition. Although IL-6 is primarily viewed as a proinflammatory

cytokine promoting renal damage, cell-protective and regenerative

effects of IL-6 during kidney injury have been documented as well

(77, 84). In fact, boosting the trans IL-6 signaling using a IL-6:sIL-

6R fusion protein (hyper-IL-6) exerted marked renoprotective

effects in two distinct mouse models of AKI induced either by

HgCl2 or ischemia-reperfusion (77, 84). These results raise the

opportunity of protective rather than pathophysiologic role of IL-6

induction in the injured kidney and challenge the eligibility of

pharmacologic IL-6 signaling blockade in AKI patients. Somewhat
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confusing is the fact that genetic IL-6 deletion protected against

HgCl2-induced AKI and IgA-mediated kidney damage in mouse

models (77, 85). Furthermore, transgenic IL-6 overexpression led to

progressive kidney injury resembling the terminal stages of multiple

myeloma (myeloma kidney) (86). The aforementioned

discrepancies in IL-6 effects may be related with predominant

activation of either the classic or the trans-signaling modes, as

well as with distinct immunologic status in IL-6 deficient mice vs.

wild-type or IL-6 overexpressing mice subjected to AKI. The

immune-mediated damage plays a major role in AKI (62).

Suppression of the M1 macrophage-dependent acute pro-

inflammatory response was beneficial in AKI mouse models (63),

whereas the anti-inflammatory M2 macrophages were shown to

mediate the kidney repair in the late AKI phase (62). Likewise,

increases in circulating and renal Th17 cells have been associated

with AKI in humans and rodent models (87), whereas Tregs exert

renoprotective effects (88). Since IL-6 promotes the maturation of

M1 macrophages and Th17 cells (35), blockade of the cytokine may

bear renoprotective potential in the pre-AKI or initial AKI phases.

As increased urinary and, to a lesser extent, serum IL-6 levels

predict AKI (71, 78, 79), a test for urinary IL-6 may be considered as

an indicator for the administration of IL-6 pathway inhibitors to

prevent or alleviate the disease.
IL-6 signaling in chronic
kidney disease

The diagnosis of Chronic Kidney Disease (CKD) relies on one of

the following criteria persisting longer than 3 months: reduction of

GFR below 60 mL/min/1.73 m2, albuminuria of at least 30 mg per 24

hours, or other abnormalities reflecting functional kidney injury or

structural kidney damage (hematuria, polycystic or dysplastic kidneys

et cetera) (89). Affecting over 850 million people worldwide, CKD has

been increasingly recognized as a global public health challenge and a

major non-communicable human disease (90). CKD frequently

develops during progression of the Diabetic Kidney Disease (DKD)

(91). Apart from the diabetes mellitus, etiology of CKD comprises

various risk factors including unresolved or recurrent AKI, hereditary

kidney diseases, congenital anomalies of the urogenital system,

autoimmune disorders, hypertension, and obesity (44). Despite

various primary causes, progression of CKD is driven by shared

pathophysiologic mechanisms associated with tissue hypoxia,

oxidative and metabolic stress, chronic inflammation, and fibrosis.

Moreover, CKD must be viewed as a systemic disease implicating

innate immunity, neuroendocrine control, as well as the

cardiovascular, digestive, and respiratory organ systems (92).

Maladaptive interactions between kidney and immune cells along

with chronic metabolic stress of kidney epithelia are the

pathophysiologic hallmarks of CKD progression (60, 68, 69, 93). In

this light, dysregulation of IL-6 signaling has been typically observed

in CKD patients and animal models. However, etiologic factors

substantially affect the diagnostic and prognostic IL-6 significance

with the apparently strongest correlation between IL-6 levels and

progression to CKD in patients with autoimmune kidney disorders
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and less clear situation in patients with the Diabetic Kidney Disease

(DKD) (35, 94–98).
Autoimmune kidney diseases

Autoimmune kidney diseases comprise the lupus nephritis (LN),

anti-neutrophil cytoplasmic associated (ANCA) vasculitis, anti-

glomerular basement disease (also known as Goodpasture’s

disease), IgA nephropathy (IgAN), and membranous nephritis

(MN) (99). The autoimmunity-mediated renal diseases are caused

by loss of self-tolerance to certain own proteins becoming

autoantigens and provoking immune-mediated kidney damage,

typically manifesting by glomerulonephritis (GN). The autoantigens

may be of renal or non-renal origin, the latter accumulate in

glomeruli due to the physiologically high renal blood supply and

the perm-selective blood filtration. IL-6 has been implicated in

pathophysiology of distinct autoimmune GN forms either as a

diagnostic marker or a pathogenetic factor (100). Since IL-6

blocking agents are increasingly used to retard progress of

inflammatory autoimmune diseases such as rheumatoid arthritis

(RA), juvenile idiopathic arthritis, and Castleman’s disease, the

amount of clinical information on their effects in patients with

autoimmune renal disorders is continuously growing (101, 102).

RA may be complicated by nephropathy basically displaying GN

with or without nephrotic syndrome (NS). Notably, renal

complications in RA patients may be caused not only by the

immune-mediated kidney damage itself but by side effects of

antirheumatic drugs as well (103). Although the incidence of RA-

associated nephropathy with progression to CKD has substantially

declined after the clinical introduction of disease-modifying

antirheumatic drugs (DMARDs), renal complications in RA patients

remain a problem deserving attention (103). Safety and tolerability of

distinct IL-6 signaling inhibitors in RA patients with renal insufficiency

have been generally established (104). Nevertheless, systematic studies

addressing effects of IL-6 inhibition on the incidence or course of renal

complications in RA patients are still scarce and mostly limited to case

reports. In this context, several case reports describe beneficial effects of

the IL-6R blocker tocilizumab on the renal function in patients with

RA-associated GN, mainly due to secondary amyloidosis (105–107).

Tocilizumab has further shown nephroprotective effects in patients

developing ANCA vasculitis and GN with or without RA in the

background (108, 109). The underlying mechanisms are likely related

with the systemic anti-inflammatory and immunomodulatory effects of

tocilizumab rather than being kidney-specific (110). Since IL-6 has

been implicated in the pathophysiology of Systemic Lupus

Erythematosus (SLE), effects of IL-6 blockade used to treat the

disease have been studied in patients with Lupus GN as well.

Disappointingly, treatment of SLE patients with an IL-6 inhibitor

sirukumab revealed no obvious benefits in those developing Lupus

GN but was associated with significantly increased adverse effect

incidence (111). Finally, IL-6 is believed to promote IgAN (94, 112).

Consequently, blockade of IL-6 signaling in patients with IgAN is

viewed as an emerging therapeutic option but a supporting clinical

evidence is barely available to date. Clinical experience with IL-6

signaling inhibitors in the autoimmune kidney diseases are
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summarized in the Table 2A. Principally, inhibition of IL-6 signaling

pathways appears to prevent or retard the autoimmune kidney

diseases. The underlying mechanisms mainly rely on general anti-

inflammatory and immunomodulatory effects such as the

normalization of T cell and macrophage balance by suppressing the

pro-inflammatory Th17 and M1, while facilitating the anti-

inflammatory Treg and M2 phenotypes (64, 109). The extent of

nephroprotection may vary depending on the IL-6 intervention level

(IL-6, IL-6R, or JAK/STAT3). Convincing clinical benefits have been

currently obtained only for the IL-6R blocker tocilizumab in patients

with RA-related or ANCA-associated nephropathy, whereas

information on other drugs and indications is still insufficient for

evidence-based conclusions.
Diabetic kidney disease

The Diabetic Kidney Disease (DKD) develops in approximately

40% of individuals with diabetes of either type 1 (T1D) or type 2

(T2D) and is the dominant cause for the Chronic Kidney Disease

(CKD) (91, 113). The pathophysiologic mechanisms of diabetic

kidney damage combine microvascular injury, glomerular

hyperfiltration, toxic effects of hyperglycemia, and associated

comorbidities such as hypertension or dyslipidemia (91). The

resulting nephron loss and sterile inflammation of renal tissue

evoke invasion of immune cells and immune-mediated damage.

Proinflammatory cytokines have been principally implicated in

cardiometabolic diseases including diabetes (98). In this context,

several lines of evidence suggested a pathogenetic role of IL-6 in

diabetes and DKD (30).

IL-6 is a cytokine with pleiotropic functions including central

and peripheral effects on the glucose homeostasis (114). IL-6 and

leptin share signaling mechanisms that suppress feeding and

improve glucose tolerance. Central activation of the IL-6 trans-

signaling has been reported to improve glucose metabolism in

mouse models of obesity (114). Similar to leptin, central IL-6

action may be mediated via activation of oxytocinergic neurons

located in in the hypothalamic paraventricular nucleus (115, 116).

In contrast to the reported obesity-associated leptin resistance,

central IL-6 trans-signaling appears to be stimulated in obesity

(114). The hypothalamic neurons may transduce effects of IL-6 on

the systemic glucose metabolism by modulation of the sympathetic/

parasympathetic tone or via the hypothalamic-pituitary hormonal

axis. Apart from that, IL-6-dependent stimulation of insulin

secretion may involve gastrointestinal hormones such as the

glucagon-like peptide 1 (117). In peripheral tissues, IL-6 promotes

insulin-dependent glucose utilization in skeletal muscles along with

lipolysis in the fat tissue (118–120). In the liver, however, the

cytokine induces insulin resistance reflected by blunted synthesis

but enhanced degradation of glycogen, as well as facilitated

gluconeogenesis (121). All these effects of the cytokine are part of

catabolic metabolism serving to improve energy mobilization in

response to challenge. The physiologic “antidiabetic” effects of the

cytokine need to be taken into consideration for understanding its

role in diabetes and DKD. Nevertheless, prolonged stimulation of

the IL-6 signaling during chronic systemic inflammation coincides
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TABLE 2A Clinical experience with IL-6 signaling inhibitors in autoimmune kidney diseases.

Disease Drug Action Efficacy Safety Reference

RA/GN/NS/AA Tocilizumab IL-6R mab Clinical remission, reduction
of proteinuria

well tolerated Case report (106)

RA/CGN Tocilizumab IL-6R mab Reduction in serum creatinine
and proteinuria

well tolerated Case report (107)

RA, ANCA-GN Tocilizumab IL-6R mab Clinical remission, decreases in RA
activity and serum ANCA levels,
improved renal findings

well tolerated Case report (108)

ANCA-GN Tocilizumab IL-6R mab Clinical remission, increase in Treg well tolerated Small study (9 AAV
patients) (109)

Lupus GN Sirukumab (CNTO 136) IL-6, mab no benefits ↑ total AE rate NCT01273389 (111)

non-ANCA-associated
vasculitis (including IgA)

infliximab, rituximab,
and tocilizumab

NA NA Phase
II, NCT05168475
F
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AA, secondary Amyloid A amyloidosis; AE, Adverse Events; ANCA, Anti-Neutrophil Cytoplasmic Associated; GN, glomerulonephritis; mab, monoclonal antibody; NA, not available; RA,
rheumatoid arthritis; ↑, increased.
TABLE 2B Clinical studies of IL-6 signaling antagonism in diabetic kidney disease.

Disease Drug Action Efficacy Safety Reference

T1D Siltuximab IL-6 (mab) not published NA NCT02641522,
completed (140)

T2D, obesity Tocilizumab IL-6R (mab) not published NA NCT01073826,
completed (140)

T2D Tocilizumab IL-6R (mab) eGFR stabilization well tolerated Case report (141)

T2D Baricitinib (0.75 mg - 4
mg daily for 24 weeks)

JAK1/
JAK2 inhibitor

reduced albuminuria and
renal inflammation

well tolerated NCT01683409 (142)

T2D Baricitinib (0.75 mg
daily; 0.75 mg twice
daily; 1.5 mg daily; or 4
mg daily for 24 weeks)

JAK1/
JAK2 inhibitor

reduced albuminuria Increased anemia
incidence
(highest dose)

NCT01683409, Phase
2 (143)
T1D, type 1 diabetes; T2D, type 2 diabetes; NA, not available.
TABLE 2C Effects of IL-6 signaling inhibitors in terminal renal insufficiency.

Disease Drug Action Efficacy Safety Reference

RA, ESRD Tocilizumab IL-6R mab Good efficacy Safe,
well tolerated

MC study (104)

RA, AA, hemodialysis Tocilizumab IL-6R mab Reduced cardiac hypertrophy Well tolerated Case report (149)

AA, pre-dialysis Tocilizumab IL-6R mab Postponed hemodialysis Well tolerated Case report (150)

AA, advanced CKD Tocilizumab IL-6R mab Resolution of nephrotic state Well tolerated Case report (151)

RA, ESRD, hemodialysis Tocilizumab IL-6R mab Clinical remission Safe Case report (152)

RA, AA, ESRD Tocilizumab IL-6R mab ↓proteinuria, preservation of GFR,
↓amyloid deposits

Safe Two case reports (105)

Pharmacokinetics in ESRD Tofacitinib JAK1/3 inhibitor no serious AE NCT01740362
completed (153)

ESRD on hemodialysis Tofacitinib JAK1/3 inhibitor no serious AE NCT01710020
completed (153)
AA, secondary Amyloid A amyloidosis; AE, adverse events; GFR, estimated glomerular filtration rate; mab, monoclonal antibody; NA, not available; RA, rheumatoid arthritis; CKD, chronic
kidney disease; ESRD, end-stage renal disease; ↓, decreased.
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TABLE 2D Clinical studies of IL-6 signaling antagonism in kidney transplantation.

Indication Regimen Mode Efficacy Safety References

Highly HLA-sensitized
kidney
transplant candidates

Clazakizumab (pre: 25 mg/mo X6 +
PLEX, IVIg; post: standard
immunosuppression + 25 mg/mo)

IL-6 mab significant reductions in class I and
class II antibodies, no need for further
DSA rebound in 18 of 20 patients

well tolerated (182)

Late AMR kidney
transplant rejection

Clazakizumab (25 mg 4/week s.c.
for 12 weeks d.b. + 40 weeks open)

IL-6 mab ↓DASs, better biopsy morphology,
retarded GFR decline

Risk of serious
infections and
diverticular
disease

(183)

HLA-sensitized kidney
transplant cAMR

Clazakizumab (25 mg s.c./mo for 12
mo to 2.5 yy)

IL-6 mab eGFR stabilization, ↓DSAs, trend for
Treg increase

Well tolerated (177)

cAMR in kidney
transplant recipients

Clazakizumab IL-6 mab NA yet NA yet NCT03744910
(IMAGINE),
Phase 3

ESRD awaiting
kidney transplantation

Tocilizumab IL-6R mab Reduction of donor-specific HLA
antibodies, desensitization

well tolerated NCT01594424,
Phase 1/2 (180)

Highly HLA-sensitized
kidney
transplant candidates

Tocilizumab (8 mg/kg once a mo) IL-6R mab Minimal reduction of anti-HLA abs well tolerated (189)

Highly HLA-sensitized
kidney
transplant candidates

Tocilizumab (8 mg/kg once a mo) IL-6R mab Minimal effect on anti-HLA abs well tolerated (181)

Chronic AMR Tocilizumab (posttransplant cAMR,
DSAs, TG, no response to
standard care)

IL-6R (mab) High rate of graft and patient survival,
↓DSAs, renal function stabilization

well tolerated (184)

Clinically stable kidney
transplant recipients

Tocilizumab IL-6R mab Increase in Tregs and reduction in T
effector cytokines

well tolerated NCT02108600,
completed (178)

First line cAMR therapy in
kidney transplant patients

Tocilizumab IL-6R mab GFR and proteinuria stabilization,
improved biopsy
morphology, regeneration

well tolerated (186)

Pediatric renal transplant
recipients with AMR
refractory to
IVIg/Rituximab

Tocilizumab (median 12 doses) IL-6R mab eGFR stabilization, moderate
improvement of morphology

well tolerated,
(cases
of cytopenia)

(187)

aAMR (on top of
standard therapy)

Tocilizumab (8 mg/kg*mo) IL-6R mab eGFR improvement or
stabilization, ↓DSAs

well tolerated (185)

cAMR in kidney
transplant recipients

Tocilizumab (8 mg/kg*mo) IL-6R mab no efficacy well tolerated (190)

cAMR in kidney transplant
recipients resistant to
standard therapy

Tocilizumab (8 mg/kg*mo) IL-6R mab no efficacy well tolerated (191)

SC retrospective cAMR in
kidney transplant recipients

Tocilizumab IL-6R mab Clinical and histological benefits well tolerated (188)

Promoting tolerance Recipient Treg cells + Tocilizumab
+ donor bone marrow

Cell therapy
+ IL-6R mab

Ongoing ongoing NCT03867617

Combined with co-
stimulation blockade to
maintain Tregs

Tocilizumab + lulizumab for 3 mo
-> belatacept + everolimus
+ prednisolon

IL-6R mab +
co-
stimulation
blockade

not published not published NCT04066114

Tofacitinib (CNI-free) vs.
Tacrolimus,
transplant recipients

Tofacitinib (CP-690,550): 15 vs.
30 mg

JAK1/
3 inhibitor

acute rejection rate at 15 mg
comparable to tacrolimus

higher rate of
viral infections at
30 mg

NCT00106639,
NCT00263328,
completed (192)

Tofacitinib (CNI-free) vs.
Cyclosporine A,
transplant recipients

Tofacitinib (CP-690,550) JAK1/
3 inhibitor

comparable allograft survival, higher
GFR, less TIN

higher serious
infection rate

NCT00483756,
NCT00658359,
completed (193)

(Continued)
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with development of insulin resistance (122). Moderately enhanced

plasma IL-6 levels have been frequently reported in T2D patients

but the pathophysiological meaning of this finding remains

debatable (123–125). Thorough matching the T2D patients with

the respective control patients for age, weight, sex, and BMI

revealed no significant differences in plasma IL-6 levels suggesting

that the fat mass but not impaired insulin responsiveness underlies

the elevated IL-6 plasma levels in diabetic patients (126). Indeed, IL-

6 mRNA expression was demonstrated in human subcutaneous

adipose tissue and elevated IL-6 mRNA levels measured in

individuals with insulin resistance (127, 128). While molecular

pathways connecting IL-6 to insulin resistance in the adipose

tissue remain elusive, stimulation of IL-6 synthesis may reflect a

compensatory response to impaired glucose metabolism (122).

Therefore, the fat tissue constitutes a large source of circulating

IL-6 in patients with diabetes and metabolic syndrome

independently on the kidney involvement (124). DKD adds the

kidney as another major site of IL-6 production, since the extent of

kidney damage appears to correlate with increased renal IL-6

mRNA expression in DKD patients (97). Furthermore, enhanced

circulating or urinary IL-6 levels have been associated with the risk

of kidney disease progression in T1D and T2D patients (96, 129,

130). The underlying pathophysiological mechanisms are strongly

related to the immune-mediated kidney damage induced by

infiltrating Th17 lymphocytes and M1 macrophages (64, 67–69).

The invasion of immune cells might be provoked by IL-6 release

from injured kidney cells, followed by mutual paracrine stimulation

of proinflammatory cytokine release promoting kidney damage and

fibrosis. Once initiated, this vicious pathogenetic circle may become

largely independent on circulating IL-6 levels due to amplified local

IL-6 synthesis and release in the kidney tissue (Figure 3). Notably,

monocyte-derived macrophages from newly diagnosed untreated

T2D patients showed upregulated activity of the nucleotide binding

and oligomerization domain-like receptor family pyrin domain-

containing 3 (NLRP3)-inflammasomes along with the stimulated

proinflammatory cytokine expression profile (131). Apart from

immune cells, activation of NLRP3-inflammasomes has been

reported in kidney epithelial and endothelial cells from diabetic

humans and mice. Moreover, experimental evidence strongly

implicates activation of NLRP3-inflammasome in non-immune

kidney cells upon DKD (132). NLRP3-inflammasomes

lead to maturation of IL-1b and IL-18, whereas IL-6 is a known

downstream target of IL-1b with potential synergistic

proinflammatory effects (133, 134). In line with this, the IL-6R

inhibitor tocilizumab retarded DKD in a mouse model of obesity-

and diabetes-induced DKD (db/db mice) mainly via suppressed

activation of NLRP3-inflammasomes and blunted immune-
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mediated kidney damage (135). In contrast, genetic IL-6 deletion

in mice provided no protection against the obesity-induced renal

impairment but aggravated nephrotoxic effects of high fat diet-

induced instead (136). Notably, IL-6 knockout mice develop

mature-onset obesity implicating IL-6 as an essential player in

the carbohydrate and lipid metabolism (137). Accordingly,

administration of IL-6 pathway inhibitors to treat autoimmune

diseases was associated with increased body weight and body mass

index (BMI) in humans (138). At the same time, IL-6R blockade has

been shown to improve insulin sensitivity in non-diabetic patients

receiving tocilizumab for management of rheumatoid arthritis

(139). The aforementioned discrepancies may reflect a disbalance

between the central and peripheral IL-6 signaling in diabetes. With

respect to the relevant IL-6 signaling modes, data from DKD

patients, mouse models, and cell culture involve both the classic

and the trans IL-6 signaling in diabetic kidney injury (13, 123).

Further dissection between central and peripheral effects of the

cytokine and distinct signaling modes is mandatory to carefully

assess the therapeutic potential of IL-6 inhibiting agents in diabetes

and DKD.

Despite growing number of animal studies suggesting beneficial

effects of IL-6 suppression in DKD and CKD, clinical experience

with inhibitors of IL-6 pathways in diabetic patients are rather

limited and less conclusive (Table 2B). Two kidney-focused clinical

trials testing either suppression of IL-6 with siltuximab

(NCT02641522) in T1D patients or inhibition of IL-6R with

tocilizumab in patients suffering from T2D and obesity

(NCT01073826) were conducted but the results and conclusions

are pending (140). A case report documented rescue of the renal

function in a patient with DKD receiving tocilizumab (141).

Administration of baricitinib in T2D patients to suppress JAK

downstream of IL-6R showed acceptable safety and a moderate

improvement of the kidney function reflected by reduced

albuminuria (142, 143). While potential benefits of systemic IL-6

inhibition in DKD patients require further investigation, selective

renal targeting of the IL-6 signaling to suppress immune cell

invasion and local maturation of Th17 cells and M1 macrophages

may open a new therapeutic avenue for improved management of

DKD and CKD.
End-stage renal disease

ESRD is a terminal step of kidney insufficiency with GFR below

15 mL/min, which is a life-threatening condition requiring Renal

Replacement Therapy (RRT) in form of hemodialysis, peritoneal

dialysis, or kidney transplantation. The main causes of ESRD in
TABLE 2D Continued

Indication Regimen Mode Efficacy Safety References

Tofacitinib safety,
pharmacokinetics in
stable allograft

Tofacitinib (CP-690,550) JAK1/
3 inhibitor

well tolerated NCT01710033
AMR, antibody-mediated rejection, acute/active AMR (aAMR); chronic AMR, cAMR; DSA, donor-specific antibodies; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; NA,
not available; NS, nephrotic syndrome; RA, rheumatoid arthritis; TG, transplant glomerulonephritis; ↓, decreased.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1502299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gubernatorova et al. 10.3389/fimmu.2024.1502299
developed countries comprises DKD, hypertension, primary and

secondary systemic vasculitis, polycystic kidney disease, obstructive

nephropathy or vesicoureteral reflux, renal amyloidosis, and

drug nephrotoxicity (144). Irreversible kidney injury in ESRD is

associated with systemic inflammation provoking multiple

dysfunctions of internal organs, skeletal muscles, and

integumentary tissues with risk of ensuing cardiorenal syndrome,

hepatorenal syndrome, respiratory disorders, cerebrovascular

pathology, muscle atrophy, and cahexia (145). Proinflammatory

cytokines including IL-6 have been implicated in progression of

CKD to ESRD (129). Circulating IL-6 levels are markedly increased

in ESRD patients, both newly diagnosed or receiving hemodialysis

(146). The reported highest IL-6 concentrations in patients with

ESRD ranged within 60-150 pg/ml thus manyfold exceeding
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moderately increased IL-6 levels in DKD (mostly below 10 pg/ml)

(130, 146). Persisting elevation of plasma IL-6 levels has been

proven as a hallmark of CKD aggravation and a predictor of

overall and cardiovascular mortality in pre-dialysis and

hemodialysis CKD patients (147). Notably IL-6 emerges as a

more reliable prognostic marker of CKD outcomes than the C-

reactive protein, albumin, or tumor necrosis factor (147). Since

ESRD provokes systemic inflammation, the resulting injury of

other organs and tissues may provide multiple sources for

enhanced circulating IL-6 levels in addition to the damaged

kidneys. Pharmacologic suppression of the IL-6 signaling to

attenuate systemic inflammation and the CKD/ERSD-associated

cardiovascular burden appears rational in this setting (148).

Although the clinical experience with IL-6 inhibitors in ESRD
FIGURE 3

Local and systemic pathophysiologic effects of IL-6 signaling during kidney injury. Acute or chronic hypoxic and metabolic stress of renal tissue
breaks intact energy and protein homeostasis in kidney epithelia causing endoplasmic reticulum stress with unfolded protein response. Injured cells
signal via enhanced IL-6 secretion thus attracting local immune cells. Decompensation of cell protective adaptations lead to apoptosis of renal
tubular cells and release of Damage-Associated Molecular Patterns (DAMP) further enhancing the local immune response. Both IL-6 and DAMP
induce invasion of T-cells and monocytes followed by predominant acquisition of pro-inflammatory Th17 and M1 phenotypes. The infiltrating
immune cells produce IL-6 and other pro-inflammatory cytokines thus adding to local sterile inflammation of renal tissue. Later migration of
antigen-presenting cells exposed to DAMP to lymphatic nodes may trigger production of autoantibodies by B-cells. Finally, the inflamed kidney
tissue delivers substantial amounts of IL-6 into the blood thus provoking systemic inflammation.
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patients is scarce and mostly limited to the IL-6R blocker

tocilizumab, an acceptable safety level and beneficial effects on the

renal and cardiovascular outcomes were consistently reported in

pre-dialysis or hemodialysis patients (105, 149–152).

Administration of the JAK-inhibitor tofacitinib to patients with

mild to severe renal insufficiency demonstrated satisfactory

pharmacokinetics suggesting that tofacitinib may be used in

ESRD patients as well (Table 2C) (153).
Kidney transplantation

Kidney transplantation represents the most vulnerable

condition for the renal injury. The transplanted kidney subjected

to the ischemia–reperfusion injury reacts to hypoxic and metabolic

stress by agile IL-6 production, thereby eliciting or aggravating own

rejection via cellular and humoral alloimmune responses (154).

Enhanced urinary IL-6 or sIL-6R levels have been increasingly

recognized as early diagnostic markers of graft rejection associated

with poor prognosis (3, 83, 155–160). The transplanted kidney

appears to be the main source of increased circulating and urinary

IL-6 originating primarily from tubular epithelial cells, monocytes

and macrophages (161, 162). The impact of kidney-derived IL-6 on

the graft survival has been studied in experimental transplantation

models using wild-type (WT) and IL-6-deficient mice (163). The

serum IL-6 levels in mice receiving WT kidney transplantation were

substantially higher compared to IL-6-deficient kidney recipients,

the latter were even comparable to the levels detected in sham-

operated mice. Accordingly, grafts from IL-6 knockout mice

demonstrated prolonged rejection-free time suggesting major

contribution of graft-derived IL-6 to the development of

transplant rejection (163). Furthermore, IL-6 interfered with Treg

activity against the effector T cell responses and impaired graft

acceptance in non-renal murine transplant models (164, 165).

Clinically, increased urinary or serum IL-6 levels coincide with

inflammation, acute rejection, and chronic rejection of renal

allografts (155–157). High serum IL-6 levels have been strongly

associated with ensuing transplant rejection among renal allograft

recipients undergoing tolerance induction using a mixed chimerism

strategy (166). Moreover, increased urinary IL-6 levels accompany

delayed graft function and resolve in a tight correlation with

functional improvement of the transplant (158). The underlying

mechanisms are complex and include stimulation of the pro-

inflammatory Th17 cells, suppression of the anti-inflammatory

Treg cells, enhanced production of alloantibodies, as well as local

pro-inflammatory tissue reactions (154).

A growing body of experimental and clinical evidence points to

significant therapeutic potential of IL-6 signaling inhibitors in

prevention and treatment of acute and chronic renal graft

rejection (3). Phenotyping of IL-6 knockout mice revealed a

highly favorable T cell profile with the strongly reduced to absent

Th17 response by the dominating FoxP3+ Treg phenotype

promoting immune tolerance (167). Although the differentiation

of naïve T cells into Th17 does not solely depend on IL-6 and can be

alternatively achieved by combined effects of IL-21, tumor growth

factor beta (TGF-b) and IL-23 (168–171), sustained IL-6 signaling
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plays an essential role in maintaining Th17 cell identity while

suppressing Treg cells (172). Blockade of IL-6R using tocilizumab

to treat RA led to sustained increase in circulating Treg levels during

the therapy suggesting that IL-6 inhibition may improve the Th17/

Treg balance in kidney transplantation as well (173, 174). In

contrast to Treg cells, tocilizumab-induced changes in the

percentage of Th17 cells were less conclusive. Cytokines and

factors other than IL-6 may help maintain the Th17 response, as

described above (167, 175). However, suppression of the IL-6

signaling retards the acquisition of Th17 pathogenic phenotype

(176). Effects of IL-6 inhibition on the Th17/Treg balance in the

setting of kidney transplantation have not been systematically

investigated so far, although the available data suggests favorable

effects (177, 178). Moreover, increased circulating Treg levels and

clinical benefits were observed in patients receiving IL-6R blockade

by tocilizumab for management of autoimmune disorders at risk or

during manifestation of autoimmunity-mediated renal disease (106,

107, 109). Ongoing studies on therapeutic potential of the IL-6R

inhibitor tocilizumab to promote immunologic tolerance in

combination with recipient Treg cells (NCT03867617) or to

rescue Treg functionality during co-stimulation blockade with

belatacept (NCT04066114) may translate the experimental

findings to the clinic (179).

The current clinical experience with IL-6 signaling inhibitors in

kidney transplant recipients has been primarily derived from

tocilizumab and clazakizumab employed as a strategy to manage

the humoral alloimmune response, i.e. either for human leukocyte

antigen (HLA) desensitization before transplantation or treatment

of chronic antibody-mediated rejection (AMR) after the

transplantation (177, 180–182). In general, IL-6 inhibition using

tocilizumab or clazakizumab was associated with reduction of

donor-specific antibody titers (DSA, anti-HLA) (177, 180, 182–

185), stabilization or improvement of kidney function (177, 183,

184, 186, 187), reduction of proteinuria (186), and benefits for

kidney morphology (183, 186–188). Notably, reduction in eGFR

correlated with decrease in DSA titers and resolution of histological

abnormalities in patients receiving clazakizumab suggesting that

benefits of IL-6 inhibition are significantly mediated by suppression

of B cell activity (183). Despite noticeable number of side effects,

mainly infections and diverticulitis, clazakizumab was generally

well tolerated by kidney transplant recipients receiving concomitant

immunosuppression (177, 182, 183). The efficacy of tocilizumab

appears less conclusive according to several reports (181, 189–191).

However, no direct comparison between the two drugs was

conducted so far and the question of preferential IL-6 vs. IL-6R

targeting for better graft outcomes remains open.

Further clinical experience was obtained with JAK/STAT3

inhibitors such as tofacitinib acting downstream of IL-6R (153, 192,

193). Notably, tofacitinib provided sufficient immunosuppression

levels as monotherapy, comparable to the efficacy of calcineurin

inhibitors being currently the first-line immunosuppressive regiment

in transplant recipients worldwide. At the same time, use of

tofacitinib was associated with higher general and serious infection

rate requiring further studies and protocol adjustmens (193). In any

case, the observed strong immunosuppressive efficacy of tofacitinib

suggests similar therapeutic potential of IL-6 or IL-6R inhibitors in
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partial or complete substitution of highly nephrotoxic calcineurin

inhibitors (194).

The available clinical experience with IL-6 signaling inhibitors in

kidney transplantation is summarized in the Table 2D. Since the kidney

is the most frequently transplanted organ, data on targeting the IL-6

signaling in non-renal transplant recipients are still limited but could be

carefully interpreted as corroborating the therapeutic potential of IL-6

inhibition as well (NCT03644667 ongoing) (195, 196).
Choice of proper IL-6 signaling
inhibitors in kidney diseases

IL-6 induction affects pathophysiology of major non-infectious

kidney disorders including renal complication of autoimmune

diseases, AKI, CKD, and rejection of renal allografts.

Accumulating clinical experience points to therapeutic potential

of IL-6 suppression in renal patients but diagnostic criteria and

treatment protocols for administration of different IL-6 signaling

inhibitor types need to be established. Complete or partial silencing

of IL-6 signaling can be principally achieved by inhibition of IL-6,

IL-6R, gp130, or the downstream JAK/STAT3 pathway (1). While

IL-6 expression is strongly induced during inflammation, parallel

changes in the mIL-6R or mgp130 expression levels are rather mild.

Use of IL-6-neutralizing antibodies appears plausible in this context

(10). In contrast, initially high doses of antibodies targeting IL-6R

would be required for saturating inhibition of its membrane-bound

and soluble variants. Finally, pharmacologic suppression of gp130 is

not reasonable since many cytokines share gp130 for signaling

events and gp130-knockout mice exhibit multiorgan pathology

(197). Similarly, small-molecule inhibitors of JAKs target not only

IL-6 but other cytokines recruiting the JAK/STAT3 pathway (1, 10).

Based on these considerations, flexible dosage adjustment of IL-6-

neutralizing antibodies may represent a viable approach towards a

personalized therapeutic effect in various kidney diseases.

Selective suppression of distinct IL-6 signaling pathways may

provide further therapeutic benefits. Among the three IL-6 signaling

routes, the trans-signaling has been generally established as the

major mediator of pro-inflammatory and pathophysiologic effects.

Identification of sgp130 as an endogenous trans-signaling inhibitor

forced development of recombinant sgp130 variants for therapeutic

purposes (10). The first generated sgp130 variant olamkicept

comprises six extracellular domains of gp130 fused to an Fc-part

of an IgG antibody (sgp130Fc) and is intended for selective

suppression of the IL-6 trans-signaling pathway, while permitting

the classic mode. Clinical testing of olamkicept as an anti-

inflammatory and immunosuppressive agent started in 2012 and

delivered promising results so far (10, 198, 199). A certain cross

reactivity of olamkicept with the IL-11 trans signaling was resolved

by later refinements in drug design resulting in sgp130 variants with

predominant to exclusive selectivity for IL-6 over IL-11 (200).

Therefore, olamkicept and its next generation drugs may

efficiently buffer the trans-signaling events in kidney diseases as

well. Moreover, sgp130 analogues have been shown to suppress the

cluster IL-6 signaling along with the trans-signaling pathway (15).

Although the pathophysiological impact of the cluster (trans-
Frontiers in Immunology 14
presentation) signaling in kidney diseases has not been clearly

established, it is tempting to speculate that this signaling mode

may promote the priming of Th17 cells by the renal dendritic cells

(16). Notably, due to intracellular preformation of IL-6:IL-6R

complexes by presenting cells, the cluster signaling appears to be

resistant to IL-6 neutralizing antibodies, with a probable exception

of olokizumab. Olokizumab blocks the functional hexamer

assembly by occupying the relevant binding site in IL-6 (site III)

thereby being able to suppress the signaling even after successful

presentation of the IL-6:IL-6R complex to a mgp130-expressing cell.

The ability of olokizumab to inhibit the cluster-signaling needs

further experimental verification to explore its potential as a pan-

inhibitor of all IL-6 signaling modes.

Despite promising therapeutic potential of IL-6 inhibiting drugs in

kidney diseases, the translation to the nephrological field is delayed by

the relative scarcity of clinical information from renal patients and the

absence of clear guidelines, respectively. Nevertheless, IL-6 inhibiting

agents have been increasingly implemented for prevention and

treatment of kidney transplant rejection and retardation of

autoimmune kidney diseases. The great majority of clinical data was

obtained using the IL-6R neutralizing antibody tocilizumab (105, 188).

Nevertheless, we believe that available monoclonal antibodies to IL-6

bear comparable or even superior therapeutic potential. More clinical

studies are mandatory to establish further IL-6 inhibiting agents to

combat the acute and chronic allo- and autoimmune reactions. Use of

new agents selectively suppressing trans-signaling, such as olamkicept,

needs further characterization due to expected clinical benefits. Apart

from the kidney transplantation setting, ESRD would obviously profit

from IL-6 inhibitors as well. Since ESRD leads to systemic

inflammation and multiorgan damage, suppression of IL-6 signaling

is justified (145). Any type of IL-6 inhibiting agents would potentially

be applicable but further clinical investigation is needed to our

opinion. More complex is the situation with DKD, since IL-6 may

have certain “antidiabetic” effects (114). Furthermore, podocytes may

profit from the classic IL-6 signaling but the trans-signaling aggravates

glomerular inflammation (201). Therefore, selective suppression of the

trans-signaling using olamkicept may be considered as the primary

choice but this speculation requires experimental support. Along the

same line, olokizumab may provide benefits due to its putative ability

to suppress the cluster-signaling, which may reduce the immune-

mediated kidney damage. However, effects of distinct IL-6 inhibiting

agents including olamkicept and olokizumab in DKD require further

detailed investigation. The same applies to AKI, the understanding of

the cytokine effects in the AKI pathophysiology including the injury

and repair phases need to be improved and different IL-6

inhibitors tested.

Taken together, IL-6 has been increasingly recognized as a

major player in kidney pathophysiology due to its role in sterile

inflammation and immune-mediated damage. IL-6 inhibiting

therapy has entered the nephrological care with clinically proven

benefits for renal transplant recipients and emerging perspective in

a wide range of kidney diseases. In addition, IL-6 inhibitors are

expected to reduce risk of inflammation-associated cardio-vascular

complications of kidney diseases. Therefore, introduction of IL-6

signaling inhibitors into clinical nephrology bears great potential to

reduce the morbidity and mortality related to kidney disease.
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Improved understanding of the interplay between different IL-6

signaling modes in kidney diseases along with accumulation of

clinical experience with IL-6 inhibiting drugs in renal patients will

define concrete therapeutic avenues.
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