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Background:Non-alcoholic steatohepatitis (NASH) is themost prevalent chronic

liver condition globally, with potential progression to cirrhosis, and even

hepatocellular carcinoma (HCC). The increasing prevalence of NASH

underscores the urgent need for advanced diagnostic and therapeutic

strategies. Despite its widespread impact, effective treatments to prevent the

progression of NASH remain elusive, highlighting the critical importance of

innovative molecular techniques in both the diagnosis and management of

this disease.

Methods: Six microarray datasets available in GEO were used to perform Robust

Rank Aggregation (RRA) to identify differentially expressed genes (DEGs).We

identified 62 robust upregulated genes and 24 robust downregulated genes.

These genes were undergone Gene Ontology enrichment analysis and further

examination for expression correlation with NAS score. Molecular subtypes were

generated using “ConsensusClusterPlus” on identified genes, which were further

assessed for tumor stage relevance, expression differences in adjacent and tumor

tissues, and impact on survival in TCGA liver cancer patients. Single-cell analysis

was then used to explore the genes across different cell types and subgroups as

well as cell-type interactions. The clinical utility of predicted core genes was

highlighted through decision curve analysis, with emphasis on HCC prognosis.

The GDSC database was used to evaluate the relationship between the predicted

core genes and drug sensitivity, while the TIDE database was used to evaluate

their relationship with immunotherapy.

Results: Four core genes, TREM2,GDF15, TTC39A, and ANXA2, were identified as

key to influencing HCC prognosis and therapy responsiveness, especially

immune treatment efficacy in NASH-associated HCC.
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Conclusion: The core genes may act as critical biomarkers driving the

progression of NASH to HCC. They are potential novel targets for the diagnosis

and treatment of NASH progression, offering innovative perspectives for its

clinical management.
KEYWORDS

non-alcoholic steatohepatitis, triggering receptor expressed on myeloid cells 2,
Annexin A2, growth/differentiation factor-15, tetratricopeptide repeat domain 39A,
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a significant global

health challenge due to its 20–25% global prevalence and lack of

approved targeted therapies (1, 2). NAFLD involves excessive

triglyceride accumulation in hepatocytes, progressing from simple

steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). This

progression can irreversibly advance to cirrhosis and eventually

hepatocellular carcinoma (HCC), driven by metabolic alterations

and toxic metabolite accumulation (3–5). NASH is unique among

the various etiologies of HCC as it involves chronic hepatitis,

necroinflammation, and complex metabolic dysregulation (6).

NASH-related HCC is a significant public health issue with its

incidence rising alongside obesity, diabetes, and metabolic

syndrome. It accounts for 2% of global HCC cases, accentuating

the critical need for specific therapeutic interventions, which is

currently deficient (7, 8).

In terms of treatment, current strategies primarily rely on

managing metabolic deregulation of NASH such as weight

reduction, improving insulin resistance, and treating hyperglycemia

and hyperlipidemia (9). For NASH-progressed HCC, clinical

strategies include liver resection, liver transplantation, and local

ablation techniques (10). However, these treatments are highly

invasive and risky for patients. Chronic inflammation is a central

component in the progression of NAFLD to NASH and eventually to

HCC (11). Recent studies suggest addressing systemic inflammation

to manage the progression of NASH to HCC. Therapeutic agents for

inflammatory pathways, such as inhibitors of cytokines or

interventions modulating immune cell activity, are being explored

(12). Thus, understanding the molecular signatures that link

inflammation with NASH-associated HCC development will guide

the design of predictive biomarkers and targeted therapies, which are

critical for early detection and treatment of this severe liver disease.

The immune system, both adaptive and innate responses, plays

a critical role in the progression of NAFL to NASH and eventually

to HCC (13). Inflammatory cytokines, such as tumor necrosis

factor-a and interleukin-6, and immune cells contribute to

hepatic injury and cell transformation, leading to cancerous

changes (14, 15). In a mouse model of NASH induced by a
02
choline-deficient high-fat diet, the simultaneous activation of both

CD8+ T cells and natural killer T cells accelerates hepatic tumor

development (16). Concurrently, an increase in hepatic CD8+PD1+

T cells impairs immune surveillance, thereby initiating liver cancer

(17). The chronic inflammation associated with NAFLD also results

in the inhibition of cytotoxic CD8+ T cells by IgA+ cells,

interrupting immune surveillance and facilitating the progression

of HCC (18). Conversely, CD4+ T cells are essential for effective

immune monitoring and are recognized for their role in hindering

HCC tumor growth (19). However, a targeted reduction of CD4+ T

cells in MYC oncogene transgenic mice on a methionine-choline-

deficient diet results in the development of HCC tumors (20).

Recently, immunotherapy, especially checkpoint inhibitors, has

shown potential in treating NASH-HCC. Immune checkpoint

inhibitors are believed to reestablish tumor immune surveillance

by acting on the programmed cell death-1 receptor (PD1) on

exhausted CD8+ T cells, or the programmed cell death 1 ligand 1

(PD-L1) on tumor cells (18, 21–23). However, the treatment effects

remain individually variant due to the highly personalized

inflammatory environment of NASH-HCC.

Future drug development is expected to increasingly target liver-

specific pathologies, such as unique inflammatory signaling pathways,

apoptosis processes, and the gut-liver axis regulation (24). Therefore, a

better understanding of the hepatic microenvironment is pivotal for

developing therapeutics that modulate the immune response,

particularly by identifying key genes as potential biomarkers or drug

targets in the progression from NASH to HCC. In this study, the

Robust Rank Aggregation (RRA) method was employed to identify

genes consistently expressed in the NASHmodel and to ascertain their

correlation with NAS scores in human datasets. Subsequently, these

genes were investigated within the context of liver cancer, leading to the

identification of key genes correlated with patient survival rates.

Besides, we analyzed cell-type interactions within the NASH model

and utilized Decision Curve Analysis to predict drug sensitivity

targeting these genes based on risk stratification. Finally, we

evaluated the potential of these genes as targets for immunotherapy

in patients with NASH-associated HCC. In brief, our findings provide

new insights and a theoretical framework for targeted therapy in

NASH-associated HCC.
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Materials and methods

Data collection and processing

Figure 1 shows the flowchart of this study. Six mice NASH datasets

were retrieved and downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE83596

consists of 32 samples: 3 steatosis stage control, 3 NASH stage

control, 4 fibrosis stage control, 4 tumor stage control, 3 steatosis, 3

NASH, 4 fibrosis, 4 non-tumor, 4 tumor. GSE189066 consists of 6

samples: 3 control, 3 NASH. GSE233767 consists of 8 samples: 4

control, 4 NASH. GSE207281 contains 3 control, 3 NASH.

GSE205846 consists of 8 samples: 4 control, 4 NASH. GSE242881

contains 3 control, 3 NASH. GSE246221 contains 5 control, 14

NASH-associated HCC. Human NASH dataset GSE135251 was

also downloaded from GEO database and it contains 10 control, 11

NAFLD patients with NAS score 1, 21 NAFLD patients with NAS

score 2, 26 NAFLD patients with NAS score 3, 38 NAFLD patients

with NAS score 4, 47 NAFLD patients with NAS score 5, 37 NAFLD

patients with NAS score 6, 18 NAFLD patients with NAS score 7, 8

NAFLD patients with NAS score 8. All bulk-seq data were

processed using R language and the fold change between control

and NASH were calculated. Identification of differentially expressed

genes was performed using the R package, “DESeq2”, and a p value

<0.05 was used to identify the differentially expressed genes (DEGs).

The analysis of single-cell sequencing data utilized publicly

available samples from GEO (GSE216836), including two controls

and six NASH samples, and was processed in R. To identify cellular

subpopulations in single-cell RNA sequencing (scRNA-seq) data, we

used the Seurat package (version 4.3.0.1) for data processing. The

workflow involved the following steps:1) Data Conversion and
Frontiers in Immunology 03
Quality Control: We converted 10x Genomics scRNA-seq data into

Seurat objects using the Seurat package. Quality control was

performed before specific analyses to ensure data integrity. We

retained genes that were expressed in at least three cells and kept

cells with at least 200 detected genes. Using the PercentageFeatureSet

function, we calculated the percentage of mitochondrial content,

ensuring that it was below 25%. 2) Normalization and Variable

Gene Selection: We used the NormalizeData function to normalize

gene expression, reducing technical noise and enhancing downstream

analysis accuracy. We then identified the top 2000 highly variable

genes using the FindVariableFeatures function. 3) Principal

Component Analysis (PCA): We performed PCA to reduce data

dimensionality and capture dominant data signals for downstream

analysis. 4) Batch Effect Correction and Data Integration: To correct

batch effects, we used the RunHarmony function from the Harmony

R package, integrating data based on PCA results. 5) Further

Dimensionality Reduction and Clustering: Using the Harmony-

corrected dimensionality reduction results, we performed cluster

analysis and visualized the data. UMAP was applied to further

reduce dimensionality and visualize the integrated data, revealing

distinct cell clusters. 6) Cell Type Annotation: Finally, cell clusters

were annotated using the CellMarker database (http://xteam.xbio.top/

CellMarker/) to assign cell types based on known marker genes.
Robust rank aggregation analysis

Robust Rank Aggregation (RRA) was used to further identify

robust DEGs from different datasets in an unbiased manner using a

comprehensive ranking list algorithm, and a p value of <0.01 and

log| FC| > 1 were considered to indicate significance (25).
FIGURE 1

Flowchart of the study.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
http://xteam.xbio.top/CellMarker/
http://xteam.xbio.top/CellMarker/
https://doi.org/10.3389/fimmu.2024.1502263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2024.1502263
Biological function and pathway
enrichment analyses

Gene Set Enrichment Analysis (GSEA) and Gene Ontology

(GO) pathway enrichment analysis were conducted using the

“ClusterProfiler” R package (26).
Consensus clustering of RRA-selected
hub genes

“ConsensusClusterPlus” R package was applied to calculate how

frequently HCC samples were grouped by RRA-selected hub genes.

We used the proportion of ambiguously clustered pairs (PAC) to

accurately estimate the optimal cluster number (K). Two clusters

were identified, and further survival analysis was conducted by the

Kaplan-Meier curve with the log-rank test. Principal component

analysis (PCA) was performed by the “ggplot2” R package.
Gene mutation analysis

Gene mutation was conducted through “maftools” package,

based on the somatic mutation data from TCGA-LIHC. And then

we calculated tumor mutation burden (TMB) of each patient and

compared TMB between the high- and low-risk groups. Survival

analysis was also performed according to TMB score.
Hydrodynamic transfection

Hydrodynamic tail vein injection was performed as described in

the literature (27). Plasmids were mixed in 2 mL of Normal Saline

(NS) and injected into mice via the tail vein within 7 seconds. 12

mice were acclimated and randomly divided into a control group

(n=6) and a NASH group (n=6). The model group received a rapid

tail vein injection of a 2 mL solution containing 15 mg of DN90-
beta-catenin, 15 mg of myr-AKT, and 5 mg of pCMV/SB plasmid

mix, while the control group was administered an equivalent

volume of saline. Mice were anesthetized and euthanized at 4

days, 4 weeks, and 2 months post-injection.
Western blot

Liver tissue were collected, and protein was extracted using a

RIPA lysis buffer, and protein concentrations were measured using

BCA (Beyotime, China). The proteins were loaded onto 10–12%

SDS-PAGE and transferred onto PVDF membranes, which were

blocked using 5% non-fat milk at room temperature for 1 h, and

incubated with primary antibodies overnight at 4°C. After washing

the membrane with TBST three times, the membrane was incubated

with the secondary antibody at room temperature for 1 h. Finally, a

chemiluminescence reagent imaging system was used to detect the

bands by using the Tanon 4800 system.
Frontiers in Immunology 04
RT-qPCR

Liver tissues from wild-type mice and NASH models were

thoroughly homogenized, and RNA was extracted using the

TRIzol method. Reverse transcription and PCR were performed

using Vazyme’s reverse transcription kit (catalog number R323)

and PCR kit (catalog number Q341), respectively. The reverse

transcription took place on the GeneAmp PCR System 9700 from

Applied Biosystems, and PCR amplification was executed on the

LightCycler 480 II system from Roche. All primers were sourced

from Tsingke Biotechnology. The primer sequences for RT-PCR are

as follows: Rplp0 Forward: GAAACTGCTGCCTCACATCCG,

Reverse: GCTGGCACAGTGACCTCACACG; Trem2 Forward:

CAGCACCTCCAGGAATCAAGA, Reverse: AGGATCTGAAG

TTGGTGCCC; Gdf15 Forward: CTGGCAATGCCTGAACAACG,

Reverse: GGTCGGGACTTGGTTCTGAG; Anxa2 Forward:

GTGCCTACGGGTCAGTCAAA, Reverse: CACATTGCTGC

GGTTTGTCA; Ttc39a Forward: CAGAAGGGCCACAA

GGACTC, Reverse: AATCCTGGTGGGAAGCATGG.

All experiments were performed in triplicate. Melting curve

analysis confirmed PCR specificity with single peaks. Ct values were

analyzed using the 2^(-DDCt) method, with Rplp0 as the reference,

to calculate relative RNA expression levels.
Drug susceptibility and immunotherapy
responsiveness evaluation of risk signature
and related genes

In this study, we utilized the R package “oncoPredict” to assess

drug sensitivity in LIHC based on gene expression data from

patients. This tool enabled us to evaluate the potential

effectiveness of various chemotherapeutic agents by calculating

drug sensitivities. Additionally, it allowed for the identification of

potential biomarkers that could predict the clinical response to

specific treatments. We further explored the associations between

these predicted drug responses and patient clinical characteristics to

enhance the understanding of therapeutic outcomes in HCC.

The Tumor Immune Dysfunction and Exclusion (TIDE) method

evaluates the responsiveness of cancer to immunotherapy using pre-

treatment tumor expression profiles. It assesses various transcriptomic

biomarkers, including TIDE, Dysfunction, Exclusion, MSI.score,

TMB, CD274 and CD8 to predict patient responses to treatments.

This approach helps in comparing the effectiveness of different

biomarkers based on their predictive power regarding treatment

outcomes, aiding in the optimization of immunotherapy strategies.
Results

Identification of hub genes in NASH
through Robust Rank Aggregation analysis

We conducted a RRA analysis on liver gene expression from

six murine models of NASH, identifying 62 upregulated and 24
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downregulated genes (Figure 2A). The distribution of these

genes is illustrated in the volcano plots across the six analyzed

GEO datasets (Supplementary Figure 1). Gene Ontology (GO)

enrichment analysis revealed significant enrichment of these

genes in terms related to lipid metabolism and inflammatory

processes, including lipid localization, fatty acid metabolic

process, collagen-containing extracellular matrix, regulation of

lipid metabolic process, triglyceride metabolic process, lipid

transporter activity, cytokine activity, steroid metabolic

process, lipid transport, regulation of inflammatory response,

epoxygenase P450 pathway, and negative regulation of immune

system processes (Figure 2B). The enriched pathways reveal

significant involvement of metabolic processes that are integral

to the development and progression of liver diseases leading to

HCC. Critical pathways such as lipid localization, lipid

transport, and the metabolic processes of fatty acids and

triglycerides are highlighted. Dysregulation in these pathways

can lead to excessive lipid accumulation, contributing to

steatosis, a hallmark of NASH. Furthermore, abnormalities in

lipid metabolism are directly linked to oxidative stress and

lipotoxicity, which can exacerbate liver damage and promote

fibrogenesis. Chronic inflammation is a key driver in the

transition from NASH to HCC, and the pathways identified

underscore its pivotal role. The activity of cytokines as mediators

of inflammation is crucial. Abnormal cytokine profiles can lead

to an unresolved inflammatory state, driving the progression of

liver diseases. The genes identified through Robust Rank

Aggregation (RRA) may influence the progression of disease

by impacting these signaling pathways. This suggests a potential

mechanism by which these genes could modulate key metabolic

and inflammatory processes, thereby affecting the development

and progression of liver diseases such as NASH leading to HCC.
Frontiers in Immunology 05
Understanding these interactions offers insights into how

specific gene alterations contribute to disease dynamics and

opens avenues for targeted therapeutic interventions.
Elevated expression of hub genes in liver
cancer associated with poor patient
survival and altered immune cell profiles

Since NAFLD eventually develops into liver cancer, we

therefore examined the role of the hub genes in liver cancer. The

consensus clustering analysis (Figure 3A) demonstrates that the

division into two clusters is the most stable and distinct

configuration, as reflected by the sharp increase in CDF values up

to k=2. This finding is visually supported by the consensus matrix

(Figure 3B), which shows a clear segregation between the two

clusters. The heatmap provides a detailed view of the differences

in central gene expression between clusters, with genes in cluster 2

having higher hub genes expression levels (Figure 3C). The PCA

plot further confirms the separation between clusters, emphasizing

substantial molecular differences that are potentially clinically

relevant (Figure 3D). Kaplan-Meier survival analysis (Figure 3E)

showed that liver cancer patients of cluster 2 who highly expressed

hub genes had a lower survival rate. Finally, the analysis of immune

cell infiltration reveals significant variations in the immune

landscapes of the two clusters, which indicates differences in

tumor microenvironment and response to immunotherapies

(Figure 3F). Cluster 2 shows a significant reduction in naive B

cells, gamma delta T cells, resting NK cells, activated K cells,

monocytes, M2 macrophages, and resting mast cells compared to

Cluster 1 (Blue Bars). On the other hand, this cluster exhibits an

increase in regulatory T cells (Tregs), M0 macrophages, and resting
FIGURE 2

Identification of key differentially expressed genes in murine NASH models using Robust Rank Aggregation method. (A) Heatmap of Differentially
Expressed Genes (DEGs) in murine NASH models analyzed by Robust Rank Aggregation (RRA). Red: upregulation; Green: downregulation. (B) Chord
diagram of Gene Ontology (GO) Enrichment Analysis for DEGs in (A).
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FIGURE 3

Integrated analysis of gene expression, clustering, and survival in hepatocellular carcinoma. (A) Cumulative distribution function (CDF) showing
the stability of consensus clustering across 2 to 9 potential clusters, indicating the consistency of data partitioning. (B) Consensus matrix for k=2,
illustrating the clear separation between the two distinct clusters, highlighted by deep blue (cluster agreement) and white (cluster disagreement)
blocks. (C) Heatmap of gene expression across the two clusters. Genes are ordered by differential expression between clusters, with red
indicating high expression and blue indicating low expression. (D) PCA plot delineating the spatial separation between the two clusters based on
the first two principal components, capturing 19.5% of the variance, which suggests significant molecular heterogeneity. (E) Kaplan-Meier
survival curves comparing the overall survival between the two clusters, with shaded areas representing the 95% confidence intervals. Statistical
significance is denoted (P = 0.04), suggesting a trend towards different survival outcomes. (F) Box plots showing differential immune cell
infiltration between the clusters as analyzed by ssGSEA, with immune cell types plotted along the x-axis and enrichment scores on the y-axis.
Statistical significance is indicated above each box plot. “*” for P < 0.05; “**” for p < 0.01; “***” for p < 0.001. ns, not significant.
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dendritic cells. The increase in Tregs and M0 macrophages, which

are often associated with immunosuppressive activities, suggests an

environment that may promote tumor growth and inhibit effective

anti-tumor immune responses.
Positive correlation between hub gene
expression and NAS scores highlights
genes’ relevance to disease severity

To further explore key genes involved in the progression of

NASH, we conducted an in-depth analysis using liver sequencing

data from patients with NAFLD. We aimed to identify key genes

involved in the progression from NASH to HCC based on the

following criteria: 1. These genes are positively correlated with the

NAS score. 2. Compared to adjacent non-tumorous tissues, these

genes are upregulated in cancerous tissues. 3. Patients with high

expression of these genes have poorer survival outcomes than those

with low expression. 4. These genes are upregulated in NASH-HCC

mouse models. GSE135251 dataset includes liver biopsy NAS score

(NAFLD Activity Score) ranging from 0 to 8, with 0 referring

normal liver histology. We examined the correlation between all

genes and NAS scores, especially those obtained by RRA

(Figure 4A). We identified 11 genes with correlations greater than

0.4 with NAS scores, namely GPNMB, COL1A2, EPHB2,

CDKNN1A, LGALS3, SDCBP2, COL3A1, CIDEC, FABP4, ANXA2,

and TREM2 (Figures 4B-L); 7 genes with correlations between 0.3
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and 0.4, namely CPXM1, LCN2, ADRA2A, SERPINE2, GPRC5B,

UBD, and COL1A1 (Supplementary Figures 2J–P); 6 genes with

correlations between 0.2 and 0.3, namely OSBPL3, ITGAX, GDF15,

CX3CR1, TTC39A, and SLC15F2 (Supplementary Figures 2D–I);

and 3 genes with correlations between -0.2 to -0.4, namely C8B,

HAO2, and AQP7 (Supplementary Figures 2A–C).
Identification of core genes Trem2, Anxa2,
Gdf15, and Ttc39a as critical markers of
poor prognosis in NASH-associated HCC

Forest plots from TCGA hepatocellular carcinoma data show the

prognosis of NAS score-related genes whose expression correlates

with poor prognosis (Supplementary Table S1). Based on the previous

criteria for screening key genes for the transition of Non-alcoholic

steatohepatitis to HCC, we further screened the 27 genes found to

have a positive correlation with the NAS score. We first examined the

expression of each of these 27 genes in NASH-induced HCC, and the

volcano plot showed that 22 of these genes had elevated expression,

which were Cdkn1a, Anxa2, Gpnmb, Cidec, Gdf15, Mmp12, Ttc39a,

Itgax, Fabp4, Sdcbp2, Adra2a, Slc35f2, Col1a1, Lgals3, Cx3cr1, Ubd,

Gprc5b, Col3a1, Col1a2, Osbpl3, Trem2 and Cpxm1 (Figure 5A).We

next screened these 22 genes further and found that 13 of them were

upregulated in cancer tissues compared to the paraneoplastic ones,

which were GDF15, TTC39A, TREM2, ANXA2, UBD, FABP4,

SERPINE2, COL1A1, COL1A2, OSBPL3, ITGAX, MMP12 and
FIGURE 4

Correlation between gene expression and NAS scores in NAFLD patients. (A) Histogram representing the distribution of correlation coefficients
between the expression levels of all genes and NAS scores in the GSE135251 dataset. (B–L) Scatter plots for genes selected by RRA that have
correlation coefficients greater than 0.4 with NAS scores.
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GPNMB (Figures 5C–F, 6, Supplementary Figure 3). After further

screening of these 13 genes, we found that only 4 genes met all criteria

for key genes in the transition from NASH to HCC, and they were

GDF15, TTC39A, TREM2, and ANXA2. These 4 genes were highly
Frontiers in Immunology 08
expressed in patients with lower survival rates (Figures 5G-J).

Moreover, we conducted a detailed examination of gene expression

in liver tissue frommice withNASH-associated HCC. This model was

induced by streptozotocin (STZ) combined with a high-fat diet
FIGURE 5

Comprehensive analysis of RRA-selected genes associated with NAS score in NAFLD and prognostic implications in hepatocellular carcinoma. Volcano
plots illustrating the expression of genes correlated with NAS score in NASH-associated HCC in GSE83596 (A) and GSE246221 (B). Genes significantly
upregulated are marked in red, downregulated genes in blue, and non-changing genes in grey. (C–F) Paired dot plots showing the expression levels of
GDF15, TTC39A, TREM2, and ANXA2 in adjacent non-tumor and tumor tissues from dataset GSE64041, highlighting significant differences in expression.
((G–J)) Kaplan-Meier survival curves for GDF15, TTC39A, TREM2, and ANXA2 in TCGA liver cancer dataset, categorized into high and low expression
groups based on the median expression levels of each gene. (K) Mouse liver morphology 4 days after tail vein injection with oncogenic plasmid Akt. (L)
Mouse liver morphology 4 weeks after tail vein injection with oncogenic plasmids Akt and N90. (M) Western blot analysis of ACC1 and FASN proteins in
liver samples from mice shown in (K, L). (N) Mouse liver morphology 2 months after tail vein injection with oncogenic plasmids myr-Akt and DN90-
beta-catenin. (O) Relative mRNA levels of Trem2, Anxa2, Gdf15 and Ttc39a in control and NASH mice (n=6). “**” indicates P<0.01, “***”
indicates P<0.001.
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(HFD), a well-established method for simulating the progression

from NASH to HCC, which mimics the human disease pathology

closely. Our analysis revealed a significant upregulation in the

expression levels of four critical genes: Trem2, Anxa2, Ttc39a, and

Gdf15 (Figure 5B). We also analyzed the expression levels of Trem2,

Anxa2, Ttc39a, and Gdf15 across various stages of the disease,

including steatosis (Supplementary Figure 4A), NASH

(Supplementary Figure 4B), and fibrosis (Supplementary

Figure 4C). Remarkably, we observed that these genes were not

only upregulated in the NASH-associated HCC stage but also

showed increased expression at earlier disease stages. The consistent

upregulation of Trem2, Anxa2, Ttc39a, and Gdf15 across all stages of

liver disease—from steatosis and NASH to fibrosis—suggests that

these genes play a pivotal role in the progression of NAFLD.

To better simulate the transition from NASH to HCC, we

administered oncogenic plasmids AKT and N90 and the sleeping

beauty transposon (SB) via tail vein injection. Four days post-injection,

fat accumulation was observed in the mouse liver (Figure 5K); by four

weeks, severe liver damage occurred, and ACC1 and FASN protein
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levels significantly increased (Figures 5L, M). This confirms the

successful creation of the NASH mouse model. Two months after

injecting the AKT and N90 plasmids, there were significant

morphological changes and severe damage in the liver, with evident

fatty liver (Figure 5N). The mRNA levels of the four genes, GDF15,

TTC39A, TREM2, and ANXA2, were significantly elevated, as shown

in Figure 5O, indicating that these genes may play a crucial role in the

transition from NASH to HCC.
Core genes are associated with immune
responses in the transition from NASH
to HCC

Previous results showed significant differences in immune

infiltration among liver cancer patients grouped by hub genes

(Figure 3F). We further analyzed the role of key genes in immune

infiltration in NASH-associated liver cancer patients using GSEA

on the GSE164760 dataset. Specifically, there is a downregulation of
FIGURE 6

Differential expression of RRA-selected genes in tumor vs. adjacent non-tumor tissues from dataset GSE64041. Dot plots illustrating the expression
levels of genes identified through RRA as being upregulated in tumor tissues compared to adjacent non-tumor tissues as UBD (A), FABP4 (B), SERPINE2
(C), COL1A1 (D), COL1A2 (E), OSBPL3 (F), ITGAX (G), MMP12 (H), GPNMB (I). “*” for P < 0.05; “**” for p < 0.01; “***” for p < 0.001.
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Th1 and Th2 cell differentiation pathways in cancerous tissues,

which may weaken immune surveillance of tumor cells, as Th1 cells

promote the attack and elimination of tumor cells (Supplementary

Figure 5A). Concurrently, key pathways such as Endocytosis,

Necroptosis, Chemical Carcinogenesis – Reactive Oxygen Species,

Cell Cycle, and Non-Alcoholic Fatty Liver Disease are upregulated,

reflecting their pivotal roles in promoting disease progression and

tumor development (Supplementary Figures 5B–F). Violin plots

using the ESTIMATE algorithm confirmed higher Tumor

Microenvironment (TME) scores in non-cancerous than in

cancerous t issues of NASH-associated HCC patients

(Supplementary Figure 5G), indicating more pronounced stromal

and immune components in the former. Additionally, scatter plots

(Supplementary Figure 6) revealed a positive correlation between

TREM2 and ANXA2with both the StromalScore and ImmuneScore,

suggesting their roles in modulating the tumor microenvironment.

ESTIMATEScore, ImmuneScore, and StromalScore were higher in

patients with high expression of TREM2 and ANXA2, whereas these

scores did not differ in patients with high expression of GDF15 and

TTC39A (Supplementary Figure 7).
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Elevated expression of core genes Trem2,
Anxa2, Gdf15, and Ttc39a in single-cell
analyses of NASH mouse models

To further explore the possible role of GDF15, TTC39A, TREM2,

and ANXA2 in the progression of NAFLD to HCC, we used the single-

cell dataset GSE216836 to examine the expression of these genes. The

UMAP plot effectively segregates various cell types, providing a

comprehensive view of the cellular heterogeneity (Figures 7A, B). We

found that the proportions of various cell types in control and NASH

liver tissue samples. Notably, the proportion of macrophages

significantly increases in the NASH samples compared to the control,

while T cells and B cells show a relative decrease in their proportions

(Figure 7C).We annotated each cell cluster identified in our study using

the CellMarker database, a comprehensive resource for cell markers

across various tissues and organisms(Supplementary Figure 8).

Overall, the feature plots and dot plots indicate an increased

expression of the four genes Trem2, Anxa2, Ttc39a, and Gdf15 in

NASH (Figures 7D–G, 8A-D). Specifically, there is a noticeable

increase in the expression levels of these genes in macrophages
FIGURE 7

Single-cell analysis of gene expression in the NASH liver tissues. (A, B) UMAP dimensionality reduction plot displaying the diverse cellular landscape
in the dataset GSE216836, with each cell type color-coded for identification.(C) Proportion of all cell types in Control and NASH. (D-G) Feature plots
for Trem2 (D), Gdf15 (E), Anxa2 (F), and Ttc39a (G) in control group and NASH group.
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within NASH (Figures 8E-L). The analysis of cellular

communication within the control and NASH conditions revealed

distinct patterns of intercellular interactions. In the control

condition, the network diagrams (Figures 9A, B) displayed a

balanced communication pattern among various cell types, with

endothelial cells, hepatocytes, and macrophages showing prominent
Frontiers in Immunology 11
interactions. In contrast, the NASH condition (Figures 9C, D)

exhibited a significant increase in communication activities,

especially involving inflammatory cells such as dendritic cells and

macrophages, indicating heightened immune response and cellular

stress. The Sema6 signaling pathway analysis (Figure 9E) identified

key interactions, particularly between Trem2 and Plxna1,
FIGURE 8

Analysis of Gene Expression in Control and NASH Samples Across Different Cell Types. Dot plots showing the overall expression levels of Trem2
(A), Gdf15 (B), Ttc39a (C), and Anxa2 (D) in control and NASH samples. Violin plots showing the expression levels of Trem2 (E), Gdf15 (F), Ttc39a
(G) and Anxa2 (H) across various cell types in control and NASH. Dot plots showing the expression levels of Trem2 (I), Gdf15 (J), Ttc39a (K), and
Anxa2 (L) in macrophage in control and NASH.
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suggesting their pivotal roles in cellular navigation and immune

regulation. Similarly, the GDF signaling pathway (Figure 9F)

analysis verified the interaction between Gdf15 and Tgfbr2,

crucial for tissue repair and fibrosis, which was often exacerbated

in NASH. The complex connections of SEMA6-Trem2 in

endothelial cells and macrophage networks (Figure 9G) and the

distribution of the GDF pathway in hepatic stellate cells (Figure 9H)

highlight the complex network of signaling events that coordinate

cellular responses in liver disease. This analysis emphasizes the

intricate interplay between gene expression and the immune

landscape, providing insights into potential therapeutic targets

and prognostic indicators in NASH-associated HCC.
Prognostic significance of elevated Trem2,
Anxa2, Gdf15, and Ttc39a expression
correlates with poor outcomes and higher
TP53 mutation rates in cancer patients

Clinical prognostic analysis of the core genes TREM2, TTC39A,

GDF15, and ANXA2 demonstrated that their expression levels were

significantly correlated with the survival outcomes of patients
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diagnosed with HCC. Nomogram of the core genes showed

varying expression levels across different patient samples, with

higher expression of these genes correlating with poorer predicted

survival probabilities (Figure 10A). Figure 10B illustrates the

survival status, risk score distribution, and expression levels of the

core genes. The mortality rate in the high-risk group is significantly

higher than in the low-risk group, and the expression levels of the

core genes are elevated in the high-risk group compared to the low-

risk group. Decision curve analysis revealed a significant net benefit

across various practical threshold probabilities for clinical decision-

making, highlighting the robust potential of ANXA2, TREM2,

GDF15, and TTC39A as biomarkers for predicting overall survival

in patients with HCC (Figure 10C). The year-specific DCA curves

further validated the efficacy of these biomarkers in forecasting

short-term and long-term survival, essential for personalized

treatment planning (Figure 10D). Patients were stratified into

high-risk and low-risk groups based on gene expression profiles.

High-risk patients, identified by the higher expression of the gene

signature, demonstrated a more extensive and varied mutation

pattern compared to the low-risk group (Figure 10E). The

mutations of key genes in 371 LIHC samples were visualized

using oncoplot, and the results showed that the high-risk group
FIGURE 9

Cellular communication networks in control and NASH conditions through single-cell transcriptomic analysis of dataset GSE216836. (A) Network
diagram showing the number of interactions between various cell types in the control group. Each node represents a cell type, and the thickness of
the connecting lines indicates the number of interactions. (B) Network diagram illustrating the interaction strength between different cell types in the
control group, with thicker lines representing stronger interactions. (C) Network diagram showing the number of interactions between various cell
types in the NASH group. (D) Network diagram illustrating the interaction strength between different cell types in the NASH group, with thicker lines
representing stronger interactions. (E) Bar chart showing the relative contribution of different ligand-receptor pairs in the Sema6 signaling pathway.
Notably, the interaction between Trem2 and Plxna1 is highlighted. (F) Bar chart detailing the contributions of ligand-receptor pairs in the Gdf
signaling pathway, focusing on the interaction between Gdf15 and Tgfbr2. (G) Chord diagram illustrating the SEMA6-Trem2 signaling network across
different cell types, highlighting the complexity and connectivity of this pathway. (H) Circular plot showing the distribution of the GDF signaling
pathway across various cell types.
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exhibited higher TP53 mutations (Figure 10E). This stratification

validated the potential link between mutation burden and poorer

clinical outcomes, suggesting that patients in the high-risk group

were prone to experience more aggressive disease progression.

Overall, these results suggest that the signature composed of these

four core genes may serve as an important prognostic indicator for

NASH-associated HCC.
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Reduced drug sensitivity in patients with
high expression of core genes TREM2,
ANXA2, GDF15, and TTC39A

We used GDSC database to predict the chemotherapy response

of the common chemotherapy agents between the two groups. The

drug sensitivity analysis demonstrates that differential drug
FIGURE 10

Comprehensive analysis of key prognostic genes ANXA2, TREM2, GDF15, and TTC39A in HCC. (A) Color striped plots representing the expression
levels of the four genes across HCC samples. (B) The risk factor association diagram showing risk score distribution, survival status, and the
expression of ANXA2, TREM2, GDF15, and TTC39A. (C) Decision curve analysis (DCA) for overall survival based on the expression levels of ANXA2,
TREM2, GDF15, and TTC39A, demonstrating the clinical utility of these genes as prognostic biomarkers in HCC. (D) Year-specific DCA curves for 1-
year, 3-year, and 5-year survival rates, illustrating the predictive power of the key genes at various time points. (E) Oncoplot visualizing the mutation
status of the high-risk and low-risk groups, highlighting differences in genetic alterations that might influence prognosis.
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responsiveness is associated with risk classification based on these

four core genes (Figure 11A). We found that high-risk patients were

insensitive to the following compounds: 615590, 667880, AZD1208,

AZD5991, BEN, CHIR-99021, Dihydrorotenone, GSK2110183B,

GSK2256098C, GSK2830371A. GSK626616AC, IAP_5620,

JAK1_8709, LCL161, LMB_AB2, LY2109761, N-acetyl cysteine,

OF-1, TAF1_5496, VTP-B (Figure 11A). Additionally, we assessed

the sensitivity to some common anticancer drugs. Generally
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speaking, HCC patients with NASH exhibit higher sensitivity to the

following drugs, as their IC50 values are close to 0: Camptothecin,

Epirubicin, MG-132, Mitoxantrone, and Mycophenolic acid.

However, for most other drugs, there are higher IC50 values, such

as: Sorafenib, 5-Fluorouracil, Afuresertib, AGK2, alpha-lipoic acid,

ascorbate (vitamin C), Cisplatin, Cyclophosphamide, glutathione,

MIRA-1, N-acetyl cysteine, PRIMA-1MET, and Refametinib

(Figures 11B–E). Moreover, we further analysis the drug sensitivity
FIGURE 11

Prediction of drug sensitivity using GDSC database. (A) Drug sensitivity analysis using the GDSC database comparing the response of high and low-
risk groups to various chemotherapeutic agents, demonstrating differential susceptibility to treatment based on risk stratification. (B–E) Analysis of
drug sensitivity in HCC based on expression levels of ANXA2, GDF15, TREM2, and TTC39A using the GDSC Database. “*” for P < 0.05; “**” for p <
0.01; “***” for p < 0.001.
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individually based on the four key genes expression level

(Figures 11B–E). The groups were categorized based on the median

expression level of the genes. Patients with gene expression levels

above the median are classified into the high group, while those with

expression levels below the median are categorized into the low

group. Patients with high expression of ANXA2 are insensitive to 5-

Fluorouracil, Cyclophosphamide, Epirubicin, MG-132, and

Refametinib but are sensitive to Sorafenib, Afuresertib, AGK2,

Ascorbate (Vitamin C), and N-acetyl cysteine (NAC) (Figure 11B).

Patients with high expression of GDF15 show insensitivity to

Afuresertib, whereas they are sensitive to 5-Fluorouracil,

Glutathione, MIRA-1, NAC, and Refametinib (Figure 11C).

Patients with high expression of TREM2 are sensitive to Sorafenib,

5-Fluorouracil, Afuresertib, AGK2, Alpha-lipoic acid, Vitamin C,

Camptothecin, Cisplatin, Cyclophosphamide, Epirubicin, MG-132,

PRIMA-1MET and Refametinib (Figure 11D). Patients with high
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expression of TTC39A are insensitive to Mitoxantrone and NAC, but

are sensitive to Sorafenib 5-Fluorouracil, AGK2, Vitamin C,

Cyclophosphamide and Epirubicin (Figure 11E). This finding

suggests that these genes not only serve as prognostic biomarkers

but may also guide therapeutic decision-making, particularly in

selecting more effective personalized treatment regimens for

HCC patients.
Diminished immunotherapy efficacy in
patients with high expression of core
genes TREM2, ANXA2, GDF15, and TTC39A

We then analyzed the relationship between the expression of key

genes and various immune metrics in hepatocellular carcinoma

associated with NASH. Patients with high ANXA2 expression exhibit
FIGURE 12

Impact of gene expression on immune metrics in NASH-associated hepatocellular carcinoma based on dataset GSE164760. (A) Violin plots showing
TIDE scores distributed across high and low expression groups of TREM2, ANXA2, GDF15, and TTC39A in NASH-associated hepatocellular
carcinoma. (B) Violin plots depicting Dysfunction scores for high and low expression groups of the core genes. (C) Violin plots for Exclusion scores
across high and low expression groups of these genes. (D) MSI scores presented in violin plots comparing high versus low expression groups of the
genes. “*”: p < 0.05; “**”: p < 0.01; “***”: p < 0.001. ns, not significant.
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higher TIDE and Exclusion scores (Figures 12A, C). Patients with high

TREM2 and TTC39A expression show higher Dysfunction scores

(Figure 12B). Additionally, patients with high TREM2 expression

have lower MSI scores (Figure 12D), suggesting these genes may

contribute to immune evasion mechanisms in the tumor

environment. Notably, patients who respond to immunotherapy

have lower ANXA2 expression levels (Supplementary Figure 9A).

Patients with high TREM2 and TTC39A expression show higher

levels of CD274, while those with high ANXA2 expression have

lower CD274 levels (Supplementary Figure 9B). Additionally, patients

with high GDF15 expression have lower CD8 expression levels

(Supplementary Figure 9C). These findings emphasize the potential

negative impact of the expression levels of these genes on the efficacy of

immunotherapy in NASH-associated HCC. High expression of

ANXA2, TREM2, TTC39A, and GDF15 may lead to a more

suppressive tumor microenvironment and enhanced immune escape,

thereby reducing the efficacy of immunotherapy.
Discussion

The exploration of the transition from NASH to HCC remains a

critical area of research due to the increasing prevalence of NAFLD

and its potential to develop into more severe forms. Our study

aimed to identify key genes that could serve as biomarkers and

therapeutic targets, enhancing our understanding of disease

progression and providing new avenues for clinical intervention.

Our findings underline the complex interplay of genetic and

epigenetic modifications that drive the progression from NASH to

HCC. The identified genes, including TREM2, GDF15, TTC39A,

and ANXA2, have shown significant roles not only in the

pathological process but also in influencing the prognosis and

therapeutic response of HCC. We utilized a Hydrodynamic

Transfection to simulate the transition from NASH to HCC. This

technique involves the rapid injection of a large volume of DNA

solution into the mouse’s tail vein, generating hydrodynamic

pressure sufficient to temporarily disrupt the endothelial barrier

of the liver capillaries, allowing DNA to enter the hepatocytes (27).

During this process, the “Sleeping Beauty” transposon system is

used to promote somatic integration of DNA, ensuring long-term

gene expression. This transposon system can recognize and bind to

specific inverted repeat sequences at both ends of the DNA

sequence, then cut and paste the DNA from one location to

another. Thus, the carcinogenic genes carried by the plasmid

DNA are stably integrated into the host genome, allowing for

long-term expression in liver cells, ultimately inducing liver

cancer formation. This modeling method effectively simulates the

progression of the disease in vivo, from the initial stage of steatosis,

through subsequent NASH, to the final stage of developing into

HCC (Figures 5K-O). This aligns with current literature that

describes a multifactorial progression mechanism involving

inflammatory pathways, metabolic dysfunction, and immune

system interactions.

TREM2 is a transmembrane receptor expressed on myeloid

cells, integral to the immune system’s response to cancerous

growths (28). It acts as a significant immunological and
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prognostic biomarker across various cancer types, including HCC

(29). The expression of TREM2 varies across different cancers and

generally correlates with poor prognosis when upregulated (30),

indicating its potential as a target for therapeutic intervention (31).

TREM2’s role extends beyond traditional immune responses,

impacting TME dynamics significantly (32). In the context of

HCC, TREM2 expression influences the infiltration and function

of tumor-associated macrophages (TAMs) and myeloid-derived

suppressor cells (MDSCs), which are pivotal in mediating tumor

immunity and sculpting the inflammatory landscape of the TME.

Furthermore, TREM2 influences key signaling pathways such as the

Wnt/b-catenin and PI3K/Akt pathways, which are crucial in

oncogenesis and tumor progression (33). Notably, the

relationship between TREM2 expression and various clinical

phenotypes, such as tumor stage and patient survival, reinforces

its potential utility in clinical assessments and personalized

treatment planning. In HCC specifically, TREM2’s modulation of

macrophage activity within the liver can either promote a pro-

tumorigenic environment conducive to cancer progression or

enhance immune checkpoint blockade therapy, depending on its

expression levels and the context of other immune modulators

within the TME (34).

In our study, we found that liver cancer patients with high

TREM2 expression have a lower survival rate (Figure 5I).

Additionally, TREM2 has the highest correlation with NAS score

among all genes (Figure 4A), and it is closely associated with

immune infiltration (Supplementary Figure 6A). Thus, targeting

TREM2 or modulating its pathway could provide a strategic point of

intervention to alter the immune landscape in HCC, potentially

improving patient outcomes in immunotherapy and other

therapeutic approaches.

TTC39A-AS1 was shown to function as a competing

endogenous RNA, sponging miR-483-3p to upregulate MTA2 in

breast cancer, thereby promoting tumorigenicity (35). This

mechanism of action prompts a potential role of TTC39A in

modulating gene expression through noncoding RNAs in liver

disease as well. Research into the expression and roles of TTC39A

and its associated noncoding RNAs in liver disease could help

clarify their potential as biomarkers or therapeutic targets.

Understanding how these molecules interact with miRNAs and

other components of the cellular machinery in the liver will be

crucial. Such studies could lead to novel therapeutic strategies that

specifically target the molecular pathways influenced by TTC39A

and its noncoding RNAs, potentially halting or reversing the

progression of liver diseases. The regulatory activities of TTC39A

and its associated noncoding RNAs, as illustrated in breast cancer

research, provide a compelling model that could be applicable to

liver diseases. In this study, we found a positive correlation between

TTC39A and the ImmuneScore (Supplementary Figure 6D).

Additionally, using the TIDE database for predictive analysis, we

discovered that patients with high TTC39A expression exhibit

greater T-cell dysfunction (Figure 12B). This may also be related

to the transition from NASH to HCC. Investigating these

mechanisms in the context of NAFLD and HCC could uncover

new molecular targets for therapy and deepen our understanding of

liver disease progression.
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ANXA2 is an important member of the annexin family and is

expressed on the surface of various tumor cells. ANXA2 has multiple

functions, including involvement in endocytosis, cytokinesis, actin

remodeling, signal transduction, protein assembly, mRNA transport,

and DNA repair (36, 37). Recent studies highlight the critical role of

ANXA2 as a pivotal regulator in the pathogenesis and progression of

various liver diseases, including NAFLD and HCC (38, 39). ANXA2

influences liver fibrosis through its interactions with cellular

pathways that regulate extracellular matrix remodeling. Specifically,

the ANXA2-Notch regulatory loop plays a crucial role in promoting

liver fibrosis in NAFLD bymodulating osteopontin expression. In the

context of hepatocarcinogenesis, ANXA2 is significantly upregulated

and plays a role in the mesenchymal stem cell-mediated progression

of liver cancer. Mesenchymal stem cells enhance the malignant

characteristics of HCC cells, partly through the lncRNA-MUF

interaction with ANXA2, which activates Wnt/b-catenin signaling

and promotes epithelial–mesenchymal transition (38). Machine

learning analyses have identified ANXA2 among the ferroptosis-

related genes as potential diagnostic biomarkers for NAFLD,

suggesting its involvement in the oxidative stress response and its

potential utility in early diagnosis (39). Given its central role in

pathways crucial to liver health, targeting ANXA2 represents a novel

approach to treat liver diseases (40). Its interactions with key

signaling pathways provide promising therapeutic targets, especially

in preventing the progression from NAFLD to NASH and HCC. In

this study, ANXA2 expression showed a strong correlation with the

NAS score (Figure 4K), and among the four core genes,ANXA2 plays

the most significant role in the prognosis of HCC patients

(Figure 10A). Additionally, patients with high ANXA2 expression

exhibited more immune exclusion (Figure 12C). ANXA2 is not only

involved in liver fibrosis and hepatocarcinogenesis but also shows

potential as a diagnostic biomarker, making it a significant focus in

current liver disease research. Continued investigation into the

molecular mechanisms of ANXA2 will enhance our understanding

of its roles in liver disease and support the development of targeted

therapeutic strategies.

GDF15, a stress-responsive cytokine, plays a critical role in liver

disease progression, especially in NAFLD and fibrosis. It is intricately

involved in regulating inflammation and cellular stress responses,

which are pivotal factors in the advancement of these conditions (41).

GDF15 levels have been positively associated with the severity of

fibrosis in patients with biopsy-proven NAFLD, indicating its

potential as a biomarker for the progression of liver fibrosis (42).

Elevated GDF15 levels correlate with advanced stages of fibrosis,

suggesting that GDF15 could be used to identify patients at higher

risk of progressing to severe liver diseases, including cirrhosis and

hepatocellular carcinoma (42, 43). Furthermore, the role of GDF15 in

liver disease extends beyond a simplemarker of disease severity. It has

been demonstrated to influence cellular processes such as apoptosis

and inflammation by interacting with multiple signaling pathways,

notably the SMAD pathways, which play a critical role in fibrogenesis

(41). Specifically, GDF15 has been found to promote the activation of

hepatic stellate cells, a key event in the development of liver fibrosis,

by enhancing the expression of fibrotic markers and the

phosphorylation of SMAD2 and SMAD3 proteins (43). In this
Frontiers in Immunology 17
study, we found that GDF15 in HSCs may interact with TGFBR2,

thereby participating in the transformation of NASH to HCC. Given

the significant role of GDF15 in mediating fibrosis, strategies aimed at

modulating its expression or activity could provide therapeutic

benefits. By inhibiting GDF15 or blocking its pathways, it might be

possible to reduce fibrogenesis and thus slow down the progression of

NAFLD to more severe forms. This approach holds promise,

particularly in patients who exhibit high levels of GDF15 and are

therefore at increased risk of disease progression.

The integration of bioinformatics with clinical research offers a

promising pathway to unravel the complex molecular

underpinnings of diseases like NASH and HCC. Future studies

should focus on validating these findings in larger, multicentric

cohorts to enhance the generalizability and clinical applicability of

these potential biomarkers.
Conclusion

This study contributes to the growing body of evidence

supporting the genetic basis of NASH progression to HCC. The

identification of key genes provides a foundation for future research

into their biological functions and interactions within the liver

microenvironment. By continuing to explore these genetic markers,

we can advance the development of targeted therapies and improve

prognostic assessments, ultimately enhancing patient management

and outcomes in NASH and HCC.
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