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Biological sex is closely associated with the properties and extent of the immune

response, with males and females showing different susceptibilities to diseases

and variations in immunity. Androgens, predominantly in males, generally

suppress immune responses, while estrogens, more abundant in females, tend

to enhance immunity. It is also established that sex hormones at least partially

explain sex biases in different diseases, particularly autoimmune diseases in

females. These differences are influenced by hormonal, genetic, and

environmental factors, and vary throughout life stages. The advent of gender-

affirming hormone therapy offers a novel opportunity to study the

immunological effects of sex hormones. Despite the limited studies on this

topic, available research has revealed that testosterone therapy in transgender

men may suppress certain immune functions, such as type I interferon

responses, while increasing inflammation markers like TNF-a. Transgender

women on estrogen therapy also experience alterations in coagulation-related

and inflammatory characteristics. Furthermore, other possible alterations in

immune regulation can be inferred from the assessment of inflammatory and

autoimmune markers in transgender individuals receiving hormone therapy.

Understanding the complex interactions between sex hormones and the

immune system, particularly through the unique perspective offered by

gender-affirming hormone therapies, may facilitate the development of

targeted therapies for infections and autoimmune diseases while also

improving healthcare outcomes for transgender individuals. Here we review

immune dynamics throughout life in both sexes and provide a summary of novel

findings drawn from studies exploring gender-affirming hormone therapy.
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1 Introduction

The immune system combats internal and external threats by

employing a multitude of tools that operate in strict unison to create

a formidable, near-infallible machine, which not only detects and

neutralizes the ‘non-self’ but also continuously (re)assesses its foes

and (re)calibrates its approaches while unleashing its force majeure

(1, 2). Despite its limitations that come in various forms (eg, genetic

and acquired deficiencies or evasive infections) and the well-

understood fact that it is not devoid of errors in target selection

(ie, autoimmunity) (3, 4), the human immune system is a dynamic

biological network that is more often than not triumphant in the

evolutionary arms race against ever-changing internal and

external threats.

Such a comprehensive organization with a battlefield that

encompasses the whole organism requires systems-wide check-

and-balance mechanisms (5). These control mechanisms are

enforced and maintained by numerous regulators, including the

multitude of factors that are directly or indirectly associated with

biological sex. Males and females differ not only in their

susceptibility to certain diseases but also in how their immune

systems respond to infections, vaccines, cancers, and other

conditions (6). These differences are influenced by a combination

of genetic, hormonal, and environmental factors, with sex

hormones being critical since they underlie the divergent

characteristics of sex (7). Androgenic hormones are generally

accepted to weaken immune response, while estrogenic hormones

usually have the opposite effect (8–10). Nonetheless, it has been

notoriously challenging to determine the degree to which these

hormones alter immune functions, largely because it is almost

impossible to account for all biases and confounders that emerge

from comparing the two sexes. Age and developmental stage are

other sub-characteristics that further complicate analyses since

these properties alter the production and response to sex hormones.

The emergence of gender-affirming hormone therapy (GAHT)

and its utilization in different age groups represents a unique

opportunity to not only understand how transgender individuals

respond to this treatment but to also examine the impact of sex

hormones on immunity. Comprehension of the impacts of the

primary sex hormones on immune functioning can yield essential

knowledge that can facilitate the development of target-specific

medical treatments in infections or autoimmune disease and

improve healthcare strategies concerning transgender individuals.
2 Innate and adaptive defense

The immune system consists of both innate and adaptive

defense mechanisms. Innate immunity acts as the first line of

defense by responding to structures that are consistently unique

to invading microorganisms, which are recognized by the pattern

recognition receptors of primarily dendritic cells and macrophages

(1). The macrophages are masters of phagocytosis and cell lysis,

yielding a powerful initial response to outside insults. The innate

response also induces cytokine release and is the principal source of

inflammation (11). Despite their strong presence and early
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response, macrophages and the innate response as a whole cannot

recognize or deal with all threats, necessitating deployment of the

otherwise-specialized elements of the immune system. Cytokine

release is one of the factors that activates these specialized systems,

namely the adaptive immune response, which recognizes and

eliminates pathogens and infected cells through specific cytokine

secretion and antibody production, while also creating an archive of

previously-recognized threats (12). Lymphocytes, with their

multitude of sub-specialized cells, are the cornerstone of the

adaptive immune response. They produce antibodies and employ

cell-mediated immune responses, which are respectively the

responsibilities of B and T lymphocytes (12).
3 Sex hormones

The classical categorization of sex hormones relies upon their

different distributions in the sexes, with androgens dominating in

males and estrogens dominating in females (Figure 1). Other

categories with numerous members also exist. For instance, the

progestogens include progesterone, which is a crucial hormone for

females and contributes to numerous sex-related and unrelated

functions (13). Irrespective of their sex-based distribution or

physiological impact, all sex hormones are produced in healthy

individuals and are structurally defined as steroids, which contain

the 4-fused-ringed, 17-carbon steroid skeleton (“gonane”). This

skeleton provides the fundamental basis for the unique physical

and physiological properties of sex hormones, facilitating their

transport, permeability, recognition, and functions (14, 15). Sex

hormones exert their biological effects by binding to nuclear

receptors, which function as ligand-activated transcription factors.

Upon hormone binding, these receptors undergo conformational

changes, dimerization, translocate to the nucleus, and bind to

specific hormone response elements within the genome, thereby

regulating the expression of target genes (16).
4 Sex-related immune differences

Sex-specific differences in susceptibility to autoimmune

diseases, certain cancers, and infectious diseases have been

documented widely. It is accepted that the evolutionary basis for

this difference is the different requirements of the male and female

immune systems –due to specific challenges unique to each sex. In

particular, the female immune system needs to survive the

immunosuppressive pregnancy period to create offspring while

ensuring that the metabolic cost of maintaining the immune

system is not too high, and also, immune response must be

flexible enough to allow for pregnancy (17, 18). At baseline,

females have stronger innate and adaptive immune responses

compared to males, leading to faster infection clearance than

males, better vaccination outcomes, and more potent serological

response (19). This advantage is not solely confined to the urgency

of the response either; males suffer from higher mortality rates after

infection, even when adjusted for age, whereas females often mount

stronger humoral immune responses, cytokine production, and T
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1501364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yalcinkaya et al. 10.3389/fimmu.2024.1501364
cell response after immune challenge (20), which likely explains

their higher survival rates following infectious diseases (21).
4.1 Circulatory cells

A well-established method for assessing immunological states

or properties is the characterization of circulating immune cells. Sex

influences the composition of circulating white blood cells

(leukocytes), either through sex hormone-related or independent

mechanisms. Aggregated data from studies evaluating responses to

different pathogens show that the number and activities of cells

generating the innate immune response, including macrophages

and dendritic cells, are higher in females relative to males (22, 23).

Of note, the immune response is predominantly driven by type 1

helper T cells (Th1) and cellular immunity in males, while the
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female sex exhibits superior properties regarding B and T cell

maturation and a stronger antibody response that is largely

attributable to the dominance of type 2 helper T cells (Th2) (23,

24). Another subset of T helpers that has strong evidence of sex

hormone-based modulation is the Th17 subset, which is

downregulated by both estrogens and androgens (25) and is

involved in the pathophysiology of autoimmune diseases through

various mechanisms including their production of pro-

inflammatory cytokines that sustain/prolong inflammation (26,

27). Flow cytometric immunophenotyping of healthy volunteers

reveal higher levels of CD4+ T cells in females, which may indicate

enhanced thymic activity –an organ with profound effects on

lymphocytes and autoimmunity (28). The elimination of

autoreactive T cells in the thymus via negative T-cell selection

may be less stringent in females compared to males. The

autoimmune regulator (AIRE) gene plays a critical role in this

process by promoting the expression of tissue-specific antigens in

medullary thymic epithelial cells, which are then presented to naïve

T cells (29). Sex hormones drive AIRE expression in medullary

thymic epithelial cells, and studies of human thymic samples and

mouse models have revealed that AIRE expression is higher in

males compared to females, partially explaining the divergence in

developing autoimmune disease (30, 31). The sex differences also

extend to CD19+ B-cells, regulatory T cells, plasma cells, and both

naïve CD8+ and mucosa-associated invariant T-cells (32). On the

other hand, females generally have lower absolute or relative levels

of monocytes, myeloid cells, and lower absolute counts of natural

killer (NK) cells than males (33). Furthermore, the adaptive

immune response shows a more apparent sexual difference in

antibody responses, wherein females appear to have greater

antibody secretion, higher basal immunoglobulin levels, and

higher B cell counts (22).
4.2 The X chromosome

In addition to the aforementioned factors, male and female

infectious responses are directly linked to genetic, biological, and

behavioral differences, which include previous exposures to

pathogens and sex hormones (20, 34). However, the stronger

response to infections among females is also described in the

earlier stages of life, before sex hormones exert their ultimate

effects, indicating that sex chromosomes and other baseline

differences could offer additional explanations for immunological

divergence (35). Autoimmune disease susceptibility is also relatively

higher among females even before puberty, although the differences

between the sexes are less apparent (24). The X chromosome

contains at least 50 genes with well-known immune-related

functions, including some important for immune cell identity

(FOXP3), cellular activation and intracellular signaling (CD40LG,

TLR7, IRAK1, IL13RA1/2, NEMO, TASL, IL-9R), leukocyte

trafficking (CD99, CXCR3), immune cell differentiation and

proliferation (IL-2RG, BTK), and cellular metabolism (OGT,

CYBB) (20). Although most alleles on one of the X chromosomes

are randomly silenced during female embryogenesis, a subset of

genes escape this inactivation. X-inactivation escape results in a
FIGURE 1

Summary of the Hypothalamic–pituitary–gonadal axis. It must be
noted that androgens and estrogens are produced in both males
and females in different tissues, at vastly different concentrations.
The figure only describes the primary production pathways in order
to emphasize sex-related differences with respect to hormonal
production, while also showing the influence of luteinizing hormone
(LH) and follicle stimulating hormone (FSH) on the gonads and the
production of the respective hormones. GnRH, Gonadotropin-
Releasing Hormone.
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gene dosage difference between women and men, which is likely a

major factor underlying immune function differences between the

sexes. Furthermore, the polymorphism of X-linked genes, cellular

mosaicism for X-linked parental alleles, and X-linked miRNA

upregulation of several proteins have been suggested to account

for immunological sex differences and potentially to create

advantages for women in terms of improved host responses to

infectious challenges (36), possibly as a result of the modulation of

cellular machinery during innate immune responses (37). A recent

study proposed a novel mechanism for the increased risk of

autoimmunity in diseases with a female bias. The authors

suggested that immune responses in patients with diseases such

as SLE resulted in targeting of components contributing to the X-

inactivation process (38). The number of X chromosomes also

impacts autoimmune susceptibility, as clearly demonstrated by the

higher frequency of female-discriminant autoimmune diseases

(systemic lupus erythematosus and Sjögren’s syndrome) among

individuals with sex chromosome aberrations such as Klinefelter

Syndrome (47XXY) and trisomy X (47XXX) (20). However, women

with Turner syndrome (45X) also have an elevated risk of

developing female-biased autoimmune thyroid disease, which

may seem paradoxical given their single X chromosome

karyotype (39).
4.3 The Y chromosome

Despite well-established evidence highlighting the strong role of

the X chromosome in regulating immune-related genes, the Y

chromosome does have some regulatory influence in shaping

immune characteristics in males, as well as being a source of

male-specific genetic governance. Evidence for this impact has

been gained from different approaches, including murine models

of chromosome Y deficiency, detection of chromosome-specific

immunoregulatory effects, and examination of manifestations in

human males with loss-of-Y. For instance, a mutant mice strain was

found to demonstrate Y-linked immunodeficiency involving B and

NK cell depletion without an impact on T cells (40). It may be

tempting to associate such attributes to hormonal alterations that

could confound the analyses; however, it has been demonstrated in

coxsackievirus-infected mice that the reduced survival attributed to

Y chromosome polymorphism was unassociated with testosterone

levels (41), indicating a non-hormonal regulatory role for the Y

chromosome on immune response (41). In men with loss-of-Y,

fibrotic and inflammatory changes involving macrophages have

been understood to underlie cardiac injury (42). Furthermore,

polymorphisms in the Y chromosome have been associated with

transcriptional changes in macrophages and CD4 T cells, which

may be associated with allergic encephalitis and multiple sclerosis,

respectively (43).
4.4 Infectious susceptibility

The disparity in infection response has most recently been shown

by the COVID-19 pandemic (44), with higher estrogen levels yielding
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better outcomes among patients (45). It is however crucial to note

that while male bias regarding susceptibility to infectious disease is

almost universally true for the great majority of infectious agents (46,

47), females may suffer from relatively greater disease burden and

severity when exposed to certain infections, including influenza,

Legionella pneumophila, and Toxoplasma gondii (48, 49), which

might be associated with estrogen levels based on studies showing

lower severity before puberty (50) and also weakened immune

response in pregnancy (51). However, lower susceptibility is likely

to translate into lower overall disease burden in the female

population. Testosterone, on the other hand, causes a broad

suppression of defensive responses and may ease the spread and

impact of different types of infections, including parasitic diseases (46,

52) and uropathogenic Escherichia coli (53), among others. Of note,

despite the much higher frequency of urinary tract infection in

females and the higher proportion of Escherichia coli isolation in

female patients compared to males, estrogen has been suggested to

alter virulence and neutrophil responses which come together to

improve the clearance of this pathogen in females (54). Furthermore,

androgen exposure in mice has been shown to restrict the phagocytic

prowess of neutrophils attracted to the site of infection, plausibly

linked to their stunted maturation (55) and exemplifying a direct

impact on innate immunity. This limited functionality of neutrophils

in the infectious microenvironment has been replicated by other

research, this time showing that a higher number of neutrophils are

drawn to the site of infection in male mice (further aggravated by

testosterone administration), presumably to counteract their limited

capacity to clear the infection due to immaturity and limited

functionality (56).
4.5 Vaccine efficacy and adverse effects

Immunological sex variations are also evident in terms of vaccine

efficacy and side effects. Females have better seroconversion but also a

higher likelihood of adverse events following immunization,

especially local adverse events and allergic reactions (47, 57, 58).

The initial response to vaccination is the innate immune system

recognizing the non-self, leading to localized inflammation at the

injection site and possibly activating allergic response pathways,

including anaphylaxis. This is followed by adaptive immune

activation which may be boosted by estrogen presence, conferring

an advantage for better vaccine response. As such, the female

immune system can create a stronger and possibly longer-lasting

antibody repertoire after receipt of various vaccines, including

smallpox, yellow fever, influenza, and hepatitis A and B (6).
5 Immune differences throughout life
and sex hormones

5.1 Early impacts

Apart from the ‘mini puberty’ during infancy, sex hormone

production lays dormant throughout childhood (59), with the

primary exceptions being gradual increases in anti-Müllerian
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hormone (in females) and inhibin B (in males). In infants, a higher

overall leukocyte count is observed regardless of sex, which

necessitates age-specific reference intervals for clinical purposes

(60). In terms of cell types and their abundance in the circulation,

there are two ‘flips’ between neutrophils and lymphocytes

throughout life, both within the early childhood. Data from

postpartum studies and longitudinal data collection show that

neutrophil count is generally higher compared to lymphocyte

count in neonates until around 1-2 months, but lymphocytes

prevail as the most common cell type from thereon until 3-5

years of age –when neutrophils regain the lead (61–65). This

second ‘flip’ in the neutrophil-to-lymphocyte ratio is postulated to

reflect immune maturation and the lifelong balance between the

activities of the innate and adaptive immune systems. Moreover, the

cytokine profiles also indicate an inversion around 1-3 years of age

from a largely anti-inflammatory potential to a vigilant

preparedness to produce and secrete pro-inflammatory cytokines

(66, 67). These age-related variations during early childhood appear

to lose clinical relevance quite swiftly, giving way to the dormancy

period of sex hormones in which the great majority of

immunological parameters are similar in boys and girls (Figure 2).

The early development of the immune system is greatly

influenced by environmental exposure as the immune system

begins recognizing threats and mounting responses of its own

after birth, giving rise to multidimensional variations in relation

with the bi-directional relationship between microbiome and

immune development (68). The fetal immune system prefers the

generation of regulatory T cells which suppress the differentiation

and activities of other T cells (69). This might be an adaptive

function that facilitates environmental tolerance and might also be

associated with the absence of threats. The neonate has
Frontiers in Immunology 05
susceptibilities to infections and allergies, which are explained by

the naïve adaptive immune system and the favoring of Th2

responses rather than Th1 – in correlation with the levels of

corresponding cytokines that reveal an anti-inflammatory profile

(70–72). Possible regulatory effects have been shown for microbial

exposure (68, 73), while breastfeeding and other environmental

exposures appear to salvage Th1 response to some degree (74).

Furthermore, neonates have rudimentary cellular responses due to

limited cytokine production and immaturity in antigen

presentation. Repeat challenges to the early immune system

generally result in weaker reactivity, a phenomenon recognized as

‘neonate tolerance’ that can underlie lifelong tolerance to select

antigens (75), which might be beneficial in the autoimmunity and

microbiome contexts but not in terms of initial infectious defense.

Indeed, the young innate immune system appears to fail in

mounting a sufficient response to pathogenic bacterial challenge

(76, 77), creating a predisposition to sepsis (78). This outcome is

partially explained by limited TLR-based activation despite the

intactness of the machinery required to mount such response (76,

79). Anti-viral and vaccine responses carry a similar hindrance: type

I, II, and III interferons suffer an impediment due to dysfunctional

signaling that cannot be attributed to lack of response elements

(72, 80, 81). These unique regulations involving different aspects of

immunity add a functional dimension to the limitations posed by

quantitative deficiencies in the cellular components of the immune

system in neonates and infants.

Although natural development gives way to more adult-like

immunoreactivity profiles in growing children, T cells still appear to

have limited inflammatory activation until adulthood (82). Infants

continue to manifest early immune system characteristics which

may remain relatively dominant well into school age and even
FIGURE 2

Early and pubertal differences regarding immune constituents and characteristics between boys and girls. Also, pubertal hormone changes
(testosterone and estrogen) and the changes in neutrophil and lymphocyte frequencies are summarized on an arbitrary longitudinal scale. CD4+,
Cluster of differentiation 4; CD8+, Cluster of differentiation 8; NK, Natural killer; T regs, T regulatory cells.
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puberty (65), but the immune system shows considerable

maturation throughout this period (83), particularly with the

acceleration of baseline pro-inflammatory potential and the decay

of the anti-inflammatory ‘buffer’ of cytokines (67, 84). This

maturation is exemplified by the generation of lifelong immunity

following vaccination or exposure to childhood infections among

school-age children; whereas, antibody levels created by earlier

vaccinations are known to diminish quickly (85). Nonetheless,

older infants and school age children appear to possess adult-like

expression of response elements, including HLA and TLR4 (67),

with relatively higher levels of TLR4 –but not TLR2– in boys (86).
5.2 Puberty

At the onset of puberty, a complex set of biochemical changes

occur in fairly quick succession. While the exact triggering

mechanisms are incompletely understood, the immediate origin

of pubertal hormonal changes is the pulsatile release of

gonadotropin releasing hormone from the hypothalamus, which

induces downstream effects on the pituitary, and in turn, the gonads

(Figure 1) (87). The systemic response differs based on sex, and

males emerge with a testosterone-dominated sex hormone profile,

while estradiol and progesterone are induced at far greater levels

among females (88, 89). This system is called the hypothalamic-

pituitary-gonadal axis, which primarily contributes to reproductive

development; whereas, in parallel, the hypothalamic-pituitary-

adrenal axis also gains increased functionality during puberty and

is closely associated with the development and maturation of

immune characteristics. There are very few studies that have

explored the immunological impact of sex hormones in this

specific period, so there is a paucity of specific data in this regard.

Males and females also differ in terms of the age of puberty onset

and its length, with female puberty beginning around 10-11 years of

age and reaching maturity by 15-16 years, while male puberty

begins later (11-12 years) and maturity may be delayed (17-18

years) –which increases the complexity of studying this period in

relative terms (90). However, available evidence points to a gradual

progression towards the immunological characteristics of

adulthood in the pubertal period, with few exceptions (Figure 2).

Puberty can trigger the onset of autoimmunity by inducing the

expression of androgen-regulated autoantigens. A study of patients

with autoimmune polyendocrine syndrome type I, caused by

biallelic loss-of-function mutations in the AIRE gene, identified

the prostate-specific enzyme transglutaminase 4 as a major

autoantibody target (91). Autoantibodies to this androgen-

regulated protein were unique to post-pubertal male patients and

longitudinal follow-up revealed that they were triggered by the

pubertal onset of transglutaminase 4 expression. Interestingly, the

finding of transglutaminase 4 autoantibodies in a single female

patient was attributed to receipt of androgenic treatment, which

might have triggered transglutaminase 4 (91).

A study involving pubertal and post-pubertal cisgender and

transgender individuals as well as post-pubertal patients with

juvenile systemic lupus erythematosus reported significantly

higher regulatory T cell counts in post-pubertal cisgender males
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compared to post-pubertal cisgender females (92). In recipients of

GAHT, regulatory T cells were found to experience significant shifts

that resembled the transcriptomic differences between cisgender

males and females, indicating that sex hormones indeed exert

ambivalent effects on immune characteristics during puberty.

Crucially, the sex-related differences in regulatory cell counts

disappeared, but transcriptomic differences were replicated in the

subset of patients with juvenile systemic lupus erythematosus. The

authors attributed this to a possible dysregulation of sex hormone

signaling in the presence of autoimmune pathologies (92).

5.2.1 Female puberty
During female puberty, the menstruation-related fluctuations in

estradiol, follicle-stimulating hormone and luteinizing hormone

begin, triggering secondary sex characteristics. In a study

evaluating peripheral blood mononuclear cells (PBMCs) before

and after puberty, estrogen was suggested to be associated with

differential methylation of numerous immune-regulating DNA

regions in pre- and post-pubertal PBMCs (93). Such variations

are also observed during the shorter periods in menstruation. For

instance, regulatory T cells with FOXP3, CD4 and CD25 positivity

are increased during the estrogen-dominated period of

menstruation but decreased following ovulation, indicating a

direct impact of estrogens in circulatory cell composition and

immunity (94). Taking into account the gradual settling of the

menstrual cycle into its adult characteristics during the early stages

of puberty, it is difficult to attribute the differences from males to a

single factor or hormone. However, population-wide analyses of

circulatory cells may shed some light into the development. For

instance, adolescent females are described to have relatively higher

levels of eosinophils and lower levels of monocytes compared to

males of similar age (95). A relatively recent population-based study

on this topic intriguingly showed higher eosinophils in males and

younger individuals, and male sex retained its significance even

after multivariable adjustment for many potentially-confounding

factors—including age (96). The low monocyte levels in female

adolescents perhaps foreshadow their relatively limited activity/

cytotoxicity in adult females compared to males (64, 95, 97).

Females have a considerably higher risk for the great majority of

autoimmune diseases, which often show a striking increase in

incidence following menarche (98–101), indicating the impact of

hormones and particularly the rise of estrogen. Furthermore,

premature puberty has also been associated with higher

likelihoods of autoimmune thyroiditis (102) and multiple

sclerosis (100).

5.2.2 Male puberty
Testosterone levels increase at three distinct time points in

males: during the prenatal, neonatal, and pubertal stages. The

former two peaks are accepted to facilitate the development

of the male reproductive tract. During male puberty, androgens

promote secondary sexual characteristics and, critically, trigger

spermatogenesis (103). Observational studies focusing on pubertal

changes in androgens show that boys experience a steep rise in

testosterone levels at and throughout puberty, usually maintaining

the upward momentum until 16–18 years of age followed by a
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plateau that often extends to middle age (89, 104). Despite limited

data regarding direct relationships with pubertal hormones, the

monocyte abundance in males appears to be consistent throughout

life (64), suggesting underlying mechanisms other than sex

hormones. Additionally, males appear to experience a marginal

delay in reaching leukocyte compositions characteristic of adults

(particularly with respect to regaining neutrophil dominance) (61–

64). This may be associated with the prolonged puberty period and

continuous rise in testosterone levels throughout puberty. In a

longitudinal study exploring genetic features during puberty,

analyses showed that males had a considerably larger number of

differentially-expressed genes relative to females (105). Taken

together with the divergence of DNA methylation features during

puberty (93) and the varying impacts of estrogen and testosterone

in this regard (106), the onset of puberty appears to have the

potential to at least partially shape the underlying properties

associated with immune response. In this context, studies

exploring DNA methylation in males and females have revealed

numerous differences that may have physiological and pathological

implications, including generally higher levels of autosomal

methylation in females (107), differentially-methylated regions

that associate with sex hormones (108), and variabilities in

immune response to cancer (109).
5.3 Adulthood

Sex hormones exert their most discernable impacts on immune

properties and functions during the adulthood. A comprehensive

summary of innate and adaptive immune characteristics in adults is

presented in Table 1. Furthermore, the typical impacts of androgens

and estrogens are summarized in Figures 3, 4, respectively.

5.3.1 Female immunity and estrogens
Estrogens enhance immune response, with the sole exception

suggested to be a mild-to-moderate decrease in cell-mediated

immune responses (18). However, they also contribute to a higher

vulnerability to autoimmune diseases (98–100). Estrogens promote

Th2 responses and stimulate antibody production, with evidence

showing an increase in regulatory T cells during the follicular phase

of the menstrual cycle when estrogen levels peak (94). In terms of

Th1, estrogens are accepted to yield overall promoting effects at low

concentrations and suppressive effects at high concentrations (7).

Estrogen improves neutrophil responses and decreases their

apoptotic potential (127) and activates B lymphocytes (222).

Although cellular senescence is associated with weaker immune

response (223), delayed apoptosis could extend the life of mature

immune cells, which may improve immunoreactivity during

infection but could also increase the likelihood of autoreactivity

(224). Therefore, the impact of estrogen appears to be advantageous

in the context of infectious response but detrimental for classical

autoimmune diseases in adults (225). Estrogen receptors are present

in the immune system with varying expression in different cell

types, influencing both innate and adaptive immunity as

demonstrated by the transcriptional and protein-level data

obtained from dendritic cells, T and B cells, and monocytes (226).
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5.3.1.1 Menstruation

It is also crucial to consider the fluctuations in estrogen levels

that occur throughout life. Before menopause, females typically

have about five times the circulating estrogen levels of males (227),

which is accepted to be the underlying factor causing Th2 activation

and Th1 suppression (6). However, levels can vary significantly with

the menstrual cycle and some females experience short periods

when their estrogen levels decline to male levels. These periods are

typically during the luteal phase of the menstrual cycle and lead to

activation of Th1 responses (7), mild inflammation, and marginal

elevation of specific inflammatory markers, such as C-reactive

protein (228). Furthermore, a meta-analysis of 110 studies

examining menstrual correlations with constituents of the

immune system revealed that the follicular phase (higher

estrogen) was associated with lower counts of circulatory immune

cells, including leukocytes, neutrophils, and particularly, monocytes

(125) – notably with very high heterogeneity (I^2) among results.

Other studies have shown stable B cell populations during

menstruation (137), higher regulatory T cells in the follicular

phase relative to luteal (94), and higher NK cell count in the

luteal phase relative to follicular (125, 137).

5.3.1.2 Pregnancy

Pregnancy also influences the immune system by triggering a

shift toward Th2 response and increased antibody production,

while general immunoreactivity declines with higher expression of

anti-inflammatory cytokines, ultimately resulting in lesser severity

of many but not all forms of autoimmune conditions (213). This

notion is supported by the fact that increasing estrogen and

progesterone levels during pregnancy would be expected to

suppress Th17 cells (25), which has been described previously

(197); however, contrasting results showing increases in Th17-

associated cells in pregnant women exist (132). The latter study

also showed lower circulatory lymphocyte levels, lower Th1/Th2

memory cells, and progressive declines in regulatory T cells during

pregnancy (both in absolute and relative terms) when compared to

non-pregnant women (132). Although the great majority of

immune cells rebounded to non-pregnant levels very swiftly

following delivery, it was notable that the memory cells did not

demonstrate this swift recovery, which is an interesting aspect that

warrants further study (132). NK cells are among the immune cells

that strongly deviate during pregnancy (229), both in the circulation

and pregnancy decidua. While the abundance of NK cells in the

decidua is recognized to facilitate placental development, the

cytotoxic subset of NK cells may decline in maternal circulation

(132) which facilitates implantation (230); however, available NK

cells appear to mount stronger responses to viral challenge

(specifically influenza) (229) in parallel with the pro-

inflammatory profile of monocytes and dendritic cells in pregnant

women with influenza (231). Nonetheless, suppression of the

cytotoxic potential of NK cells have been shown in other types of

stimulation, and it must be mentioned that NK-deficient mice

appear to experience better outcomes when infected with

influenza (134, 135). Taken together, pregnancy is a period when

the female immune system mounts relatively weaker immune

responses and less autoimmune potential that correlate with
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TABLE 1 Immune dynamics throughout adult life.

Male Female Important
notes for
autoimmune
or inflamma-
tory diseases

Pregnancy
(mostly
relative to
adult
female)

Menstruation
(mostly
relative to
adult female)

Andropause
& testoster-
one loss
(mostly
relative to
adult male)

Menopause
& estrogen
loss
(mostly
relative to
adult
female)

Innate

Pattern
recognition

↑ TLR4
expression in
neutrophils (110).
↑ TLR2 response
upon
stimulation (111).

↑ TLR3, TLR7,
TLR9 overall
expression and
response (111–
114).
↑ TLR2
expression in
monocytes (115).
↑ Response to
TLR7/8
stimulation (116).

↓ TLR2
expression in
the cervical
epithelium of
subjects with
miscarriage
(117).

↑ TLR4 after
orchiectomy in
mice (118).
↑ TLR2, ↓ TLR7, ↓
TLR8 in the ocular
surface of older
(>61 years) healthy
subjects (119).

↑ TLR2, ↓ TLR7,
↓ TLR8 on the
ocular surface of
older (>61 years)
healthy
subjects (119).

Phagocytes and
phagocytic
activity

↑ TNF production
in neutrophils
(110).
↓ Circulating
NOx levels (120).

↑ Phagocytic
activity of
neutrophils and
macrophages
(121).
↑ Antigen
presentation
(122).

↑ Immature
cells (123).
↓ Inhibitory
effect on
neutrophils
(124).

↓ Neutrophils in
follicular phase vs
luteal phase (125).

↓ Neutrophils in
orchiectomy vs
testicular
cancer (126).

↓ Neutrophil
absolute count
(127).
↓ Innate
cytotoxicity
(128–130).

Natural
killer cells

↑ Absolute
count (33).

↑ Activation
(cytotoxicity and
degranulation
upon IFNa
stimulation)
(131).

↓(slight)
Circulation; ↑
decidua (132).
↑ Relative in
repeated
miscarriage
(133).
↓ Cytotoxicity
after challenge
(exceptions
exist)
(134–136).

↑↑ Count in mid
and late luteal vs
follicular (137).
↑ (Slight)
cytotoxicity in mid
luteal vs
follicular (137).

↑ Relative with
androgen
deprivation (138).
↑ Following
orchiectomy (139).
↑↑ Absolute
count (140).

↑ Absolute count
(140, 141).
↑ Percentage in
premature
menopause vs
similar-age non-
menopause (142)
* Stronger
cytotoxic
response in
elderly females vs
elderly males
(both >70
years) (143).

Mast cells/
Eosinophils/
Basophils

↑(slight)
Eosinophil
count (144).

↓(slight)
Eosinophil count
(144).
↑ Mast cell
activity,
degranulation
(145).

↑ Eosinophil count
in asthmatic males
(↑↑ boys vs girls)
(childhood onset
flips the
relationship in
adulthood)
(144, 146).

↔ Eosinophils
and basophils
throughout
pregnancy
(147).

Complement
system

↑ C3 and
properdin levels
(148).
↓ Factor D (C3bB
cleavage) (148).

↓ C3 and
properdin levels
(148).
↑ Factor D (C3bB
cleavage) (148).

↑ C5 levels in
synovial fluid in
osteoarthritis (149).

↑ C3 and C4
levels, gradual
increase
throughout
pregnancy
(150).

↑ C3 levels in
luteal phase vs
follicular
(endometrial
tissue) (151).

↑ C3 (152).
↔ C4 (152).
↓ C3 and C4 in
non-ERT
compared to ERT
recipients (153).

Cytokines/
Chemokines

↑ IL10 upon
TLR8/TLR9
stimulation (154)
↑ IL1b and IL6
production of
macrophages
upon TLR4
stimulation (155).

↑ IL6 following
bacterial challenge
(156).
↓ TNF following
bacterial challenge
(157).
↑ CCL20 (limited
male data) (158).

↑ IL17 and IL23 in
females with RA
(but also higher
anti-inflammatory
TGF-b) (159).
↑ IL17 in male
patients with AS
but not females

↑ IL4 (162).
↓ T1 and T3
interferons
(163, 164).

↑ IL6 in early
follicular vs early
luteal (165).
↑ TNF early
follicular (166).
↓↓ IL1b, TNF,
IFNG, NFKB1,
TGFb gene

↓ IFNG expression
(138).
↑ IL1b, IL6, IL10
and TNF (168,
169).
↑ TNF after
orchiectomy in
mice (170).

↑ Pro-
inflammatory
(172).
↑↑ CCL20 (158).
↑(slight)
TNF (173).

(Continued)
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TABLE 1 Continued

Male Female Important
notes for
autoimmune
or inflamma-
tory diseases

Pregnancy
(mostly
relative to
adult
female)

Menstruation
(mostly
relative to
adult female)

Andropause
& testoster-
one loss
(mostly
relative to
adult male)

Menopause
& estrogen
loss
(mostly
relative to
adult
female)

Innate

↑ TNF production
in PBMC upon
TLR4
stimulation (156).

↑↑ IL10 following
bacterial
challenge (157).

(160).
↓ IL4 in RA; ↓↓ in
females with
RA (161).

expression in mid-
follicular phase vs
other phases (167).
↑ IL10 in follicular
vs early luteal
following bacterial
challenge (157).

↔ ICAM-1 and
VCAM-1 (171).
* Negative
correlation
between
testosterone and
soluble IL6
receptor (169).

Acute-
phase proteins

↓ or ↔ overall
inflammatory
activity
(testosterone-
mediated) (174).
↑ Albumin and
transthyretin
(negative acute-
phase
proteins) (175).

↑ CRP (176).
↓ Albumin and
transthyretin
(negative acute-
phase
proteins) (175).

↑ Erythrocyte
sedimentation
rate (177).
↓(slight)
Ferritin (147).
↑↑ Early
postpartum
(178, 179).

↑ CRP early
follicular (166).

↑ CRP in
hypogonadal males
(180).
↑ CRP in older
men (65 to 85+
age) (169).
↔ CRP in partial
androgen
deficiency
(171, 181).

Adaptive

B cells ↓↓ Circulating,
transitional, and
mature cells (182).
↓ Survival (182).
↓ Germinal center
migration
(autoimmune
potential) (183).

↑ Overall function
and count (184,
185).
↓ Lymphopoiesis
(186).
↑↑ Maturation
(autoimmune
potential) (183).

↔ Overall
count; ↓ B regs
(187).
↓ Most subsets
(except naïve)
in the third
trimester (188).

↔ Throughout
menstruation
(137).

↔ or ↑(slight) after
orchiectomy (139).

↔ or ↓(slight)
(141, 142, 189).
* Higher
circulatory cells
in elderly females
vs elderly males
(>70 years) (143).

T cells general ↓ (Particularly
downward trend
with age) (190).

↑(Slight) cytotoxic
cells (190).

↓ Overall
count (132).
↑ Immature
cells (123).

↑ Naïve T cells
following androgen
deprivation (191).
* Greater declining
trend with
age (190).

↓ Absolute and
relative count
(141, 142).
↑ Th1/Th2 ratio
(141).
↑ Th17/Treg
ratio (141).

T regulatory ↑ Cell count and
percentage (92,
192).
↑↑ Cell count in
visceral adipose
tissue (193).
↑ FOXP3
expression (194).
↔ Estrogen-
mediated CD4,
CD25, FOXP3
expression in
healthy
males (194).

↓ Cell count and
percentage (92,
192, 194).
↓↓ Cell count in
visceral adipose
tissue (193).
↓
Immunoreactivity
(195).
↑ Estrogen-
mediated CD4,
CD25, FOXP3
expression (194).
↑ Testosterone-
mediated FOXP3
expression (194)

↓↓ Cell count (SLE)
(194).
↑ Treg FOXP3
expression in
females with RA
(159).
* Differentially
regulated in
SLE (194).

↑↑ Decidua
(196).
↑ T reg count
and percentage
during
pregnancy
(132, 197–199).
↓ Cell count in
unexplained
infertility (200)
and
miscarriage
(198).
↓ FOXP3
expression
(187).

↑ Follicular phase;
↓ after ovulation
(94).
* Females in the
late follicular phase
have similar T reg
percentage to
males (94).

↓ Following
androgen
deprivation (138).

T memory ↑ Count and
relative, including
CD4 or CD8
positive memory
stem, central

↓ Count and
relative, including
CD4 or CD8
positive memory
stem, central

↓ Cell
count (132).

↓ Following
orchiectomy due to
testicular
cancer (202).

↑(slight) upward
trend in central
and effector
memory cells
with age

(Continued)
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TABLE 1 Continued

Male Female Important
notes for
autoimmune
or inflamma-
tory diseases

Pregnancy
(mostly
relative to
adult
female)

Menstruation
(mostly
relative to
adult female)

Andropause
& testoster-
one loss
(mostly
relative to
adult male)

Menopause
& estrogen
loss
(mostly
relative to
adult
female)

Adaptive

memory, and
effector memory
cells) (201).

memory, and
effector memory
cells (201).

(particularly >50-
60 years) (201).
* Lower
circulatory CD4+
memory cells in
elderly females vs
elderly males
(>70 years) (143).

T helper 1 ↓ But ultimately
favoring Th1
relative to
Th2 (23).

↑ With low
estrogen; ↓ with
high
estrogen (203).

Similar in males
and females with
RA (159).
Similar in males
and females with
AS (160).

↓ Overall
response (132).

↑ Response in late
luteal phase (7).

↑ Response with
androgen
deprivation (191).

T helper 2 ↓ Overall
response (204).

↑ Overall
response (23).
↑↑ With high
estrogen (205).

↓ Overall
response (132).

↑ Response in
follicular phase (6)

↓ IL10-producing
Th2 (141).

T helper 17 ↓Cell count and
activity (25).
↑
Immunoreactivity
(autoimmune
potential) (195).

↑ (via ERa) (124).
↓↓ (via ERb) cell
count and activity
(25, 206).
↓ (via
progesterone)
differentiation
(207).

↑ Cell count and
activity (general)
↑ In male patients
with RA (159).
↑ In male patients
with AS but not
females (160).

↓↓ Cell count
and activity via
estrogen and
progesterone
(197).
↑ Cell count in
unexplained
infertility
(200).

↑ Absolute and
relative
count (141).

CD4+ ↓↓ (33). ↑↑ (33). ↑ CD4+ T reg
percentage in
the first and
second
trimester
(198, 199).

↑ CD4+ T reg
count and FOXP3
expression in late
follicular phase; ↓
in early follicular
and late luteal (94).

↓ Lower count in
androgen
deprivation (138).

↓ Circulation
count (141, 142).
↓ Function in the
reproductive tract
(208).
↓ Premature
menopause vs
similar-age non-
menopause (142)

CD8+ ↑ Absolute
count (33).

↓ Absolute count
but ↑ cytotoxicity
(33, 209).

↑ CD8+ T reg
percentage
continuous rise
throughout
pregnancy
(198).
↑ fetal-specific
CD8+ T
cells (210).

↓ Following
orchiectomy due to
testicular
cancer (202).

↓ Absolute count
(141).
↓↓ Relative
(percentage)
(141).
↑ Premature
menopause vs
similar-age non-
menopause (142).

CD4/CD8 ratio ↓↓ (33). ↑↑ (33). * Inversion of ratio
(higher) (211).
↔ androgen
deprivation (138).

* Inversion of
ratio (lower)
(172, 211).

Immunoglobulins ↓ Especially IgG
and IgM (182).

↑ Overall levels in
circulation (186)
↑ IgM
production (212).

↑↑ IgE levels in
asthmatic males vs
asthmatic females
(childhood and
adulthood) (146).

↑ Antibody
production
(213).
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rising estrogen levels and NK cell levels. This change also appears to

be responsible for elevated viral susceptibility (232) that is also

partially explained by diminished type I and type III interferon

responses reported by experimental studies (163, 164).

5.3.1.3 Menopause and estrogen loss

Menopause is characterized by the natural loss of estrogen

synthesis (233). Coinciding with the fall in endogenous estrogen

levels, the advantage conferred to females in terms of infectious

diseases is largely lost (37), while the severity of autoimmune

diseases lessens (234, 235). Innate immunity-related changes

include declines in anti-inflammatory cytokines, neutrophils and

cytotoxic potential, while pro-inflammatory mediators and effectors

demonstrate a general increase (127, 172). The silencing of estrogen

signaling mirrors an inversion of the CD4-to-CD8 lymphocyte

ratio, weaker vaccine response, and considerable variations in T

cell populations (141, 211). In systemic lupus erythematosus, the

female bias is exceedingly apparent (10–15:1), similar to multiple

sclerosis, Sjögren’s and other autoimmune disorders (99, 236).

However, estrogens are not the only explanation to this

difference, as overt autoimmunity is observed at a higher

frequency among pre-pubertal females and the female bias

persists after menopause (99, 236–238).

Hysterectomy and oophorectomy are procedures that result in

the resection of estrogen-producing tissues. The outcomes of these

procedures also appear to reduce the severity of autoimmune
Frontiers in Immunology 11
diseases while restricting immune response to microorganisms –

as demonstrated by experimental and clinical studies (128–130).

5.3.2 Male immunity and androgens
Androgens modulate the innate immune response through a

number of mechanisms, including cell proliferation, cytokine

secretion, and the expression of pattern recognition receptors

such as toll-like receptors (TLRs) (103). Dihydrotestosterone is

far more potent that testosterone in terms of androgenic effects, but

the most abundant androgen in adult men is testosterone (239).

Androgens exert mainly immunosuppressive properties (240)

through the induction of anti-inflammatory cytokines and

suppression of nitric oxide (NO) production in neutrophils,

monocytes, and macrophages, acting as a limiter to their

cytotoxic potential (120, 241). Testosterone also causes lower

relative levels of CD4+ T cells compared to CD8+ T cells, in

direct contrast to the overall impact of estrogens (37). The

prohibitive impact on polymorphonuclear cells and the innate

immune system, as evidenced by anti-inflammatory modulation

of monocytes and macrophages (240), is one of the most prominent

factors explaining the relatively weak response to infection among

males (35).

5.3.2.1 Dehydroepiandrosterone – a unique androgen

Dehydroepiandrosterone (DHEA) is a unique intermediate

steroid (prohormone) in that it is recognized by both androgen
TABLE 1 Continued

Male Female Important
notes for
autoimmune
or inflamma-
tory diseases

Pregnancy
(mostly
relative to
adult
female)

Menstruation
(mostly
relative to
adult female)

Andropause
& testoster-
one loss
(mostly
relative to
adult male)

Menopause
& estrogen
loss
(mostly
relative to
adult
female)

Adaptive

Vaccine
response
(efficacy)

↓ (214). ↑ (214, 215). ↔ (216, 217) ↓ (218, 219). ↓ or ↔
depending on
vaccine type and
dose (215, 220).

Vaccine
adverse effects

↓↓ Frequency and
severity
(220, 221).

↑↑ Frequency and
severity
(220, 221).

↔ (216, 217) ↔ (220)

Autoimmunity
and
autoantibody
production

↓↓ Especially
pathological
autoantibodies
(182).

↑ Autoantibody
levels and
frequency (22)

↑ Higher frequency
of atopy in
asthmatic males vs
asthmatic females
(childhood and
adulthood) (146).

↔ (189).
↓ Atopy (146).
↓: Decreased
↑: Increased
↔: No significant change or stable
*: Relevant note
Abbreviations in alphabetical order: AS, Ankylosing Spondylitis; B regs, B regulatory cells; CCL, Chemokine (C-C motif) ligand; CD4+, Cluster of differentiation 4; CD8+, Cluster of
differentiation 8; CRP, C-reactive protein; ERT, Estrogen replacement therapy; ERa/ERb, Estrogen receptor alpha/beta; FOXP3, Forkhead box P3; ICAM-1, Intercellular adhesion molecule 1;
IFN, Interferon; IgE, Immunoglobulin E; IgG, Immunoglobulin G; IgM, Immunoglobulin M; IL, Interleukin; NFkB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NK cells,
Natural killer cells; NLR, NOD-like receptor; NOx, Nitric oxide metabolites; PBMC, Peripheral blood mononuclear cells; RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; TGF-b,
Transforming growth factor-beta; Th cells, T helper cells; TLR, Toll-like receptor; TNF, Tumor necrosis factor; Treg cells, T regulatory cells; VCAM-1, Vascular cell adhesion molecule 1.
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and estrogen receptors, appears to have divergent impacts on

immune functions, and that it can be enzymatically transformed

to these steroids through different pathways, depending on tissue

exposure. DHEA has weak binding properties to androgen and

estrogen receptors, which indicates that its receptor-mediated

effects might be overridden or diminished by the presence of

androgens or estrogens with higher receptor affinities, and also,

that it could exert its effects through other signaling pathways (242,

243). It has been shown to regulate some immune responses, by

suppressing the synthesis of proinflammatory cytokines such as IL-
Frontiers in Immunology 12
2 and IL-6, and stimulating anti-inflammatory cytokines such as IL-

4 and IL-10 (244). These properties appear to yield physiologically-

relevant impacts as evidenced by milder disease manifestations

when administered to females with systemic lupus erythematosus

(245–247). Based on studies in humans, DHEA is understood to

increase monocyte and NK cell counts (248), restrict IL-5, IL-10 and

IFN-g secretion in patients with asthma (249), negatively correlate

with the parasitic burden of malaria (DHEA-S) (250), and

demonstrate diminished levels in patients with tuberculosis –

similar to decreased testosterone levels (239, 251). Alluding to the
FIGURE 3

The typical impacts of androgens in the immune system (testosterone structure depicted in center). CD4+, Cluster of differentiation 4; CD8+,
Cluster of differentiation 8; Th, T helper cells; T reg, T regulatory cells.
FIGURE 4

The typical impacts of estrogens on the immune system (estradiol structure depicted in center). CD4+, Cluster of differentiation 4; CD8+, Cluster of
differentiation 8; Th, T helper cells; T reg, T regulatory cells.
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contrasting effects of DHEA on immune function in the context of

immunopathology, oral supplementation in patients with Addison’s

disease was found to decrease NK cells while restoring regulatory T

cells (252). Adding to this complexity, under experimental

infectious challenges, DHEA appears to stimulate IFN-g in

parasitic infections, thereby promoting response (253) in a

striking similarity to estrogen’s impact on IFN-g (254), and also,

it improves macrophage phagocytosis via NO upregulation in

bacterial challenge through favoring of Th1 responses in contrast

to Th2 (increased IL-2 and IFN-a; decreased IL-4 and IL-10) (255).

In a study examining stress responses among males, post-stress

DHEA levels were found to correlate positively with the anti-

bacterial activity of saliva (256). Some of these ambivalent effects

may be associated with the sensitivity of estrogen receptors to

DHEA (257) and its stimulation of the NF-kB pathway (244), as

well as its multiple effects on other pathways (243). Therefore,

although DHEA indeed has similar immunomodulatory effects with

other androgens, such as testosterone and dihydrotestosterone, its

contrasting effects must be appreciated when interpreting the

influences of this unique prohormone on immune functions,

which remain limitedly understood (239).

5.3.2.2 Andropause and testosterone loss

While menopause is a clear threshold with which it is possible

to explore the impact of a sudden decline in estrogen levels on

female immunity, males do not have such a period with an abrupt

loss of testosterone levels, but they experience a very gradual and

plateau-like testosterone decrease after middle age (258), which can

result in andropause in elderly men. Supportive evidence regarding

the impact of testosterone on autoimmunity development (259) can

be drawn from studies showing elevated autoimmunity risks among

patients with hypofunctional testes (260). Data obtained from

orchiectomy studies provide some more context to the matter of

immune functions orchestrated by androgens. Loss of testosterone

production due to orchiectomy has been associated with an increase

in TNFa production in an experimental study (170), while another

murine study revealed that orchiectomy yields macrophages with

increased expression of TLR4 and that androgen-naïve

macrophages exhibit decreased TLR4 levels in response to

testosterone stimulation (118). Furthermore, in a clinical follow-

up of patients who had undergone orchiectomy, a significant

increase in NK cell count was identified at 3 months after

surgery. Notably, the same study revealed an increase in B

lymphocytes, but statistical analysis was marginally non-

significant (139). Other impacts of testosterone loss include

lowered IFNG expression (138), increased naïve T cell counts

(191), fewer memory and regulatory T cells (138, 202), a greater

propensity towards Th1 responses (191), and inversion of the CD4-

to-CD8 ratio (211).

5.3.2.3 Androgens in females

The immunosuppressive impact of testosterone is not limited to

males. Females with elevated testosterone levels due to polycystic

ovary syndrome have been shown to suffer from more severe
Frontiers in Immunology 13
COVID-19 relative to those without polycystic ovary syndrome

(261) and this relationship appears to be mediated by inflammatory

modulation and the facilitation of viral entry to cells (262, 263). One

study specifically examining women with and without

hyperandrogenism described considerable differences in the

frequencies of mild-to-moderate COVID-19 symptoms.

Hyperandrogenic women manifested with significantly higher

frequencies of anosmia, ageusia, cough, fatigue, anorexia, and

pain (264).
5.4 Exogeneous hormones and gender-
affirming hormone therapy

In addition to natural fluctuations in endogenous hormones,

individuals may also experience changes due to receiving exogenous

hormones, such as hormonal contraceptives, hormone replacement

therapy, and GAHT (233). These treatments are known to impact the

homeostasis of various hormonal and metabolic pathways, including

the pituitary-adrenal axis (265–267). The impact on this pathway,

more so than the alterations of sex hormones, could explain many

changes in immune regulation (268). For instance, testosterone and

estrogen + antiandrogen therapies respectively administered to

transmen and transwomen exerted effects that resembled the typical

differences between cisgender males and females in terms of the

pituitary-adrenal axis. Transmen experienced a decrease in cortisol

production while transwomen had elevated levels (267). Based on

decades of research, oral contraceptives have been established to

influence a multitude of processes and systems in the body,

including coagulation, hormonal homeostasis, energy metabolism,

leukocyte counts, and other immunity-related parameters (269,

270). In fact, pubertal use of combined contraceptives has been

associated with a decrease in Th17 lymphocytes, albeit the

functionality of these cells and the levels of related cytokines were

elevated – possibly balancing the overall deleterious effect (271). That

being said, the effects of exogenous estrogens are varied. Estrogens

alone appear to facilitate an elevation of regulatory T cells in both

absolute and relative measures and promote differentiation of several

cell populations, such as dendritic cells (272), with some studies

reporting reduced inflammation during hormonal contraceptive use

(273) while others have reported an increase in inflammatory markers

and disease (274, 275). An in-depth review and contextual

examination of the primary effects of exogenous sex hormones and

GAHT on different diseases has described available evidence and the

significant gaps and conflicts in current knowledge (276).

These conflicts may be a result of numerous treatment- and

patient-related characteristics; however, the alteration of the

underlying physiological ‘norm’ could be a reliable explanation.

For instance, estrogen levels exceeding physiological levels have

been associated with a dose-dependent effect on immune response

in a meta-analysis involving multiple species. The authors revealed

that supraphysiological estrogen levels had a moderate enhancing

effect on immune response, while physiological levels did not (18).

The same study also showed a weak relationship between higher
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testosterone and immunosuppression (18). Notably, an early study

examining the results of anti-androgen treatment administered to

transmen revealed that circulatory NOx levels (nitrite + nitrate,

emerging from NO decomposition) were increased after 30 days of

treatment, and correlated positively with estradiol while DHEA-S

declined (120). As such, the expected results of exogenous

testosterone and estrogen administration in GAHT may be

feasibly aligned with their established immunoregulatory effects.

In agreement with this hypothesis, GAHT was found to cause

transcriptomic changes in regulatory T cells that mirrored the

differences between cisgender males and females (92).

Although research concerning the impact of GAHT is yet in its

infancy, exogeneous hormone treatments have long been used in

patients with sex chromosome aberrations. For instance, testosterone

replacement therapy in patients with Klinefelter’s Syndrome has been

described to lower antibody and cytokine levels and lymphocyte

counts (both T and B cells) [5]. The approaches to GAHT differ based

on individual requirements and also from center to center, which

may include the suppression of endogenous sex hormones as well as

estrogen or testosterone administration to transgender women or

transgender men, respectively. A recent study examining immune

adaptations in 23 transgender men undergoing testosterone-based

masculinizing treatment revealed various changes in immune cell

populations when comparing data from up to 1 year of follow-up to

baseline characteristics. The rise in testosterone and subsequent

suppression of estradiol was found to downregulate the type I

interferon system and upregulate TNF at multiple levels (277). A

similar suppressive effect of GAHT on the type I interferon system

was observed in an independent study of transgender men (278).

Type I interferon suppression could reasonably explain poor viral

outcomes in males, while the presence of lower testosterone and

higher estrogen may possibly overactivate type I interferons in

women, which may add another dimension to the relationship of

these hormones with autoimmune diseases such as systemic lupus

erythematosus – as evidenced by the aforementioned positive impact

of DHEA on disease manifestations (245, 247, 279).

Another study assessing the impact of testosterone-based

GAHT treatment on metabolic and inflammatory markers found

that testosterone therapy increases leukocyte-endothelium

interactions (280). This is attributed to an increase in

polymorphonuclear leukocyte rolling and adhesion, along with a

reduction in rolling velocity. The treatment also increased the levels

of vascular cell adhesion molecule-1, E-selectin, IL-6, and TNFa
(280). However, the expected impact of cross-sex hormones may

not be as clear for other immune features. This can be exemplified

by a study showing that transgender women using transdermal

estradiol experienced increased platelet activation and coagulation

marker levels, whereas transgender men using testosterone did not

show any contrasting alterations in this respect. The authors also

reported that inflammatory markers appeared to be diminished

among transgender women, while high-sensitivity C-reactive

protein levels increased in transgender men (281). Another study

in transgender men and women revealed changes in gut

microbiome composition following the initiation of GAHT (282).
Frontiers in Immunology 14
Given the important role of the microbiome in shaping immune

function, these shifts may contribute to explaining immunological

sex differences and related disease susceptibilities, as previously

shown for autoimmune disease manifestations in mice (283).

A few case reports have documented the onset of autoimmune

diseases, primarily systemic lupus erythematosus, but also systemic

sclerosis, rheumatoid arthritis, and other rheumatic conditions, in

transgender individuals undergoing GAHT (284). Anti-nuclear

antibodies, which can precede the development of autoimmune

conditions, were examined in a recent study where 36% of transmen

and 31% of transwomen tested positive, compared to just 13% in the

cisgender male and female population (285). This is a remarkable

situation particularly for transgender men who would be expected

to lose the impact of estrogen dominance on autoimmune disease

susceptibility. Nonetheless, the consistently higher positivity for

anti-nuclear antibodies in both transgender groups solidifies our

understanding that estrogen and testosterone influence endogenous

immune control mechanisms in infectious or autoimmune

conditions, which is a conclusion supported by other studies

revealing elevated anti-nuclear antibody levels among transgender

individuals compared to the general population (286). However, it

must be noted that the conflicts in the literature also extend to this

relationship, as data from another study that prospectively

evaluated the presence of autoantibodies among recipients of

GAHT for 3 years revealed that the treatment did not yield an

increased risk of developing overt autoimmune diseases (287),

which could suggest that elevated immunoreactivity might not

translate into an appreciable risk of clinical disease. It is also

tempting to postulate that these risks might be ameliorated by the

governing genetic characteristics underlying the immune functions

of transgender individuals. One particular aspect is that transmen

lack the Y chromosome, which, as described previously, has

regulatory impact on immune function.

While available studies present conflicting results, what remains

undisputed is the significance of this research area, which holds the

potential to illuminate the existing knowledge gaps in GAHT and

the impact of sex hormones on immune functioning. Many

screening recommendations exist for transgender individuals

undergoing GAHT –including assessments for cardiovascular

risk, osteoporosis, breast cancer, cervical cancer, and prostate

cancer (288). However, there is a need for more information to

determine whether the immunological effects of GAHT and

potential impacts on immune-related disease risks also need

consideration. Studies evaluating this topic also offer crucial data

regarding sex differences in immune function, which may in turn

support development of new treatments for immune-related

diseases that are better tailored to each sex.
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268. D’Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential
responses to viral infection and COVID-19. Trends Immunol. (2024) 45:943–58.
doi: 10.1016/j.it.2024.10.004

269. Fisch IR, Freedman SH. Smoking, oral contraceptives, and obesity. Effects white
Blood Cell count. Jama. (1975) 234:500–6. doi: 10.1001/jama.1975.03260180040020

270. ÖzcanÖ, ElzenWPJD, Hillebrand JJ, HeijerMD, Loendersloot LLV, Fischer J, et al.
The effect of hormonal contraceptive therapy on clinical laboratory parameters: a literature
review. Clin Chem Lab Med (CCLM). (2024) 62:18–40. doi: 10.1515/cclm-2023-0384

271. Konstantinus IN, Balle C, Jaumdally SZ, Galmieldien H, Pidwell T, Masson L,
et al. Impact of hormonal contraceptives on cervical T-helper 17 phenotype and
function in adolescents: results from a randomized, crossover study comparing long-
acting injectable norethisterone oenanthate (NET-EN), combined oral contraceptive
pills, and combined contraceptive vaginal rings. Clin Infect Diseases. (2019) 71:e76–87.
doi: 10.1093/cid/ciz1063
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