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Dynamics of the immune
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Colorectal cancer (CRC) is one of the most significant oncological threats to

human health globally. Patients often exhibit a high propensity for tumor

recurrence and metastasis post-surgery, resulting in suboptimal prognoses.

One of the underlying reasons for the metastatic potential of CRC is the

sustained abnormal state of the tumor immune microenvironment, particularly

characterized by the atypical death of critical immune cells. In recent years, a

novel concept of cell death known as PANoptosis has emerged. This form of cell

death is regulated by the PANoptosome complex and encompasses key features

of apoptosis, pyroptosis, and necroptosis, yet cannot be entirely substituted by

any of these processes alone. Due to its widespread occurrence and complex

mechanisms, PANoptosis has been increasingly reported in variousmalignancies,

enhancing our understanding of its pathological mechanisms, particularly in the

context of CRC. However, the characteristics of immune cell PANoptosis within

the CRC immunemicroenvironment have not been thoroughly elucidated. In this

review, we focus on the impact of CRC progression on various immune cell types

and summarize the distinctive features of immune cell PANoptosis. Furthermore,

we highlight the future research trends and challenges associated with the

mechanisms of immune cell PANoptosis in CRC.
KEYWORDS

colorectal cancer, tumor microenvironment, PANoptosis, tumor progression,
immune microenvironment
1 Introduction

Colorectal cancer (CRC) is among the most prevalent malignancies globally. According

to the latest estimates from the International Agency for Research on Cancer (IARC), CRC

ranks third in incidence among all malignant tumors, following lung cancer and female

breast cancer (1). Moreover, CRC is the second leading cause of cancer-related mortality
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globally, underscoring its significant lethality (2–4). Currently, the

primary treatment strategy for CRC involves surgical resection

combined with adjuvant chemotherapy (5, 6). However, in a

subset of patients, tumor recurrence and metastasis frequently

occur postoperatively, resulting in suboptimal prognostic

outcomes. As a result, identifying and understanding the high-

risk factors that influence the prognosis of CRC patients is of

paramount importance. A growing body of research indicates that

CRC often induces a state of persistent immune dysregulation in the

host. Aberrant apoptosis of key immune cells is a critical factor

contributing to tumor recurrence and metastasis (7, 8).

Cell death is a fundamental physiological process that occurs in

all living organisms, playing critical roles in embryonic

development, organ function maintenance, and aging (9, 10). Cell

death is typically categorized into two main types: accidental cell

death (ACD) and regulated cell death (RCD). Historically, RCD has

been regarded as a pivotal mechanism in tumorigenesis (11).

However, recent research has unveiled complex interactions

among apoptosis, pyroptosis, and necroptosis (12). In 2019,

Malireddi et al. introduced a novel concept of cell death termed

“pan-apoptosis” (13). Pan-apoptosis is regulated by a pan-apoptotic

body complex, encompassing key features of apoptosis, pyroptosis,

and necroptosis, but cannot be replaced by any of these processes

individually. Given the ubiquity and intricate mechanisms of pan-

apoptosis, it has been increasingly reported across various

malignancies. A foundational study has indicated that modulation

of anti-apoptotic pathways can enhance the sensitivity of cisplatin-

resistant laryngeal cancer cells (14). Furthermore, in CRC,

phosphorylated cysteine desulfurase has been observed to

modulate chemotherapy sensitivity by inhibiting pan-apoptosis

(15). The pan-apoptosis of immune cells has also emerged as a

significant focus in cancer research.

Therefore, a comprehensive understanding of the pathophysiological

mechanisms of pan-apoptosis is crucial for advancing our

understanding of CRC occurrence and treatment. Increasing

awareness of pan-apoptosis in immune cells associated with CRC

provides multiple opportunities to improve therapeutic strategies,

including overcoming chemotherapy resistance, reducing treatment

side effects, enhancing immune system responsiveness, and ultimately

improving treatment efficacy. In this review, we primarily focus on the

impact of various immune cell types during CRC development,

summarizing the characteristics of pan-apoptosis across these

immune cells. Additionally, we further outline future research

trends and challenges in elucidating the mechanisms of immune cell

pan-apoptosis in CRC.
2 Characteristics of immune cell
alterations within the immune
microenvironment of CRC

The tumor microenvironment (TME) refers to the localized

environment surrounding tumor cells (16). This specialized region

encompasses not only the tumor cells themselves but also a variety

of non-tumor cells, extracellular matrix, blood vessels, lymphatic
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vessels, and an array of molecular signals (17, 18). The TME plays a

pivotal role in tumor progression and metastasis by regulating

signals for tumor cell proliferation and survival, reshaping the

chronic inflammatory milieu, altering angiogenesis and

lymphangiogenesis, and facilitating immune evasion (19, 20).

Among these components, immune cells are considered central

players in mediating these functions, a perspective that is equally

applicable in CRC-TMEs (21). Therefore, a comprehensive

understanding of the state of immune cells within the CRC-TME

is crucial for effectively modulating the TME, thereby inhibiting

CRC metastasis and progression and ultimately improving patient

survival rates.
2.1 T cell

Tumor-infiltrating lymphocytes (TILs) represent a major

component of the immune microenvironment in CRC, primarily

comprising T cells and B cells (22, 23). Among these, T cells—

including CD8+ T cells and CD4+ T cells—constitute the most

abundant and distinctive immune cells within the tumor immune

microenvironment. CD8+ T cells, also known as cytotoxic T

lymphocytes (CTLs), are a crucial part of the adaptive immune

system and serve as the primary effector cells in antitumor immune

responses (24). Under normal conditions, CTLs can directly kill

tumor cells by recognizing tumor antigens and can further enhance

tumor cell lysis by secreting various cytokines (25). However, an

increasing number of studies have revealed that CRC employs

multiple strategies to disrupt this critical immune response. First,

CRC can remodel the TME by mechanisms such as hyaluronic acid

accumulation, which hinders the recruitment of CD8+ T cells and

exacerbates tumor malignancy (26). Additionally, CRC can inhibit

CTL cytotoxic activity by expressing immune checkpoint molecules

and secreting immunosuppressive cytokines, including interleukin-

10 (IL-10) and transforming growth factor-b (TGF-b) (27). Finally,
at the epigenetic level, the loss of RNA N6-methyladenosine

methyltransferase Mettl14 has been shown to cause dysfunction

in CD8+ T cells (28).

CD4+ T cells can further differentiate into a variety of

functionally distinct subpopulations, including helper T cells

such as Th1 and Th17 cells, as well as regulatory T cells (Tregs).

This process encompasses the intricate regulatory effects of the

microenvironment on immune cells, wherein various cytokines

play pivotal roles. For instance, interferons facilitate the

differentiation of Th1 cells, while interleukin-4 promotes the

differentiation of Th2 cells. Moreover, the accumulation of lactate

within the tumor microenvironment can inhibit the proliferation

and functionality of CD4+ T cells, concurrently fostering the

differentiation of Tregs. Furthermore, intercellular interactions

significantly influence the transition of CD4+ T cells into distinct

subpopulations. Notably, M2 macrophages secrete IL-10, thereby

enhancing the formation of Tregs. Overall, this represents a complex

and finely-tuned process. These subpopulations play complex roles

in the progression and metastasis of CRC, often acting as a “double-

edged sword.” For instance, Th17 cells promote tumor growth and

metastasis by secreting cytokines like interleukin-17, which suppress
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the immune characteristics of the microenvironment. Consequently,

Th17 cell infiltration is generally associated with poor prognosis.

One study analyzing the TME in 125 frozen colorectal tumor

specimens found that patients with high expression of the Th17

cluster experienced worse outcomes, whereas those with high

expression of the Th1 cluster exhibited prolonged disease-free

survival (29). Tregs are thought to play a crucial role in tumor

metastasis by inducing “phenotypic plasticity” during tumor spread

through the co-expression of pro-inflammatory transcription

factors. Beyond their immunoregulatory functions, Tregs have also

been implicated in the metabolic adaptation within the CRC-TME In

this context, Tregs assist tumor cells in surviving under conditions of

nutrient deprivation and hypoxia by regulating metabolic stress,

thereby enhancing capacities such as lactate uptake and fatty

acid metabolism (30). A study that assessed Tregs by

immunohistochemically evaluating the characteristic molecule

forkhead box P3 (FOXP3) found that high FOXP3+T regs

infiltration was associated with shorter relapse-free survival and

disease-specific survival, indicating poorer prognosis for patients

with elevated Treg levels (31).
2.2 Data collection for proteomics and
essential hypertension

In CRC, B cells primarily influence the TME through the

secretion of key factors and interactions with tumor cells. Studies

have shown that B cells can activate T cells by presenting tumor

antigens in CRC, thereby enhancing the antitumor immune

response (32, 33). Additionally, B cells produce antibodies that

can either directly neutralize tumor cells or mediate tumor cell

killing through antibody-dependent cell-mediated cytotoxicity

(ADCC) (34). However, it is important to recognize that B cells

can sometimes have a detrimental effect on CRC. Research indicates

that B cells within the CRC-TME can secrete growth factors that

promote tumor growth and invasion (35). Moreover, B cells are

involved in the formation of tertiary lymphoid structures (TLSs),

which consist of CD20+ B cells, CD4+ follicular helper T cells, and

follicular dendritic cells. A series of preclinical and clinical studies

have found that TLS formation is associated with a lower risk of

disease recurrence and improved prognosis, suggesting that TLSs

play a significant role in CRC-related immune responses and

disease progression (36, 37). Thus, the role of B cells in CRC

growth and metastasis warrants careful consideration.
2.3 Macrophage

As a crucial subset of TME cells, tumor-associated macrophages

(TAMs) primarily originate frommonocytes in the bone marrow and

play a significant role in the initiation, progression, and invasion of

CRC (38, 39). The influence of TAMs on patients with CRC remains

contentious, largely due to the distinctive characteristics of TAMs. As

a highly heterogeneous and plastic cell population, TAMs interact

with the TME in various ways depending on their subtype. Anfray
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et al. (40). identified at least two subtypes of TAMs within the TME:

classically activated M1 macrophages and alternatively activated M2

macrophages. M1 macrophages exert antitumor effects primarily

through the secretion of cytokines, including interleukin-6,

interleukin-12, and tumor necrosis factor a (TNF-a), which

directly kill tumor cells (41). In contrast, M2 macrophages play a

role in tumor progression by contributing to basement membrane

disruption and deposition, leukocyte accumulation, angiogenesis, and

immune suppression (42). Additionally, macrophages are

instrumental in remodeling the TME matrix, with the expression of

various remodeling enzymes promoting an environment conducive

to CRC growth. A study conducted with single-cell sequencing and

spatial analysis of tumor and adjacent normal tissues from five non-

metastatic patients found that interactions between fibroblasts and

macrophages facilitate TME remodeling. This process contributes to

the formation of a fibrotic microenvironment. Consequently, this

remodeling prevents lymphocyte infiltration into the tumor core,

thereby protecting CRC (43).
2.4 Neutrophils

Neutrophils are the most widely distributed cells in the innate

immune system. They participate in tumor cell proliferation and

suppress other immune cells. This involvement occurs through

inflammatory signaling pathways, thereby exerting antitumor

effects. In cancer, tumor-associated neutrophils (TANs) are

classified into two phenotypes: N1 and N2 (44, 45). N1

neutrophils are considered to possess antitumor functions, while

N2 neutrophils are associated with protumor activities. A meta-

analysis evaluating the neutrophil-to-lymphocyte ratio (NLR) and

TANs in relation to cancer prognosis has demonstrated that both

NLR and TANs hold clinical promise as prognostic indicators of

poor cancer outcomes (46). The role of neutrophils in CRC has

garnered significant research interest, particularly regarding their

formation of extracellular traps, known as neutrophil extracellular

traps (NETs). Elevated levels of NETs are frequently observed both

in vivo and in vitro in CRC patients and are closely associated with

tumor recurrence and metastasis (47, 48). NETs often facilitate the

adhesion of circulating tumor cells (CTCs) to tissue surfaces,

thereby increasing the migration of CRC cells to critical areas of

the body, such as the liver, lungs, and peritoneal cavity (49).
2.5 Natural killer cells

Natural killer (NK) cells, as the first line of defense in the innate

immune system, play a crucial role in antitumor responses. A study

found that a higher abundance of CD56-positive NK cells was

significantly associated with prolonged overall survival in rectal

cancer patients who underwent chemotherapy (50). However, NK

cells are not solely enhancers of antitumor responses. NK cells can

also promote the production of vascular endothelial growth factor

(VEGF) and angiopoietins, indicating their role in facilitating

angiogenesis (51, 52).
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The immune system is a key component of the TME. Immune

cells in CRC patients exhibit high plasticity, and changes in the

cytokine milieu or metabolic conditions can influence the

phenotype and function of these immune cells. Therefore, when

evaluating the TME, it is crucial to consider the frequency and

phenotypes of immune cells within the tumor. In summary, the

significant impact of various immune cells on CRC progression is

illustrated in Figure 1.
3 Characteristics of cellular
pan-apoptosis in the immune
microenvironment of
colorectal cancer

The concept of pan-apoptosis was first introduced by the

Malireddi team, who identified a protein complex subsequently

termed the PANoptosome, which can induce a distinct form of cell

death (13). Pan-apoptosis encompasses features of pyroptosis,

apoptosis, and necroptosis, involving various factors that are

integral to immune responses. Its significance lies in driving innate

immune responses and inflammation, with detailed signaling

pathways illustrated in Figure 2. Consequently, pan-apoptosis plays

a crucial role in tumor initiation and treatment (53). A study

evaluating the expression of PANoptosome across 33 cancer types,

alongside genomic, epigenomic, and prognostic analyses, found that

elevated PANoptosis scores were closely associated with the

infiltration levels of most immune cells within the TME and across
Frontiers in Immunology 04
various cancers. In other words, patients with high PANoptosis

scores benefited from immunotherapy, exhibiting improved

survival outcomes (54). It is currently widely accepted that pan-

apoptosis is linked to the modulation of innate immune responses

and inflammation and cannot be solely attributed to pyroptosis,

apoptosis, or necroptosis in isolation. Therefore, it is essential to

analyze the pan-apoptotic characteristics of various immune cells

within the CRC immune microenvironment and their potential as

therapeutic targets. The following discussion will elaborate on several

immune cells that may be influenced by the occurrence of

PANoptosis within the CRC immune microenvironment.
3.1 Characteristics of Pan-apoptosis
in neutrophils

Neutrophils, the most prevalent type of leukocyte, are integral

to the body’s initial defense against pathogenic invasion. Recent

studies have elucidated their involvement in the mechanisms

underlying PANoptosis, a novel form of cell death. The

stimulator of interferon genes (STING) has emerged as a

significant inducer of PANoptosis, facilitating immune responses

directed toward tumors. One pivotal investigation revealed that the

activation and dimerization of STING lead to the direct

phosphorylation of TBK1 and IRF3, which subsequently results in

the upregulation of apoptosis, pyroptosis, and necroptosis,

ultimately culminating in pan-apoptosis (55). The TANs have

drawn significant attention as inflammatory biomarkers within
FIGURE 1

Characteristics of immune cell alterations in the immune microenvironment of colorectal cancer.
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the TME. Evidence suggests that the pan-apoptosis of neutrophils is

intricately linked to tumor progression and patient prognosis in

various malignancies, such as lung cancer and thyroid cancer

(56, 57). Specifically, in the context of non-small cell lung cancer,

TANs that exhibit enhanced PANoptosis contribute to the

immunosuppressive milieu within the TME, thereby promoting

tumor growth. Understanding the multifaceted roles of TANs is

essential for elucidating the mechanisms underlying CRC

progression and prognosis. This knowledge opens promising

avenues for the development of novel therapeutic strategies aimed

at modulating neutrophil behavior in the TME.
3.2 Tumor-associated macrophages

PANoptosis has the capacity to directly induce tumor cell death,

serving as a potential therapeutic target in cancer treatment.

Moreover, a close relationship exists between innate immunity

and PANoptosis, with the PANoptosome playing a crucial role in

inflammatory immune responses, particularly evident in

macrophages (58). Within the TME, TAMs primarily originate

from bone marrow-derived monocytes, and the associated cell

death pathways often exhibit intricate multi-level crosstalk.

Similar to other cell types, the characteristics of PANoptosis in

TAMs are influenced by three key genes: TAK1, CDK1, and

SHARPIN. Transforming growth factor-beta-activated kinase 1

(TAK1) is a fundamental component of both innate and adaptive
Frontiers in Immunology 05
immune signaling and acts as a master regulator of PANoptosis.

Research at the cellular level has revealed that macrophages with

TAK1 deficiency exhibit necroptosis driven by the RIPK3-MLKL

pathway, independent of RIPK1 kinase activity. In vivo studies

indicate that inactivation of TAK1 leads to myeloid proliferation

and a severe sepsis-like syndrome driven by the RIPK3-caspase-8

signaling axis (59).

In pancreatic ductal adenocarcinoma (PDAC), RNA

sequencing and multiplex immunofluorescence have shown that

early-stage liver metastatic patients (T1M1) exhibit increased

expression of mixed lineage kinase domain-like pseudokinase

(MLKL). These patients also demonstrate enhanced necroptotic

pathways compared to non-metastatic patients (T1M0). This

suggests that MLKL-driven necroptosis recruits macrophages,

amplifying the tumor’s CD47 “don’t eat me” signal and inducing

the formation of macrophage extracellular traps to activate CXCL8.

CXCL8 further initiates epithelial-mesenchymal transition (EMT),

ultimately supporting liver metastasis in PDAC (60). In CRC,

therapeutic resistance is significantly influenced by the TME,

where TAMs play a pivotal role. Oxaliplatin (OX), a third-

generation platinum-based drug, is widely utilized as a first-line

chemotherapy agent for CRC. However, M2-type TAMs serve as

critical mediators of OX resistance. One study demonstrated that

M2-TAMs confer OX resistance by enhancing METTL3-mediated

m6A modification of cellular RNA. Targeting the necroptosis

pathways in M2-TAMs presents a promising strategy to

effectively mitigate OX resistance in CRC.
FIGURE 2

Schematic representation of intracellular signaling pathways in the process of panoptosis.
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3.3 T cell

The cancer immune cycle provides a framework for

understanding the mechanisms that activate T cell responses to

tumors. However, this cycle is frequently constrained by T cell

ignorance, a phenomenon induced by tumor-intrinsic immune

editing, which obstructs the initiation and sustained engagement

of adaptive immunity. Targeting PANoptosis could offer a novel

approach to impede immune evasion, creating a positive feedback

mechanism that enhances immune activation and helps counteract

the immunoresistance observed in persistent tumors.

Recent investigations utilizing ultrasound nanomedicine

combined with nano/gene-engineered extracellular vesicles have

introduced innovative strategies for tumor immune re-editing.

These approaches have demonstrated the ability to induce a

highly immunogenic form of pan-apoptosis within tumors (61).

Within the TME, PANoptosis stimulates antigen-presenting cells,

promotes the cross-priming of CD8 T cells, and strengthens the

overall anti-tumor immune response. Furthermore, T cell antigen

receptors (TCRs) within the TME enable T cells to effectively

identify both self and non-self antigens. This recognition process

allows T cells to detect aberrant expression of endogenous proteins

in cancer cells, influencing their differentiation and functional

capabilities (62). Research focusing on melanoma has revealed

that wild-type tumor cells can adapt to CTL attacks by

modulating their mTOR signaling pathway. This adaptation

involves shifting towards enhanced mTORC2 activity, which

helps them evade apoptosis and necroptosis (63).

In CRC, tumor cells may leverage various signaling mechanisms

to avoid inherent pan-apoptosis, thereby resisting attacks from T

cells. This evasion likely plays a significant role in the dynamics of

cancer immune responses and highlights the necessity of further

exploring this pathway for developing novel therapeutic strategies

within the field of immuno-oncology.
3.4 Others

PD-1 (Programmed Cell Death Protein 1) is an inhibitory

receptor expressed on the surface of T cells and other immune

cells, while PD-L1 (Programmed Cell Death Ligand 1) is

predominantly expressed on tumor cells and certain immune

cells. This pathway promotes immune evasion within the tumor

microenvironment by suppressing T cell activity and proliferation.

PANoptosis plays a significant role in regulating the PD-1/PD-L1

pathway, influencing immune checkpoint modulation (64).

Pembrolizumab, a newer class of monoclonal antibody targeting

PD-1, has been approved for the treatment of various cancers,

including microsatellite instability-high (MSI-H) or mismatch

repair-deficient (dMMR) CRC. This agent enhances anti-tumor

immune responses by blocking the interaction between PD-1 and

PD-L1, thereby ameliorating T cell apoptosis. Numerous

chemotherapy agents, such as sorafenib, the frontline treatment

for advanced hepatocellular carcinoma (HCC), can induce various
Frontiers in Immunology 06
forms of programmed cell death (PCD) including pyroptosis,

apoptosis, and necroptosis. Sorafenib, in particular, has been

shown to concurrently trigger all three PCD pathways, effectively

leading to the elimination of tumor cells. Beyond its direct impact

on tumor cells, PANoptosis exerts multifaceted, comprehensive,

and sustained effects on immune cells. The signals generated by

PANoptosis not only heighten the production and release of danger

signals and chemokines but also act as an urgent call to action for

the immune system. This call prompts the immune system to

investigate, leading to enhanced immune cell migration,

phagocytosis, antigen processing, MHC loading, maturation, and

the cross-priming of T cells. This observation is consistent with

findings that necroptotic cells can augment phagocyte-mediated

cross-priming of CD8 T cells. Through these complex mechanisms,

PANoptosis strengthens the capacity of immune cells to mount a

robust and sustained immune response, not only enhancing direct

cytotoxic effects on tumors but also amplifying systemic

immune surveillance.
4 Conclusion

In CRC, the interplay of various forms of cell death enhances the

process of PANoptosis, a complex mechanism that plays a role in

tumor initiation, progression, and therapeutic responses under

diverse conditions. This review underscores the critical importance

of PANoptosis in regulating immune responses within the tTME. It is

essential to recognize that PANoptosis may act as a double-edged

sword in cancer treatment, potentially promoting the growth of

cancer cells. The intricate nature of PANoptosis involves both

genetic and epigenetic modifications. Additionally, one of the

significant obstacles in utilizing PANoptosis therapeutically is the

inconsistent expression and function of molecules associated with

PANoptosomes, which can vary across different stages of CRC.

Despite these challenges, progress in molecular, genetic, and

epigenetic targeting and delivery systems offers promising

possibilities for leveraging PANoptosis as an effective tool. Coupled

with advancements in precision and personalized medicine, these

developments can enhance CRC treatment outcomes.

This review also highlights the profound influence of the

immune microenvironment in CRC on various immune cell

types. Moreover, we examine the dual role of PANoptosis in

developing future therapeutic approaches for CRC. Identifying

key regulators of PANoptosis and comprehending the underlying

mechanisms are crucial, as these insights could pave the way for

new targeted and personalized treatment options for patients.
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