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Introduction

Sepsis is a life-threatening multi-organ dysfunction syndrome (MODS) associated with

dysregulated body responses to infection and is the leading cause of death in intensive care

units (1–3). In 2017, a total of 48.9 million cases of sepsis and 11 million sepsis-related

deaths were recorded worldwide, the latter accounting for approximately 20% of global

deaths (4–6). Despite decades of research, substantial breakthroughs in specific treatments

have yet to be achieved. High incidence and mortality rates, coupled with limited non-

specific treatment options, render sepsis a significant challenge in the medical field and

cause substantial social and economic burdens.

Aggressive early sepsis identification and treatment initiatives are essential to reducing

mortality in patients with sepsis. Traditional sepsis treatments primarily focus on infection

control (7–9), hemodynamic stability (10–12), and the maintenance of organ function (13–15).

However, these traditional treatment strategies often show limited efficacy. Such therapeutic

failure may be attributed to various factors, including the development of drug resistance

(16, 17), pharmacokinetic alterations induced by sepsis (18), and an inability to address the

underlying immune dysregulation (19). Rapidly advancing nanotechnology has unlocked a new

stage in sepsis treatment. Nanotechnology is mainly based on the processes of designing,

synthesizing, and utilizing nanomaterials (NMs) within the size range of 1–100 nm (20, 21).

NMs exhibit unique properties, such as high surface area, tunable dimensions, and the capability

to target specific cells or pathogens, enabling them to interact directly with infectious agents or

modulate immune responses (22–24). These advantages make NMs particularly effective in

pathogen removal, drug delivery, and inflammation reduction, thereby offering promising

solutions in areas where traditional therapies fall short (22–24). However, it must be noted that

while the prospects of NMs in sepsis treatment are encouraging, their application to date

remains mainly focused on antimicrobial and anti-inflammatory responses, somewhat

neglecting the complex immunopathological mechanisms of sepsis. From an immunological

perspective, sepsis is currently considered to display stages of excessive inflammation and
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immunosuppression, which dynamically coexist or alternate (25, 26).

The occurrence of immunosuppression is increasingly recognized as a

key factor in immune dysfunction and sepsis mortality (27, 28).

Therefore, we propose that the use of NMs in sepsis treatment

should be expanded from an emphasis on anti-inflammatory effects

to include a focus on reversing immunosuppression and thus restoring

the body’s immune homeostasis.
Key role of immune dysregulation in
the progression of sepsis

To date, there is no gold standard for defining sepsis, as the

pathogenesis of this disease involves multiple pathological mechanisms.

The gradually increasing understanding of the mechanisms of sepsis

has brought with it three successive and significant revisions in

the definition of sepsis. Initially, sepsis was defined as a systemic

inflammatory response syndrome (SIRS) caused by infection (29, 30).

In 2016, new guidelines redefined sepsis as a life-threatening organ

dysfunction caused by a dysregulated host response to infection (1).

The latest definition of sepsis emphasizes the importance of host

immune dysregulation caused by infection, which goes beyond the

possibility of direct death from the infection itself (31–33).

The development of immune dysregulation during sepsis is

typically divided into two closely related but distinct stages: early

systemic inflammatory response and later immunosuppression

(25, 26). In the early stages of infection, pathogens enter the body

and trigger the activation of the innate immune system through

pathogen-associated molecular patterns (PAMPs) (34–36). This

response is intended to eliminate pathogens and protect body

tissues from further damage. However, in some cases, such as

when the infection load is too heavy or the individual’s immune

system response is abnormal, the immune response cannot

return to homeostasis. The inflammatory response is then further

amplified and produces a series of damage-associated molecular

patterns (DAMPs) in response to tissue damage and cell death

(37, 38). In this process, excessive pro-inflammatory cascades lead

to a large accumulation of cytokines (39, 40) and trigger many

pathological events, such as complement activation (41, 42),

coagulation dysfunction (43, 44), and exhaustion and metabolic

reprogramming of immune cells (45–47). These phenomena

exacerbate immune dysregulation and cause immunosuppression,

which in turn leads to a reduction in infection clearance and makes

the individual more susceptible to secondary infections, ultimately

worsening the outcome of sepsis.

It is worth noting that these two stages do not strictly appear in

chronological order. In fact, they often coexist during the course of

sepsis, and which stage predominates may depend on multiple host

and pathogen factors (48, 49). Host factors include the individual’s

genetic background, age, baseline health status, and comorbidities,

while pathogen factors include type, virulence, and load. Growing

evidence suggests that immunosuppression is a major cause of sepsis-

related mortality, with approximately 70% of clinical deaths in septic

patients occurring during this phase (25, 26). Despite significant

progress in understanding the immune mechanisms of sepsis, the
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coexistence and alternation of excessive inflammation and severe

immunosuppression add significant complexity to its treatment. For

instance, excessive inflammation can promote immunosuppression by

inducing immune cell exhaustion and death. Therefore, early anti-

inflammatory therapy is essential to mitigate immunosuppression.

However, poorly timed or excessive anti-inflammatory treatment

can also exacerbate immunosuppression. Hence, achieving a balance

between controlling inflammation and preventing immunosuppression

is crucial for optimizing therapeutic strategies in sepsis management.
Current NMs-based treatments
for sepsis

NMs have revolutionized the therapeutic approach to sepsis by

utilizing a diverse array of materials, including inorganic and

organic substances, of both natural and synthetic origins, or even

innovative combinations thereof (22–24). This diversity allows for

tailored solutions targeting the complex pathophysiology of sepsis.

Given the breadth and depth of studies on this topic, it is not

feasible to cover all research comprehensively. Therefore, Table 1

illustrates representative examples of nanoparticles employed in

sepsis treatment, categorized by their specific mechanisms of action.

The anti-septic efficacy of NMs can be broadly categorized

based on four key mechanisms. Firstly, NMs serve as highly efficient

delivery systems for anti-septic drugs, increasing drug efficacy and

reducing systemic side effects. This targeted drug delivery is crucial

in sepsis, where rapid and localized intervention is often required.

Secondly, certain NMs can directly eradicate pathogens or

neutralize toxins produced by these pathogens. This pathogen-

specific mechanism of action is particularly valuable in the early

stages of sepsis, where the pathogen burden is high. Thirdly, NMs

can modulate the host’s immune response to attenuate the

overwhelming inflammatory reactions typical of sepsis. By

interacting with immune cells or acting as scavengers for

inflammatory cytokines, they prevent the progression to severe

systemic inflammation and multi-organ failure. Lastly, NMs can be

engineered for combination therapy, simultaneously providing

antimicrobial and anti-inflammatory effects. This dual

functionality ensures a comprehensive approach to sepsis

management, addressing both the underlying infection and the

detrimental host immune response.
Improving drug delivery efficiency

NMs provide a multifaceted approach to enhancing the delivery

of therapeutic agents, particularly for treating sepsis. Their unique

sizes and properties offer significant advantages in various aspects of

drug delivery. By encapsulating drugs, they protect these agents

from enzymatic degradation and harsh physiological conditions,

thereby improving stability and bioavailability until the drugs reach

the infection site (50). For instance, liposomal nanoparticles can

safeguard antibiotics from premature breakdown in the

bloodstream, preserving their potency and allowing for reduced
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1500734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang and Wei 10.3389/fimmu.2024.1500734
dosing frequencies (51–53). Additionally, NMs can be engineered

for intelligent, controlled, and sustained release. They respond

to specific environmental stimuli characteristic of infection sites—

such as pH changes (54, 55), bacterial enzyme concentrations

(56, 57), or reactive oxygen species (ROS) variations (58, 59)—to

release their payload precisely when needed. The functionalization

of these NMs enables targeted delivery to specific cells or tissues by

attaching ligands, antibodies, or peptides to their surfaces. This

strategy concentrates therapeutic agents at the site of infection while

minimizing adverse effects and reducing the development of drug

resistance. Moreover, their ability to overcome biological barriers,

such as penetrating bacterial biofilms and accessing intracellular

pathogens, facilitates the delivery of antibiotics directly to otherwise

inaccessible infection sites (60, 61). Collectively, these capabilities of

NMs significantly enhance therapeutic efficacy and safety,

ultimately leading to improved treatment outcomes.
Direct pathogen clearance

Some NMs exhibit inherent antimicrobial properties, offering a

promising approach for combating bacterial infections, particularly

those caused by multidrug-resistant strains (62, 63). Among these,

silver nanoparticles (AgNPs) have been extensively researched for their

ability to eradicate a broad spectrum of bacteria through various

mechanisms. These include the disruption of bacterial cell walls and

membranes, leading to structural damage and increased permeability

(64, 65); the promotion of ROS production, which induces oxidative

stress and damages vital cellular components (66, 67); and the

interference with bacterial DNA and RNA replication, thereby

hindering cell proliferation and survival (68, 69). Similarly, gold

nanoparticles (AuNPs) and zinc nanoparticles (ZnNPs) also

demonstrate intrinsic antimicrobial activity by penetrating bacterial

cells and disrupting metabolic processes, resulting in bacterial death
Frontiers in Immunology 03
(70, 71). Moreover, some NMs serve as catalysts that enhance the

effects of external antimicrobial agents or stimuli. For instance,

magnetic nanoparticles can be activated under exogenous

electromagnetic stimulation, generating localized heating

(hyperthermia) or mechanical vibrations that disrupt bacterial cell

structures (72, 73). This targeted antimicrobial therapy minimizes

damage to surrounding healthy tissues while reducing systemic side

effects. Furthermore, surface modification of NMs can significantly

improve their interaction with bacterial cells. Functionalizing

nanoparticles with specific ligands or antibodies increases their

binding affinity to bacterial targets, thereby enhancing selectivity and

efficacy (74, 75). Collectively, these advances underscore the potential

of NMs as effective agents in the fight against bacterial infections.
Inhibition of excessive
inflammatory response

NMs can also effectively inhibit excessive inflammatory responses

by clearing ROS, adsorbing (neutralizing) excessive inflammatory

mediators in the body, and targeting immune cells. During the

development of sepsis, excessive inflammation causes a large

amount of ROS to be produced in cells; these include H2O2,

hydroxyl radicals, and superoxide anions (76). Excessive ROS will

cause severe oxidative stress in cells, leading to cell death and

consequent release of a large number of DAMPs (37, 38). These

are further recognized by pattern recognition receptors (PRRs),

forming a vicious cycle of inflammation amplification. Suitably

modified NMs, such as tungsten disulfide nanoparticles,

mesoporous selenium nanoparticles, and manganese dioxide

nanoparticles, demonstrate excellent ROS clearance efficiency and

bioavailability, which can effectively inhibit the inflammatory

response in sepsis (77, 78). The development of excessive

inflammation in sepsis is mediated by various inflammatory
TABLE 1 Mechanisms of anti-septic efficacy of NMs.

Mechanism Description Representative NMs References

Improving drug delivery efficiency

NMs enhance therapeutic delivery in sepsis by protecting drugs from
degradation, enabling targeted and stimulus-responsive release,
penetrating biological barriers, and ultimately improving efficacy and
safety for better treatment outcomes.

Liposome NMs
Polymeric NMs
Metallic NMs

Exosomal-based NMs
Biomimetic NMs

(50–61)

Direct pathogen eradication

NMs combat multidrug-resistant bacteria by disrupting cells,
inducing oxidative stress, interfering with replication, and enhancing
therapies; functionalization improves selectivity, highlighting their
potential in treating sepsis.

Metallic NMs
Carbonaceous NMs
Polymeric NMs
Boride NMs

Composite NMs

(62–75)

Inhibition of excessive
inflammatory response

NMs effectively inhibit excessive inflammatory responses in sepsis by
clearing ROS, neutralizing inflammatory mediators from pathogens
and the host, and targeting immune cells, thus disrupting
inflammation amplification.

Metallic NMs
Abiotic hydrogel NMs

Magnetic NMs
Cerium oxide NMs
Biomimetic NMs

(77–84)

Combination therapy

NM-based combination therapies, co-delivering antimicrobial and
anti-inflammatory agents, offer a promising approach for sepsis
management by simultaneously targeting infection
and inflammation.

Metallic NMs
Polymeric NMs
Magnetic NMs
Composite NMs
Biomimetic NMs

(85–92)
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mediators, which may derive from pathogens (such as endotoxins)

(79) or from the body itself (including free nucleic acids, histones, and

pro-inflammatory cytokines) (80). Some NMs, such as chitosan,

cationic polymers, and biomimetic nanoparticles, have the

capability to scavenge toxins from pathogens or inflammatory

mediators produced by the body, thereby inhibiting the progression

of excessive inflammation (81, 82). In addition, the use of NMs to

target immune cells and block overactive immune responses can also

achieve effective control of inflammation (83, 84).
Combination therapy

The pathophysiology of sepsis is intricate, and relying solely on

antimicrobial or anti-inflammatory therapies may be insufficient for

effective management. Consequently, numerous researchers have

investigated combination therapies that integrate both

antimicrobial and anti-inflammatory strategies. One promising

approach involves the use of nanomaterials as carriers to co-

deliver antibacterial and anti-inflammatory agents, thereby

enhancing therapeutic efficacy (85–89). For instance, Zhang et al.

developed polymeric nanoparticles capable of efficiently releasing

the antibiotic ciprofloxacin and the anti-inflammatory agent TPCA-

1, which resulted in a survival rate of up to 90% in septic mice (89).

Additionally, treatment strategies can employ inherently

antimicrobial nanomaterials as carriers for anti-inflammatory

drugs or modify these materials to exhibit dual antimicrobial and

anti-inflammatory properties (90–92). Such dual-function

nanomaterials offer a versatile platform for addressing the

multifaceted nature of sepsis by simultaneously targeting infection

and inflammation. These innovative combination therapies not

only improve survival outcomes in experimental models but also

hold potential for translation into clinical applications, representing

a significant advancement in the treatment of sepsis.
Challenges in the use of NMs for
sepsis treatment

NMs are increasingly recognized as a promising medium for

antibacterial and anti-inflammatory applications. However, several

significant limitations persist in their application in sepsis treatment.

The primary issue is that current strategies focus predominantly on

suppressing hyperinflammation, with insufficient attention being

paid to modulating the immunosuppressive phase. Several points

should be noted in this regard.

Firstly, sepsis, as a heterogeneous disease syndrome, does not

simply follow a strict sequence of systemic inflammatory response

and immunosuppressive phases. Inmany cases, these two phases may

overlap, with dominance depending on various factors related to the

host and pathogen (25, 26). Given the complexity of sepsis

pathogenesis, distinguishing these two phases to determine the

optimal timing for NM treatment is a challenging task.

Implementing aggressive anti-inflammatory treatment at an

inappropriate time could conceivably exacerbate a sepsis condition
Frontiers in Immunology 04
already in the immunosuppressive phase. Such misdirected treatment

may suppress essential immune functions, heightening the risk of

secondary infections and worsening patient outcomes. Therefore, a

nuanced understanding of the patient’s immunological status is

crucial for the effective application of NM therapies.

Secondly, it is well known that the surge of inflammatory

molecules is a necessary condition for the immune system to

combat invading pathogens (93, 94). Although NMs possess potent

anti-inflammatory properties, excessive suppression of the

inflammatory response could lead to earlier and more intense

immunosuppression, making the host more susceptible to

secondary infections. In fact, in some drug trials, the mortality rate

of sepsis patients was shown to increase due to excessive suppression

of the inflammatory response (95). Similarly, while intracellular ROS

can promote inflammation and potentially cause various cellular

dysfunctions, an appropriate level of ROS generation is beneficial for

pathogen clearance (96, 97). In contrast, large-scale clinical trials have

demonstrated that supplementation with classical antioxidants (such

as vitamins C and E) has limited efficacy and may even increase the

risk of sepsis (11, 98). Similarly, while the strategy of controlling

sepsis through the adsorption of inflammatory mediators or

endotoxins by NMs seems theoretically feasible, currently available

treatments have not demonstrated a reduction in mortality rates in

clinical practice (11). Some literature suggests that suppressing pro-

inflammatory cytokines during infection does not provide protective

effects against sepsis (99–101). Notably, several trials have reported an

increased mortality rate in patients with Gram-positive bacterial

infections following anti-endotoxin treatment (102).

Thirdly, the application of NMs in sepsis therapy presents a

paradoxical challenge due to their potential to invoke significant pro-

inflammatory responses. The introduction of NMs into biological

systems can activate immune cells, leading to the excessive release of

pro-inflammatory cytokines and chemokines (103–105). This

hyperinflammatory state not only results in direct tissue damage

but also exacerbates the subsequent immunosuppressive phase

characteristic of sepsis. Such overactivation depletes immune

resources, compromising the body’s ability to combat secondary

infections and leading to more severe immune dysfunction (103–

105). Additionally, the physicochemical attributes of NMs—such as

size, shape, surface charge, and composition—critically influence

their biocompatibility and immunogenicity. Accumulation in vital

organs may provoke cytotoxic effects and oxidative stress, further

impairing organ function (106–108). Therefore, a comprehensive

understanding of these factors is essential to mitigate adverse effects.

Fourthly, it is crucial to recognize that the development of sepsis

is often associated with dysbiosis of the host’s microbiota. Clinical

studies have demonstrated that patients experiencing microbiota

imbalance, particularly following hospital interventions like

antibiotic treatments, have a significantly increased risk of

developing sepsis and septic shock within 90 days (109, 110).

Dysbiosis disrupts the delicate equilibrium of commensal

microorganisms that play a vital role in immune system

modulation. This disruption can impair gut barrier function,

leading to translocation of pathogens into the bloodstream and

triggering systemic inflammation (111, 112). Moreover, dysbiosis
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may promote immunosuppression by altering the maturation and

function of immune cells, rendering the host more susceptible to

infections (113). Although some NMs possess broad-spectrum

antibacterial properties, their use could inadvertently exacerbate

host dysbiosis. The non-selective elimination of beneficial

microbiota might further compromise the immune system,

negatively impacting sepsis treatment outcomes. Therefore, while

designing nanomaterial-based therapies, it is imperative to consider

their effects on the host microbiota.

Fifthly, it is imperative to consider that the efficacy of NMs in

sepsis treatment may be significantly modulated by individual host

differences. As previously noted, the progression of the

inflammatory response and subsequent immunosuppressive

phases in sepsis is profoundly influenced by host-specific factors.

Notably, the trajectory of the immunosuppressive phase exhibits

substantial heterogeneity among different patient populations,

including adults, the elderly, infants, and individuals with

underlying conditions such as diabetes or cancer (114–120).

These comorbidities and age-related changes can alter immune

function, affecting both the innate and adaptive immune responses.

Consequently, the therapeutic effectiveness and safety profile of

NMs may vary widely across these groups. Most preclinical studies

investigating the anti-sepsis effects of NMs employ healthy adult

animal models, which do not adequately represent the clinical

diversity encountered in practice (121–123). This discrepancy

inevitably leads to a significant gap between experimental

outcomes and real-world applicability. To bridge this gap, it is

essential to incorporate diverse animal models that mimic the

immunological states of different patient populations. Moreover,

personalized medicine strategies should be considered to tailor NM

treatments according to individual host characteristics, thereby

optimizing therapeutic efficacy and minimizing adverse effects.

Lastly, it must be acknowledged that environmental pollution,

both extracorporeal and intracorporeal, could significantly impact
Frontiers in Immunology 05
NMs. Before entering the host body, numerous potential pollutants

present in the environment can easily adsorb onto the surface of

NMs. For example, LPS is a heat-resistant and widely distributed

potential pollutant. Current methods for its detection are easily

subject to interference by various factors, making it difficult to

exclude in nanomaterial experiments (124, 125). The mechanisms

by which LPS modulates immune responses are complex and could

exacerbate inflammation or induce immunosuppression, thereby

masking the true effects of NMs. Moreover, once NMs are

introduced into the host, they can rapidly interact with a myriad

of biomolecules—including proteins, nucleic acids, lipids, and

metabolites—to form a “protein corona” (126). This dynamic

biointerface can alter the physicochemical properties and

immunogenicity of NMs, potentially promoting immune

imbalance within the host. Therefore, it is crucial to consider

both environmental and biological factors that may influence NM

behavior, and to develop rigorous purification and characterization

protocols to mitigate these effects in clinical applications.
NMs for dynamic immunomodulation
in sepsis: a paradigm shift
in treatment

The pathogenesis of sepsis is characterized by a complex and

dynamic interplay between inflammation and immunosuppression, a

duality that renders simplistic anti-bacterial and anti-inflammatory

approaches insufficient. Effective therapeutic intervention necessitates

a nuanced strategy focused on precise immune modulation, tailored

to the evolving phases of the disease. During the predominantly

inflammatory phase, anti-inflammatory strategies should be

prioritized. Conversely, during the subsequent immunosuppressive

phase, effective immune reconstitution becomes paramount. This
FIGURE 1

Mechanistic representation of NM-mediated targeted immunomodulation in sepsis. NMs leverage their combined anti-inflammatory and immune-
activating properties, mirroring strategies employed in tumor, to address the biphasic nature of sepsis. In the early inflammatory phase, NMs
suppress inflammation. As the disease progresses into the immunosuppressive phase, NMs promote immune reconstitution. This dynamic interplay,
depicted centrally, represents a novel therapeutic paradigm for sepsis treatment, integrating the established anti-inflammatory and immune-
reactivating capabilities of NMs for targeted immune cell modulation.
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transition highlights the need for adaptive therapies that can

dynamically respond to the shifting immunological landscape. The

immunosuppressive phase of sepsis is marked by widespread

immune cell dysfunction, leading to systemic immune paralysis.

This includes a shift from M1 to M2 macrophage polarization, T

cell exhaustion, increased regulatory T cell (Treg) counts, elevated

immature neutrophil populations, enhanced dendritic cell apoptosis,

and impaired natural killer (NK) cell function (45–47). While current

NM-based therapies for sepsis largely focus on anti-bacterial and

anti-inflammatory effects, their substantial potential for immune

reconstitution remains largely unexplored. The ability of NMs to

specifically target and modulate diverse immune cell subsets, a

capability extensively demonstrated in the field of oncology,

suggests a promising therapeutic strategy for sepsis treatment.

Integrating the established immune-activating properties of NMs,

well-characterized in anti-cancer applications (127–130), with their

inherent anti-inflammatory capabilities, presents a transformative

therapeutic paradigm for sepsis management. As depicted in Figure 1,

this strategy envisions a dynamic therapeutic shift between anti-

inflammatory and immune-reconstitutive modalities, adapting to the

evolving needs of the patient throughout the course of the disease.

However, realizing this vision requires the development of robust,

real-time monitoring tools capable of accurately assessing the

individual patient’s disease stage and immunological profile.

Furthermore, comprehensive safety assessments, meticulously

evaluating potential toxicities and accounting for inter-individual

variability based on age, comorbidities, and genetic background, are

critical for the successful clinical translation of such NMs. This

rigorous approach will be essential to ensure both efficacy and

safety in this complex disease setting.
Conclusion and prospects

In summary, despite the tremendous potential of NMs in sepsis

treatment, current application strategies primarily focus on

suppressing hyperinflammation. This limited approach may

neglect the modulation of the immunosuppressive phase of sepsis,

potentially exacerbating the disease course. To overcome the

existing limitations of NMs in sepsis treatment, we anticipate

the following trends in future developments. Firstly, given the

significant differences among sepsis patients in terms of infection

source, degree and stage of immune response, age, gender, and

comorbidities, the importance of personalized treatment should be

emphasized. The design and application of future NM treatment

strategies need to consider each patient’s specific status and needs,

achieving a “precision medicine” approach. Secondly, the disease

course of sepsis typically includes an excessive inflammatory

response phase followed by an immunosuppressive phase.

Therefore, an ideal treatment strategy should be able to adaptively

respond to these two phases, exerting anti-inflammatory effects

during hyperinflammation and activating immune responses to

restore immune balance during immunosuppression. Future
Frontiers in Immunology 06
research on NMs may focus on developing nanotherapeutic

systems with this “smart” response capability. Lastly, the precise

detection of molecular biomarkers by NMs constitutes a unique

advantage of these materials and a crucial step towards personalized

treatment. By integrating diagnosis, treatment, and monitoring into

a single nano-platform, it is possible to track a patient’s

immunopathological status in real time and adjust treatment

strategies promptly. This integrated diagnostic-therapeutic nano-

system not only provides more precise and efficient treatment plans

for patients but also helps evaluate treatment effects, which is crucial

for controlling the development and prognosis of sepsis. Overall,

NMs offer many new perspectives and tools for sepsis treatment,

warranting further exploration and development.
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