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Background: High-grade serous ovarian cancer (HGSOC), the predominant

subtype of epithelial ovarian cancer, is frequently diagnosed at an advanced

stage due to its nonspecific early symptoms. Despite standard treatments,

including cytoreductive surgery and platinum-based chemotherapy, significant

improvements in survival have been limited. Understanding the molecular

mechanisms, immune landscape, and drug sensitivity of HGSOC is crucial for

developing more effective and personalized therapies. This study integrates

insights from cancer immunology, molecular profiling, and drug sensitivity

analysis to identify novel therapeutic targets and improve treatment outcomes.

Utilizing single-cell RNA sequencing (scRNA-seq), the study systematically

examines tumor heterogeneity and immune microenvironment, focusing on

biomarkers influencing drug response and immune activity, aiming to enhance

patient outcomes and quality of life.

Methods: scRNA-seq data was obtained from the GEO database in this study.

Differential gene expression was analyzed using gene ontology and gene set

enrichment methods. InferCNV identified malignant epithelial cells, while

Monocle, Cytotrace, and Slingshot software inferred subtype differentiation

trajectories. The CellChat software package predicted cellular communication

between malignant cell subtypes and other cells, while pySCENIC analysis was

utilized to identify transcription factor regulatory networks within malignant cell

subtypes. Finally, the analysis results were validated through functional

experiments, and a prognostic model was developed to assess prognosis,

immune infiltration, and drug sensitivity across various risk groups.

Results: This study investigated the cellular heterogeneity of HGSOC using

scRNA-seq, focusing on tumor cell subtypes and their interactions within the

tumor microenvironment. We confirmed the key role of the C2 IGF2+ tumor cell
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subtype in HGSOC, which was significantly associated with poor prognosis and

high levels of chromosomal copy number variations. This subtype was located at

the terminal differentiation of the tumor, displaying a higher degree of

malignancy and close association with stage IIIC tissue types. The C2 subtype

was also associated with various metabolic pathways, such as glycolysis and

riboflavin metabolism, as well as programmed cell death processes. The study

highlighted the complex interactions between the C2 subtype and fibroblasts

through the MK signaling pathway, which may be closely related to tumor-

associated fibroblasts and tumor progression. Elevated expression of PRRX1 was

significantly connected to the C2 subtype and may impact disease progression

by modulating gene transcription. A prognostic model based on the C2 subtype

demonstrated its association with adverse prognosis outcomes, emphasizing the

importance of immune infiltration and drug sensitivity analysis in clinical

intervention strategies.

Conclusion: This study integrates molecular oncology, immunotherapy, and

drug sensitivity analysis to reveal the mechanisms driving HGSOC progression

and treatment resistance. The C2 IGF2+ tumor subtype, linked to poor prognosis,

offers a promising target for future therapies. Emphasizing immune infiltration

and drug sensitivity, the research highlights personalized strategies to improve

survival and quality of life for HGSOC patients.
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Introduction
High-grade serous ovarian cancer (HGSOC) is the most

common subtype of epithelial ovarian cancer (OCa), responsible

for about 185,000 deaths globally each year, representing

approximately 60% of all OCa-related fatalities (1, 2). The ovaries’

unique anatomical location leads to subtle early symptoms of

HGSOC, causing around 70% of patients to be diagnosed at

advanced stages (III/IV) with pelvic-abdominal dissemination (3).

Research shows that patients with aggressive stage IIIC tumors have

a 5-year survival rate of 15% to 25%, which significantly affects their

quality of life (4).

Currently, the standard treatment regimen for HGSOC

typically involves the combination of primary debulking surgery

and platinum-based chemotherapy (5). primary debulking surgery

aims to maximize tumor burden reduction to enhance the efficacy

of subsequent chemotherapy, while platinum-based chemotherapy

remains central to the treatment of HGSOC (1, 6). However, despite

showing a certain degree of positive response to platinum-based

chemotherapy in initial treatment for advanced HGSOC (7), there

has been no significant improvement in cure rates over the past 30

years. This stagnation is primarily attributed to the anatomical

continuity of the abdominal cavity, which facilitates early
02
dissemination of cancer cells (8). Furthermore, although novel

therapeutic agents such as bevacizumab and PARP inhibitors

have been introduced in recent years, survival outcomes for

patients with stage IIIC or higher who receive neoadjuvant

chemotherapy (9–11). These challenges highlight the need to

explore molecular mechanisms driving treatment resistance and

to develop personalized therapeutic strategies that incorporate drug

sensitivity analysis and immunotherapy. By integrating these

insights, future treatments may significantly enhance patient

outcomes in HGSOC, improving both survival and quality of life.

The rapid advancement of immunotherapy has revolutionized

tumor-targeted cancer treatment. The diverse organization and

maturity of immune aggregates identified in HGSOC provide critical

insights for the development of alternative immunotherapeutic

strategies tailored for HGSOC patients (12). Moreover, in the

treatment strategies for recurrent HGSOC, the combination of

pathway blockade and checkpoint inhibition has demonstrated

significant therapeutic potential (13). Despite these advancements,

some studies suggest that HGSOC has a suboptimal response to

immunotherapy. This may be due to its tumor mutational burden,

which is significantly lower than that seen in other tumor types,

ultimately reducing the disease’s inherent immunogenicity.

Consequently, the field of immunotherapy for HGSOC remains

contentious, with existing therapeutic outcomes lacking robust
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clinical validation. Given the complexity of HGSOC and the limitations

of current therapeutic outcomes, there is an urgent need to explore

novel immunotherapeutic approaches and multidisciplinary

collaborative strategies to improve patient prognosis and quality of life.

Recent advances in single-cell RNA sequencing (scRNA-seq)

technology have created important new tools for studying tumor

cell heterogeneity and associated microenvironments. This

technique enables researchers to characterize gene expression

patterns at high resolution, even when analyzing a limited

number of cells. Based on this background, we conducted a

scRNA-seq study on HGSOC cells, aiming to elucidate the

cellular heterogeneity and microenvironmental characteristics of

HGSOC, thereby providing novel insights for its diagnosis and

treatment. By revealing the transcriptomic profiles of various cell

types, we anticipate identifying potential biomarkers and

therapeutic targets that could significantly enhance patient

prognosis and survival rates. This study aims to establish a

foundation for developing personalized treatment strategies to

manage the complexities and challenges of HGSOC.
Materials and methods

Get HGSOC data

The scRNA-seq data for HGSOC was obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). The dataset used in

the single-cell analysis included ovarian samples from five normal

ovarian disease patients with six HGSOC patients, with the

accession number GSE184880 (GSM5599220-GSM5599231).

Detailed clinical data from these patients with metastatic omental

tumors, such as age, histologic type, tumor stage, BRCA/HRR status

(nucleotide change) were provided. For more information, refer to

Supplementary Table 1. Additionally, bulk RNA-seq data and

clinical data were obtained from the Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/), which also included

genetic mutation data and clinical information, such as patient

survival details for ovarian cancer.
Processing and visualization of raw data

The analysis of 10X genomics data for each sample was

conducted using R software (version 4.2.0) in conjunction with

the Seurat package (v4.1.1) (14, 122). To maintain data integrity, we

utilized the DoubletFinder tool (v2.0.3) to detect and eliminate

probable doublet cells (15–17). Furthermore, inferior-quality cells

were excluded to improve the precision and dependability of the

scRNA-seq results. Cells were incorporated into the study if they

satisfied the subsequent criteria: 300 < nFeature < 6000 and 500 <

nCount < 100,000. Moreover, the expression of mitochondrial

genes in each cell constituted less than 25% of the overall gene

expression, whereas the expression of red blood cell genes was

confined to under 5% of the total.

Following filtration, samples were normalized with the

“NormalizeData” tool, and the top 2,000 highly variable genes
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were identified using the “FindVariableFeatures” function from

the Seurat package (18–22). The produced data were further

standardized using the “ScaleData” function, followed by

principal component analysis (PCA) (23–25). We mitigated batch

effects across datasets by employing the harmony R package

(version 0.1.1) (26, 27). We subsequently identified the top 30

principal components for additional analysis and displayed the data

with uniform manifold approximation and projection (UMAP)

(28, 121).
Cancer preferences analysis

To evaluate the cancer preference of tumor cell subtypes, odds

ratios (OR) were computed utilizing the specified calculation

method (29).
Enrichment analysis and AUCell analysis

We performed a functional analysis of Gene Ontology Biological

Process (GOBP) (30–33) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) utilizing the ClusterProfiler R package (version

4.6.2) based on Gene Ontology (GO) analysis (34, 35). Gene Set

Enrichment Analysis (GSEA) was utilized to assess the comprehensive

expression patterns within gene sets (36). Additionally, we integrated a

novel method called AUCell to detect active gene sets within our

scRNA-seq data (37). AUCell is a computational method used to

assess gene set enrichment in single-cell transcriptomic data. We

evaluated the enrichment of stemness gene sets using the AUCell R

package, ranking the gene sets according to the degree of enrichment

with the “AUCell_buildRankings” function.

A method used for gene set enrichment analysis is gene set

variation analysis (GSVA). This technique assessed the variability of

gene expression data and compares it to predefined gene sets to

calculate enrichment scores for each gene set in every sample.
Detect tumor cells utilizing inferCNV

We conducted CNV analysis of the scRNA-seq data using the R

package infercnv (version 1.6.0, https://github.com/broadinstitute/

inferCNV). This analysis involved evaluating relative gene

expression alongside chromosomal location data to infer the CNV

status of chromosomes in individual cells (38). This approach

enabled us to distinguish malignant tumor cells from normal

cells effectively.
Cell type identification and annotation

We utilized Seurat’s “FindClusters” and “FindNeighbors”

functions for cell clustering, and “FindAllMarkers” to identify

Differentially Expressed Genes (DEGs) for each cluster (39–41).

Subsequently, to further investigate the heterogeneity of tumor cells
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in HGSOC, we re-clustered the tumor cells and marked each

subtype based on specific marker genes.
Lineage trajectory analysis

To assess the differentiation states of all tumor cell subtypes, we

utilized CytoTRACE for ranking (42). We constructed the

pseudotime trajectory of these subtypes using Monocle (v2.24.0).

By analyzing the pseudotime ordering within the scRNA-seq data,

we then leveraged the Slingshot package (version 2.6.0) to infer cell

lineages during the differentiation process of the tumor cell subtypes

(43). Using the “getLineages” and “getCurves” functions, we

estimated the expression levels associated with each lineage,

thereby elucidating the differentiation trajectories of the tumor

cell subtypes.
Cell communication

We employed the CellChat R package (version 1.6.1) (34) to

visualize interactions among all cell types, including communication

networks between tumor subtypes and other cell types. This involved

quantitatively inferring and analyzing intercellular interactions based

on scRNA-seq data. We used the “netVisual_diffInteraction”

function to depict differences in cell communication intensity and

the “identifyCommunicationPatterns” function to identify various

communication patterns. We utilized the CellChat database to

predict signaling pathways and ligand-receptor interactions. A p-

value threshold of 0.05 was set to evaluate intercellular interactions

among various cell types.
Utilization of SCENIC for gene regulatory
network reconstruction

We utilized the pySCENIC package (v0.10.0) in Python (v3.7)

with default parameters to reconstruct gene regulatory networks

and identify stable cell states from scRNA-seq data. We generated

AUCell matrices to assess transcription factor enrichment and

regulatory factor activity (44, 45).
Construction and validation of
prognostic model

Initially, we found notable predictive genes via univariate Cox

analysis and Lasso regression analysis (46). We subsequently

computed the risk coefficients for each prognostic gene by

multivariate Cox regression analysis and developed a risk score

model (Risk score =∑_i^n Xi×Yi, where X represents the coefficient

and Y denotes the gene expression level) (47). Subsequently, we

categorized patients according to the optimal cut-off value

established by the median risk score and the “surv_cutpoint”

function. We performed survival analysis utilizing the Survival

package in R (version 3.3.1-1) to examine the prognostic
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outcomes of various patient cohorts and depicted the survival

curves using the ggsurvplot function (48–51). Subsequently, we

assessed the predictive model’s accuracy by generating ROC curves

(52–55) utilizing the timeROC package (version 0.4.0).

Additionally, to confirm the independence of the risk score as a

prognostic indicator, we conducted multivariate Cox regression

analysis and developed a Nomogram to forecast overall survival

(OS) at 1, 3, and 5 years. We performed internal cross-validation of

the Nomogram ’s predictions utilizing the C-index and

calibration curves.
Assessment of immune microenvironment

We utilized the CIBERSORT R software (version 0.1.0) to

evaluate 22 categories of immune cells. Subsequently, we

employed CIBERSORT, ESTIMATE, and Xcell methods to

thoroughly assess the immunological microenvironment of the

patients, and further examined the variations in immune cell

infiltration levels and the expression levels of immune

checkpoint-related genes (56).

Furthermore, we examined the relationships among immune

cells, model genes, OS, and risk ratings. We evaluated the response to

tumor immunotherapy utilizing the Tumor Immune Dysfunction

and Exclusion (TIDE) program (http://tide.dfci.harvard.edu). We

assessed medication immune response utilizing the TCIA

database (https://www.cancerimagingarchive.net/).
Drug sensitivity analysis

To better align our findings with the clinical application of the

drugs, we assessed the sensitivity of various drugs. We employed the

“pRRophetic” package (version 0.5) to determine the IC50 values

for each sample and to evaluate the responsiveness of groups with

high and low risk scores (57, 58, 123).
Cell culture

The OVCAR3 cell line (Catalog No.: CL-0178), derived from

tumor tissue, was purchased from Wuhan PunoSai Life Technology

Co., Ltd. It was cultivated in RPMI-1640 medium under controlled

environmental conditions, which included a temperature of 37°C, a 5%

CO2 atmosphere, and a humidity level of 95%. The medium was also

supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics to

support cell proliferation and maintain cell health. In a similar fashion,

the OVCAR8 cell line was also grown in RPMI-1640 medium under

the same environmental parameters, with the addition of 10% FBS and

1% antibiotics to promote optimal cellular growth and vitality.
Cell transfection

RNA constructs procured from GenePharma (Suzhou, China)

were utilized to suppress the expression of PRRX1. The cells were
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plated in a 6-well plate at a density of 50% confluence and then

underwent transfection with PRRX1-targeting RNAi constructs (si-

PRRX1-1 and si-PRRX1-2) and a non-targeting control (si-NC). The

transfection process was facilitated by Lipofectamine 3000RNAiMAX

reagent (Invitrogen, USA) following the provider’s protocol. A range

of si-RNAs (RIbbio, China) were introduced into the cells. The

sequences of the si-RNAs, presented from the 5’ to 3’ direction, are

detailed in Supplementary Table 2.
Western blotting

Once the cells reached approximately 70% confluence post-

transfection, they were lysed using RIPA buffer for harvesting. The

resulting lysates were subjected to centrifugation at 12,000 rpm for 15

minutes to remove cellular debris, and the supernatants were collected

for subsequent protein analysis using SDS-PAGE. The separated

proteins were then transferred to PVDF membranes, which were

incubated with 5% bovine serum albumin (BSA) for 1.5 hours at room

temperature to minimize non-specific interactions. Following this, the

membranes were exposed to a primary Anti-PRRX1 antibody

overnight at 4°C, and subsequently incubated for one hour with a

secondary antibody conjugated to horseradish peroxidase. The

detection of PRRX1 protein was conducted by applying an

enhanced chemiluminescence substrate for Western Blotting.
Quantitative real-time polymerase
chain reaction

RNA was extracted utilizing Trizol reagent, followed by a

reverse transcription process performed with the PrimeScript™

Kit. To quantify gene expression, qRT-PCR analysis was performed

using SYBR Green as the fluorescent dye to track the

amplification progress.
Cell viability assay

To assess the impact of transfection on the viability of OVCAR3

and OVCAR8 cells, the CCK-8 assay was utilized. Cells were seeded

in 96-well plates at a density of 5×10³ cells per well and incubated

for 24 hours. Subsequently, 10mL of CCK-8 reagent (A311-01,

Vazyme) was added to each well, and the plates were incubated

in the dark at 37°C for two hours to allow the colorimetric reaction

to develop. Absorbance readings at 450 nm were taken daily over a

four-day period using a spectrophotometric plate reader (A33978,

Thermo) to evaluate cell viability. The mean optical density values

were calculated and plotted to demonstrate the cell survival trend

throughout the observation period.
Transwell assay

Prior to commencing the experiment, cells underwent serum

starvation for a duration of 24 hours in a serum-free medium.
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Following this, the cells were mixed with Matrigel (BD Biosciences,

USA) and introduced into the upper chamber of Costar transwell

plates, while the lower chamber was filled with a medium

supplemented with serum to create a chemotactic gradient. The

plates were then incubated for 48 hours to promote migration and

invasion of the cells. After the incubation, the cells were fixed using

4% paraformaldehyde and subsequently stained with crystal violet

to assess their invasive potential.
Wound-healing assay

For the assessment of cell migration in stably transfected cells,

they were cultured in 6-well plates until confluence was achieved. A

sterile 200mL pipette tip was used to create even scratches in the cell

monolayer within each well. The wells were then rinsed with PBS to

clear away any detached cells or debris. In light of this, the cells were

incubated in serum-free medium to observe their migratory

response. Photographs of the wounded areas were taken at the 0-

hour mark and again after a 48-hour incubation period. The Image-

J software was employed to measure the scratch widths and perform

a quantitative analysis of the cell migration.
5-ethynyl-2’-deoxyuridine
proliferation assay

Following transfection, OVCAR3 and OVCAR8 cells were

seeded in 6-well plates at a density of 5×10³ cells per well. After a

24-hour incubation at room temperature, EdU reagent was

introduced into the culture medium, and the cells were incubated

for an additional 2 hours to facilitate DNA labeling during the S

phase. Subsequently, the cells were washed twice with PBS to

eliminate any unincorporated EdU. They were then fixed in a 4%

paraformaldehyde solution for 15 minutes. After fixation, the cells

underwent permeabilization, followed by treatment with a glycine/

Triton X-100 solution for 15 minutes to prevent non-specific

staining. Finally, the cells were stained with a combination of 1X

Apollo and Hoechst dyes for 30 minutes. Fluorescence microscopy

was employed to visualize and capture images of the stained cells,

enabling the assessment of cell proliferation.
Statistical analysis

Statistical analyses were performed utilizing R software (v4.3.0)

and Python software (v4.2.0) (59, 124). We employedWilcoxon’s test

and the Pearson correlation coefficient to evaluate the significance of

differences between various groups. Significance levels were classified

as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. The

designation “ns” was used to indicate non-significant differences

between groups. These statistical tests and significance indicators

were applied to assess the statistical validity of our findings and to

enhance confidence in the results.
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Results

Single cell landscape of HGSOC

We conducted an extensive analysis of the obtained dataset to

unveil the intricate single-cell landscape within the HGSOC

microenvironment. Our workflow was illustrated in Figure 1A. By

analyzed five nonmalignant ovaries and seven primary tumors from

GSE 184880, By using dimensionality reduction clustering with

UMAP plot, nine cell types were obtained: fibroblasts, T-NK cells,

epithelial cells (EPCs), myeloid-cells, B-plasma cells, endothelial

cells (ECs), smooth muscle cells (SMCs), conventional dendritic

cells type 2 (cDC2-cells), plasmacytoid dendritic cells (pDCs).

The figure presented below demonstrated the distribution of

twelve distinct samples, as well as the distribution of cells across the

five groups (IC2, IIB, IIIB, IIIC, NC) and the three different phases

(G1, G2/M, S) in various cell types (Figure 1B).

Afterward, we conducted an analysis on the distribution and

densities of five cell groups expressing pMT, Cell Stemness AUC,

nFeature RNA, nCount RNA, G2/M.Score, and S.Score (Figure 1C).

Additionally, we visually depicted the expression levels of different

cell types in these terms through Figure 1D. Furthermore, we

provided a detailed description of the expression level of typical

marker genes associated with cell subtypes in the cells, as shown in

Figure 1E. After analyzing the proportions of each cell type across

different groups and the distributions of each sample across the nine

cell types, we found that fibroblasts and EPCs were the main

components of IIIC (Figures 1F, G). To further elucidate the IIIC

tissue type and the roles of the more prevalent ECs and fibroblasts

within this tissue type in HGSOC. we conducted a functional

enrichment analysis. Our findings indicated that the IIIC tissue

type was significantly enriched in cell-substrate adhesion and

collagen metabolic processes. Furthermore, we observed that

fibroblasts exhibited enrichment in lymphocyte-mediated

immunity, regulation of B cell activation, EPCs exhibited

enrichment in epithelium migration, and cell-substrate adhesion.

Additionally, fibroblasts demonstrated upregulation in pathways

associated with extracellular matrix organization and collagen fibril

organization. In contrast, EPCs were notably enriched in epithelium

migration and cell-substrate adhesion, and they showed significant

upregulation in the oxidative phosphorylation and ATP synthesis

coupled electron transport pathways (Figures 1H, I). It is noteworthy

that HGSOC primarily originates from the malignant transformation

of ovarian EPCs (60). Additionally, oxidative phosphorylation, a

metabolic process crucial for energy production, has been found to

have a close association with the progression of HGSOC. This

indicates that our findings are consistent with the known biological

functions associated with HGSOC (61).
Visualization of tumor cell subtypes
in HGSOC

Given the profound importance of tumor cells in TME, our

subsequent objective is to characterize these cells in the
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microenvironment of HGSOC. To detect aberrant amplification

or deletion of chromosome copy number in EPCs, we initially

employed inferCNV to analyze the chromosome copy

number variation (CNV) of EPCs using ECs as a reference

(Supplementary Figure 1). According to CNV level, tumor cells

was distinguished from EPCs. After that, we re-subtypeed tumor

cells, and annotated them according to each cell marker gene, and

identified six tumor cell subtypes: C0 XIST+ tumor cells, C1

SCGB2A1+ tumor cells, C2 IGF2+ tumor cells, C3 UBE2C+

tumor cells, C4 TFF3+ tumor cells and C5 IGFBP3+ tumor cells.

We showed the distribution of different groups, phases, stemness,

and CNVscore. (Figure 2A). Figure 2B showcased the differential

expression of the top five marker genes in the tumor cell subtypes,

visualized using the volcano plots (Figure 2C). In addition, we

analyzed the proportions between different tissue types and

subtypes, finding that the C2 subtype was composed of IIIC.

Furthermore, compared to other subtypes, the C2 subtype

exhibited a higher proportion of IIIC tissue (Figures 2D, E).

Therefore, we hypothesized that the heterogeneity about IIIC

tissue types may be associated with the C2 subtypes. Similarly,

the Ro/e preference plot indicated a higher cell abundance of C2

subtypes in IIIC tissue, further substantiating our conclusion

(Figure 2F). We also utilized UMAP plots to display the

characteristic marker genes of six tumor cell subtypes (Figure 2G).

Next, we showed the results of CNVscore, nFeature RNA and

nCount RNA of different tissue types and tumor cell subtypes by

violin diagrams (Figure 2H). Our findings indicated that the C2

subtype exhibited a significantly higher CNV score compared to

other subtypes, which is consistent with the biological

characteristics associated with HGSOC tissue. Additionally, the

C2 subtype demonstrated elevated expression levels of both

nCount RNA and nFeature RNA. Consequently, we infer that the

C2 subtype may represent a higher level of malignancy.
Analysis of metabolic and biological
processes in tumor cell subtypes

Subsequently, we determined that the subtypes had specific

biological functions through the enrichment analysis of tumor

cells from different tissue types. For instance, extracellular

structure organization, extracellular matrix organization, external

encapsulating structure organization was associated with C2

subtype, and the regulation of T cell activation (Figure 2I, J).

Furthermore, our analysis of the metabolic pathways of different

subtypes revealed that the C2 subtype was closely linked to

riboflavin metabolism, pyruvate metabolism, and the pentose

phosphate pathway (Figures 2K, 3A, B). Further analysis showed

that the C2 subtype had higher expression levels in these metabolic

processes, and compared to other tissue types, the expression was

also more significant in IIIC tissues. The UMAP plot similarly

validated our conclusions, clearly presenting the distribution

differences of different metabolic pathways across the subtypes

(Figures 3C-E).
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We conducted a comprehensive analysis of biochemical pathways

and identified a significant enrichment of the C2 subtype in the

programmed cell death pathways of pyroptosis, entotic cell death and

lysosome-dependent cell death (Figures 3F, G). Our findings indicated
Frontiers in Immunology 07
that the C2 subtype had higher expression levels in the aforementioned

biological processes, and the expression of these processes was also more

significant in IIIC tissues compared to other tissue types. TheUMAPplot

similarly validated our conclusions (Figures 3H-J).
FIGURE 1

Single-cell profiling of HGSOC. (A) Workflow diagram for single-cell sequencing analysis of the GSE184880 dataset. (B) The UMAP plot depicted the
distribution of nine distinct cell types across the entire cell population, including Fibroblasts, T_NK cells, EPCs, Myeloid cells, B Plasma cells, ECs,
SMCs, cDC2, and pDCs. The UMAP plots below illustrated the distribution of twelve distinct samples (left), various tissue types (middle), and different
cell cycle phases (right) within the entire cell population. (C) The UMAP plots displayed the distribution in pMT, Cell Stemness AUC, nFeature RNA,
nCount RNA, G2M.Score, and S.Score. Different group types were distinguished in the figure using various symbols. (D) The violin plots illustrated the
expression levels of different cell types in terms of pMT, Cell Stemness AUC, nFeature RNA, nCount RNA, G2M.Score, and S.Score. (E) The heatmap
showed the expression of top five marker gene in different cell types. (F) The stacked bar graph illustrated the proportion of each cell type across
different groups. (G) The box plots illustrated the distribution of each sample across the nine cell types. (H) Visualization of enrichment analysis in
IIIC group, fibroblasts and EPCs. (I) The GSEA enrichment analysis demonstrated the pathways that were upregulated in fibroblasts and EPCs.
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FIGURE 2

IGF2+ Tumor cells specifically expressed in malignant EPCs and are associated with IIIC. (A) The circular plot represented the clustering of six tumor cell
subtypes identified in HGSOC, with contour curves delineating the boundaries of each cell subtype. The outer axis displayed a logarithmic scale of the
total number of cells within each category. UMAP plots, arranged in the four corners and proceeding clockwise from the upper left corner, illustrated
the expression distribution of groups and phases, stemness, and CNV scores across all tumor cells. (B) Bubble plots depicted the mean expression levels
of the top five DEGs in each tumor cell subtype. The size of each bubble corresponded to the percentage of gene expression, while the color indicated
data normalization. (C) Volcano plots illustrated significant upregulated and downregulated genes across the six tumor cell subtypes. (D) Distribution of
groups across different subtypes. (E) The stacked bar graphs displayed the distribution of each cell subtype across various states and group
classifications. (F) The Ro/e score was utilized to assess the tissue preference of each tumor cell subtype. (G) UMAP plots revealed the signature marker
genes for the six tumor cell subtypes. (H) Violin plots depicted the CNV scores, nCount RNA, and Feature RNA expression levels across the six tumor cell
subtypes. (I, J) Results from enrichment analyses across different group classifications and C2 IGF2+ tumor cells revealed key biological functions of the
corresponding cell populations. (K) The AUCell algorithm was employed to evaluate the C2 IGF2+ tumor cells in relation to metabolism-
related pathways.
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Unveiling the development and
differentiation characteristics of tumor cell
subtypes through pseudotime analysis

To understand the source and development of HGSOC tumor

cells, we analyzed the intricate lineage and advancement of tumor

cells. It was easy to see in Figures 4A-D that the C4 TFF3+ tumor

cells were mostly in the early stages of differentiation, Conversely,

the C2 IGF2+ tumor cells were in the last stage of development.

Afterwards, we utilized the CytoTRACE technique to evaluate the

differentiation and developmental correlation between several

subtypes of tumor cells. The findings indicated that C2 IGF2+

tumor cells displayed a higher degree of cellular stemness, as seen in

Figure 4E. Tumor cells often possess self-renewal capability and

differentiation potential. Thus, as the tumor advances, tumor cells

in the last stage of differentiation tend to have greater cellular

stemness, in line with the results obtained from the CytoTRACE

investigation. This finding further supported the conclusions drawn

from the Monocle analysis.

Consistent with those findings, the genes IGF2, which serve as

markers for the C2 subtype was predominantly expressed during

the mid-late stage of the developmental trajectory. Conversely, the

expression levels of TFF3, a marker indicative of the C4 subtype,

were initially elevated but decreased over time. Subsequently, we

illustrated the differential expression of stemness genes across

different tumor cell subtypes and tissue types through a bubble

plot (Figure 4F). Additionally, we visualized the six most prominent

stemness genes associated with each subtype (BMI1, KDM5B, KLF4,

LGR5, NES, and ZFP43) using a combination of UMAP and

contour plots (Figure 4G).
Cell-cell communication and visualization
of the MK signaling pathway

We utilized CellChat to infer and analyze communication

between tumor cell subtypes and other cell types from single-cell

data. The number and intensity of interactions between all cell types

in HGSOC samples were comprehensively summarized. It was

found that compared with other types of cells, C2 IGF2+ tumor

cells had a more significant effect on fibroblasts. The circle graphs

quantified the number and intensity of interactions between all cells

with C2 IGF2+ tumor cells as the signal source and fibroblasts as the

target respectively (Figure 4H). The results showed that there was a

strong intercellular communication network between C2 IGF2+

tumor cells and fibroblasts.

Next, we identified the ligand-receptor signals associated with

the communication pathway to determine the primary afferent and

efferent signals related to the C2 IGF2+ tumor cells and other cells.

Subsequent analysis revealed potential connections to the MK

signaling pathway network. By conducting a network centrality

analysis of the inferred MK signaling network, we discovered that

C2 IGF2+ tumor cells function as signal senders, receivers,
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mediators, and influencers within the MK pathway. On the other

hand, our study found that fibroblasts could function as signal

senders, and we hypothesized that this could be related to the

transformation of normal fibroblasts into cancer-associated

fibroblasts (CAFs). Additionally, fibroblasts could also act as

signal receivers, mediators, and influencers, interacting with C2

IGF2+ tumor cells (Figure 4I). Notably, C2 IGF2+ tumor cells

demonstrated the ability to engage in paracrine interactions with

fibroblasts, resulting in a substantial communication intensity

between these cell populations (Figure 4J). In addition, we

compared the receptor-ligand interaction between C2 IGF2+

tumor cells and other cell types and found that when this subtype

interacted with fibroblasts, the ligand receptor had a high

communication probability with MDK-NCL (Figure 4K).

Additionally, a circle graph further confirmed that the

interactions between C2 IGF2+ tumor cells and fibroblasts could

be mediated through the receptor-ligand pairs within the MDK

signaling pathway, specifically involving MDK-NCL (Figure 4L).

Essentially, our study provided profound insights into the

intricate interactions between fibroblasts and tumor cell subtypes

in HGSOC. This relationship is likely closely linked to the

transformation of fibroblasts into CAFs, which promotes the

progression of HGSOC.
Identification and analysis of TF
regulatory modules

TFs can directly interact with the genome and regulate gene

transcription by binding to specific nucleotide sequences upstream

of the target gene. This interaction plays a significant role in

determining the biological functions of cells (62).

To initiate the analysis, we employed the SCENIC method to re-

dimensionally cluster HGSOC tumor cells based on different

subtypes and tissue types (Figure 5A). Subsequently, we

conducted connection specificity index matrix to classify HGSOC

tumor cells into four regulatory modules (M1, M2, M3, M4) based

on the similarity of AUCell score rules (Figures 5B). Through a

comparison of the expression levels and regulatory activities of TFs

within each module and the tumor cell subtypes, we identified that

the TFs in the M2 module predominantly regulated C2 IGF2+

tumor cells (Figures 5C, D).

Next, we analyzed the top five TFs in different tumor cell

subtypes and different tissue types. We specifically studied their

specificity scores in different tissues. It is worth mentioning that

PRRX1 showed significant expression in both the C2 subtype and

the IIIC tissue. Furthermore, within the IIIC tissue, we observed

that PRRX1 exhibited the highest specificity score among the

subtypes. This finding suggested a strong and specific regulatory

relationship between PRRX1 and its target genes, highlighting its

potential as a biomarker or therapeutic target (Figures 5E, F).

Finally, we visualized the expression levels of five key regulatory

factors (PRRX1. MAFB, LBX2, GATA2 and MAFG) in the different
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subtypes. We observed that the expression of PRRX1 in the C2

subtype was significantly higher compared to other tumor cell

subtypes (Figures 5G, H). Nevertheless, the specific mechanism

by which PRRX1 influences HGSOC remains unclear. Therefore,

conducting in vitro functional experiments to validate the impact of

PRRX1 on HGSOC cells is imperative.
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In vitro experimental verification

To further explore the function of PRRX1 in HGSOC, we

performed in vitro experiments utilizing OVCAR3 and OVCAR8

cell lines. Initially, we conducted PRRX1 knockdown and evaluated

mRNA and protein expression levels both before and after the
FIGURE 3

Metabolic and cell death-related gene set analysis in Tumor cells of HGSOC. (A) The heatmaps displayed the AUCell scores for the top five
metabolism-related pathways across six tumor cell subtypes. (B) The bubble plot illustrated the differences in metabolic pathways among the distinct
cell subtypes. (C-E) The AUCell algorithm was employed to calculate the activity of glycolysis/gluconeogenesis, pyruvate metabolism, and riboflavin
metabolism among various cell subtypes and groups. Additionally, UMAP analysis displayed the distribution of these metabolic pathways. (F, G) The
expression levels of cell death-associated genes in tumor cells from various subtypes were assessed based on the mean gene expression levels.
(H-J) The AUCell algorithm was employed to calculate the activity of pyroptosis, entotic cell death, and lysosome-dependent cell death among
various cell subtypes and groups. Additionally, UMAP analysis displayed the distribution of these cell death-associated genes.
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FIGURE 4

Tumor cell subtypes trajectory analysis and communication crosstalk. (A) The UMAP plot showed the differentiation trajectory of six cell subtypes,
C2 IGF2+ tumor cells at the end of differentiation. The solid lines represented the differentiation trajectories, and the arrows indicated the direction
of differentiation (from naive to mature). (B) The UMAP plots showed the differentiation trajectory of across different states and groups. (C) The
dynamic trend graphs showed the expression of six marker. (D) The left panel displayed the genes over time at different differentiation
stages.predicted order distribution as estimated by CytoTRACE within tumor cells, where color indicated levels of cell stemness. The right panel
illustrated the distribution of tumor cells subtypes, with color representing each tumor cells subtype. (E) The Cytotrace analysis was employed to
rank the stemness of tumor cell subtypes. (F, G) The bubble plot illustrated the differential expression of stemness genes across various tumor cell
subtypes and tissue types, and UMAP was employed to visualize the significantly expressed genes. (H) Circle plots displayed the number (upper) and
strength (lower) of interactions of C2 IGF2+ tumor cells as the source with other cells. (I) Heatmap displayed the centrality scores of the MK
signaling pathway. (J) Hierarchical graph depicted the interactions between C2 IGF2+ tumor cells and other cell types in the MK signaling pathway.
(K) The bubble plot demonstrated that C2 IGF2+ tumor cells and fibroblasts may interact through the ligand MDK and the receptor NCL. (L) The
circle plot showed the communication network of MDK-NCL ligand-receptor pairs with tumor cells as the receiver.
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FIGURE 5

Identification of gene regulatory networks in C2 IGF2+ tumor cells. (A) UMAP plots colored and visualized all tumor cells based on the activity scores
of regulatory modules, respectively, according to cell subtypes and group classifications. (B) Heatmap displayed the identification of four regulatory
modules in tumor cell subtypes based on SCENIC regulatory rule modules and AUCell similarity scores. (C) The bar graphs showed AUC value of six
tumor cell subtypes in four modules comprised by M1, M2, M3, M4. (D) The Scatter plots displayed the ranking of TF regulatory activity scores for
different tumor cell subtypes in four modules. (E) The heatmap displayed top five TFs in six tumor cell subtypes. (F) Ranking of the top five TFs
activity scores of different group classifications. (G, H) Bar plots depicted the AUC value of the top five TFs in C2 IGF2+ tumor cells across different
tumor cell subtypes. UMAP plots visualized the distribution of these TFs.
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knockdown. Our results demonstrated a significant reduction in

mRNA and protein levels in both cell lines relative to the control

group (Figure 6A). Additionally, we observed a noticeable decrease

in cell viability following the knockdown (Figure 6B). Colony

formation assays further revealed a substantial decline in cell

count after the PRRX1 knockdown (Figure 6C). Moreover, EDU

and Transwell assays confirmed that the loss of PRRX1 partially

impeded cell proliferation (Figures 6D, G). The scratch test and

Transwell assays also indicated a significant reduction in both cell

migration and invasion post-PRRX1 knockdown (Figures 6E–H).

To validate our findings, we employed Kaplan-Meier survival

curves and ROC curves to analyze the key genes associated with C2

tumor cell subtypes, including the top five transcription factors

(IGF2, PRRX1, MAFB, LBX2, GATA2, MAFG). This analysis
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confirmed the association of IGF2 and PRRX1 with poor

prognosis (Supplementary Figure 2).

In summary, our results suggest that the knockdown of PRRX1

inhibits the activity, migration, invasion, and proliferation of tumor

cells, thereby hindering tumor growth. This inhibition is linked to

tumor progression and adverse prognosis.
Construction and correlation analysis of
risk prediction model

We created a prognostic model aimed at investigating the

clinical significance of the IGF2+/PRRX1 regulatory network.

Initially, we conducted univariate Cox regression analysis to
FIGURE 6

In vitro experiments confirmed the effects of PRRX1 knockdown. (A) The bar graphs showed the expression of gene mRNA (left) and gene-encoded
proteins (right) in the three groups of si-NC, siPRRX1-1, and siPRRX1-2 in OVCAR3 and OVCAR8 cell lines. Following PRRX1 knockdown, both mRNA
and protein expression levels were significantly reduced. (B) The CCK-8 assay results showed a notable reduction in cell viability in the OVCAR3 and
OVCAR8 cell lines following the knockdown of PRRX1. (C) Colony formation assays demonstrated a significant decrease in colony numbers after
PRRX1 knockdown. The bar graphs showed the colony numbers in two cell lines. (D) The EDU staining assay confirmed that PRRX1 knockdown
exerted an inhibitory effect on cell proliferation. (E) The cell wound healing assays evaluated the migration ability of C2 IGF2+ tumor cells after
treatment. (F) Bar graph displayed a significant decrease in cell proliferation and wound healing capabilities after PRRX1 knockdown. (G, H) Transwell
assay showed that PRRX1 knockdown suppressed the migration and invasion abilities of tumor cells in OVCAR3 and OVCAR8 cell lines. *P < 0.05,
**P < 0.01, and ***P < 0.001.
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evaluate the individual impact of each gene on prognosis

(Figure 7A). To address the issue of multicollinearity among the

genes, we further employed LASSO regression analysis to select the

most relevant genes for prognosis (Figure 7B). Subsequently, a

multivariate Cox regression analysis was performed, identifying the

independent prognostic factors associated with the research

outcomes. The results revealed that CRYAB, CTSD, FOS, SFRP1,

and IGF2 were identified as unfavorable prognostic factors (HR>1

indicates poor prognosis). Additionally, the coef values for these

genes were calculated to quantify their association with survival

outcomes (Figures 7C, D). Afterwards, using the expression levels

and regression coefficients of the five chosen prognostic-related

genes, we computed the IGF2+ tumor cells score for each patient

using the following formula: IGF2+ Tumor cells score =

(0.094017867) × (CRYAB expression level) + (0.087558917) ×

(CTSD expression level) + (0.052475918) × (FOS expression level)

+ (0.046824215) × (SFRP1 expression level) + (0.044591224) ×

(IGF2 expression level). These findings emphasize the genes

significantly associated with prognosis within the IGF2+/PRRX1

regulatory network.

To delve deeper into the distinctions across various scoring

groups, we conducted a DEGs analysis. Utilizing the most favorable

cut-off point of the IGF2+ tumor cell score, participants in the TCGA

dataset were classified into two distinct groups: those with a high

ITRS and those with a low ITRS (ITRS referring to the IGF2+ tumor

cells risk score). Our findings indicated that an elevated score

correlated with a poorer clinical outcome. Graphs and scatter plots

were employed to depict the differences in risk scores, survival rates,

and outcomes between the two groups, clearly showing that

individuals in the high ITRS group experienced a poorer prognosis

(Figure 7E). A heatmap was also created to illustrate the differential

expression of the seven genes across the high and low ITRS cohorts

(Figure 7F). The Kaplan-Meier survival curve further validated the

finding that the high ITRS group had a significantly worse survival

outcome, with a p-value of less than 0.0001 (Figure 7G). Additionally,

the ROC curve provided a clear visualization of the AUC values

predicted by the TCGA cohort at 1, 3, and 5 years, underscoring the

model’s predictive capability (Figure 7H).

Principal component analysis indicated that PC1, corresponding

to the high ITRS group, accounted for 9.2% of the total variance,

while PC2, associated with the low ITRS group, explained 3.4% of the

variance (Figure 7I). We observed that the risk score was negatively

correlated with OS, as illustrated in Figure 7J, indicating that an

increase in risk correlated with a decrease in patient survival time,

which aligned with our earlier conclusions. The C-index served as a

metric for evaluating the predictive accuracy of the model. Our

analysis revealed that, when estimating patient survival at 1, 3, and

5 years, all C-index values exceeded 0.5, indicating a high degree of

accuracy in predictions (Figure 7K). Figures 7L-N presented the

assessment of risk, prognostic genes, and hazard ratios based on

subgroup analyses, as well as predictions for 1, 3, and 5 year OS across

variables such as race, tumor stage (T, M, and N), age, and risk score,

highlighting the most significant disparities within the risk

score groups.

The results indicate that both the high ITRS group and age are

associated with unfavorable prognoses. Further examination of the
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expression levels of the seven prognostic genes in high and low ITRS

groups suggested a more favorable prognosis for CNPY2 and

SDF2L1, whereas CRYAB, CTSD, FOS, SFRP1, and IGF2 were

associated with poorer prognoses (Figures 7O, P).
Immunoinfiltration, enrichment analysis
and drug sensitivity

To elucidate differential gene expression and associated

biological processes between high and low groups, we employed

visualization and enrichment analysis techniques. Initially, a

stacked bar diagram was utilized to show cells estimated

proportion in high ITRS group and the low ITRS group

(Figures 8A, B). There was a slightly higher incidence of TIDE in

the high ITRS group (Figure 8C). This could have meant that the

patients in this group had a higher risk of experiencing adverse

events in the near future. A high TIDE score may have indicated the

presence of a strong immune-suppressive state in the TME, which

could affect the effectiveness of immunotherapy (63). In terms of the

level of CNVs of seven prognostic genes, it was observed that CTSD

and IGF2 CNV-loss were more frequent (Figure 8D). We analyzed

the expression levels of the Signature Score in both the high ITRS

and low ITRS groups. The results indicated that the high ITRS

group had elevated Stromal Scores and ESTIMATE Scores. This

finding implied that the high-risk group may possess tumor

characteristics associated with enhanced invasiveness or

metastatic potential. These aggressive features could have

triggered a stronger stromal response, leading to elevated Stromal

Scores and ESTIMATE Scores (Figure 8E).

Next, we investigated the relationship between these prognostic

genes and immune cells and immune processes. It is worth noting

that increase in M2 macrophages was associated with the

progression of cancer and immune evasion. Notably, a positive

correlation between the prognostic model and M2 macrophages,

coupled with a negative correlation with M1 macrophages, may

provide compelling evidence for immune evasion, disease

progression, and unfavorable prognosis in tumors (Figures 8F-H).

These results enhance our comprehension of the complex

interactions among macrophage polarization, the TME, and

disease outcomes. Additionally, we conducted an extensive

analysis to investigate the relationship between these genes and

those associated with immune checkpoints. The findings revealed a

positive correlation between CTSD and a majority of immune

checkpoint-related genes, while CNPY2 demonstrated a negative

correlation with most of these genes. Notably, both CD276 and

C10orf54 showed elevated expression levels in both the high ITRS

and low ITRS groups (Figures 8I, J).

Subsequently, we presented volcano plots displaying the

upregulation and downregulation of nine DEGs, and utilized a

heatmap to illustrate the expression patterns of these genes in the

high ITRS group and low ITRS group (Figure 8K, L). Afterwards, we

applied various enrichment methods to gain further insights into the

related biological processes. Specifically, we performed GSEA

enrichment analysis on the gene set used in the prediction model,

as shown in the enrichment analysis (Figure 8M). The GSEA analysis
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FIGURE 7

Construction and validation of the IGF2+ tumor cells risk score (ITRS) model. (A) Forest plot of univariate Cox regression analysis showing genes
with significant differences (HR<1: protective factors, HR>1: risk factors). (B) LASSO regression analysis identified eight prognostic-related genes.
Each line represents the coefficient of a specific screened to have significant prognostic potential(up). The optimal parameter was determined
through cross-validation (upper plot), and the LASSO coefficient curve was determined using the optimal lambda (lower plot). (C) Forest plot
displayed seven genes obtained from multivariate Cox analysis that were associated with prognosis. (D) Bar graph showed the Coef values of the
genes used for model construction. (E) Curve chart illustrated the risk scores of high and low ITRS groups, and scatter plot depicted survival/death
events over time for both groups. (F) The heatmap showed the expression of 7 risk genes in the high ITRS group and the low ITRS group, with color
scale based on normalized data. (G) Kaplan-Meier survival curve illustrated the survival differences among high ITRS group and low ITRS group. (H)
Calculated the area AUC for predicting outcomes at the 1st, 3rd, and 5th years in the queue. (I) Scatter plot showed the distribution of genes along
PC1 and PC2 in the high and low ITRS groups. (J) The scatter plot showed that risk score was inversely proportional to OS. (K) The box plot
displayed visualizations of the C-index for cross-validation at 1, 3, and 5 years. (L) Heatmap and scatter plots demonstrated the correlation between
prognostic genes, OS, and genes used in model establishment. (M) The Forest plot demonstrated the results of Multivariate Cox regression analysis
integrating risk scores and clinical factors (age, race and tumor clinical stage T, M and N). (N) Nomogram showed the prediction of 1, 3, and 5 year
of OS based on race, tumor clinical stage (T, M, and N), age, and risk score, with the most significant difference in the risk score group. **P < 0.01,
***P < 0.001. (O) Ridge and box plots showed the expression differences of prognosis-related genes in the high ITRS group and low ITRS group.
High and low peaks indicate the patient density of patients with this gene expression. (P) The scatter plots showed the correlation of seven genes
with OS.
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FIGURE 8

Immunoinfiltration differences, enrichment analysis, and drug sensitivity analysis across different risk groups. (A, B) The stacked bar graph and box
plot displayed the estimated proportions of 22 types of immune cells among different risk score groups. (C) The violin plot illustrated TIDE
expression levels in different risk score groups. (D) The bar graph depicted CNV gains and losses associated with seven model genes. (E) The analysis
compared the differences in stromal score, immune score, and ESTIMATE score between the high ITRS group and low ITRS group. (F, G) The
lollipop chart and heatmap demonstrated the relationship between genes and immune patterns. (H) The heatmap highlighted the differences in
model gene expression, stromal score, immune score, ESTIMATE score, tumor purity, and levels of immune cell infiltration calculated using
CIBERSORT and Xcell between the high and low ITRS groups. Color scales were based on standardized data. (I) The bubble plots illustrated
correlations among modeled genes, risk scores, OS, and immune checkpoint-related genes. (J) The box plot presented the expression levels of
immune checkpoint-related genes in both the high ITRS group and low ITRS group. (K) The volcano plot showed the significantly upregulated and
downregulated genes in the high ITRS group and low ITRS group. (L) The heatmap showed the expression of nine DEGs in the high ITRS group
versus the low ITRS group. (M, N) Detailed results of the GSEA and GSVA enrichment analyses for differential gene sets between the high ITRS group
and low ITRS group were presented. (O) The violin plots illustrated the differences in IC50 values of various chemotherapy drugs between the high
ITRS group and the low ITRS group. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. "ns" was used to indicate no significant difference.
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results indicated that the up-regulated genes were significantly

enriched in biological processes including external encapsulating

structure organization, collagen fibril organization, cell-cell

adhesion via plasma membrane adhesion molecules, and regulation

of cartilage development. Conversely, the down-regulated genes were

mainly enriched in cytoplasmic translation, ATP synthesis coupled

electron transport, oxidative phosphorylation, and mitochondrial

respiratory chain complex assembly. To achieve a thorough

understanding of the functional features and pathway enrichment

of tumor cell subtypes with different risk profiles in HGSOC, we

performed GSVA enrichment analysis on gene sets corresponding to

the high ITRS group and low ITRS group, as shown in Figure 8N.

Subsequently, we visualized the top-ranked enrichment terms for

each gene set and showcased the distribution of risk scores for each

enriched term in t-SNE plots (Supplementary Figure 3A). The violin

plots indicated that the scores for the nine enriched terms were

generally higher in the low ITRS group compared to the high ITRS

group (Supplementary Figure 3B).

Through drug sensitivity analysis, we have identified potential

clinical efficacy of certain drugs based on prognosis-related genes.

Our study indicates that the high ITRS group exhibits increased

sensitivity to chemotherapy drugs including Shikonin, PF562271,

GDC0941, Bleomycin, MK.2206, NVP.TAE684, Midostaurin and

AP.24534. Additionally, we found that the low-risk group

demonstrates lower IC50 values compared to the high-risk group

for cisplatin and gefitinib. This finding suggests that cisplatin and

gefitinib might lead to better treatment outcomes for low-risk

patients, as opposed to the high-risk group, when these drugs are

administered (Figure 8O).
Discussion

HGSOC is a highly aggressive subtype of ovarian cancer and

belongs to Epithelial Ovarian Cancer. It is characterized by a high

degree of clinical heterogeneity, large individual differences, and

unsatisfactory therapeutic effects (64). Different tumor cell subtypes

may have responded differently to treatment. Notably, we identified

a significant association between the C2 IGF2+ tumor cell subtype

and stage IIIC tissue, suggesting a pivotal role for this subtype in

HGSOC. In stage IIIC of cancer, mainly composed of fibroblasts

and ECs, indicating that they might play a key role in the

development of late-stage tumors. The activation and interaction

of these cell types might promote the invasiveness and therapeutic

resistance of tumors through various mechanisms (65).

C2 IGF2+ subtype was a specific type of tumor cells, which

exhibited particular gene expression patterns and biological

characteristics in tumor cells. Our research has found that this

subtype was associated with a higher CNVscore, which could affect

the gene expression and function of tumor cells, thereby promoting

the invasiveness of the tumor and resistance to treatment.

Furthermore, tumors with a high CNVscore were often associated

with greater genomic instability, which could lead to more

aggressive tumor behavior, such as rapid growth and metastasis.
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A high CNVscore was typically linked to increased tumor

invasiveness and a poorer prognosis (66).

In the C2 IGF2+ subtype, the expression level of IGF2 was

typically higher, which might be related to its role in the proliferation

and maintenance of stem cell characteristics in tumor cells. IGF2 was

a growth factor that activated downstream signaling pathways, such

as PI3K/AKT and MAPK/ERK, by binding to the IGF1 receptor and

insulin receptor. These pathways played a key role in cell

proliferation, survival, and metabolism (67). Moreover, the high

expression of IGF2 might also be related to the maintenance of

tumor stem cells, which had the ability to self-renew and differentiate

into multiple lineages, and were one of the main reasons for tumor

recurrence and drug resistance (68).

Other studies have found tumor cells underwent metabolic

reprogramming to meet their rapid proliferation needs, a process

involving the activation and inhibition of various metabolic pathways

(69). For example, glycolysis and oxidative phosphorylation were

common metabolic pathways in tumor cells, providing not only

energy but also precursor molecules required for biosynthesis.

Specific tumor subtypes, such as the C2 subtype, might exhibit

unique characteristics in these metabolic pathways, which could be

related to their biological behavior and response to treatment (70).

Previous research identified riboflavin, also known as vitamin B2,

as a heat-stable, water-soluble vitamin utilized by the body to convert

carbohydrates, fats, and proteins into glucose for energy. Beyond

enhancing energy levels, this vitamin served as an antioxidant,

supporting the proper function of the immune system, as well as

promoting healthy skin and hair. In cases of riboflavin deficiency, the

digestion of macronutrients such as fats, carbohydrates, and proteins

were impaired, hindering the body’s ability to sustain itself (71).

Research had indicated that increased intake of riboflavin might

lower the risk of ovarian cancer, while vitamin B6 could also

contribute to a reduced risk of the disease (72). Additionally, other

studies suggested that insufficient folate consumption was linked to a

higher risk of developing epithelial cancers, such as colorectal and

cervical cancers (73). Further research had shown that higher serum

riboflavin levels are linked to a greater risk of pancreatic cancer in a

dose-dependent fashion, with a notable effect observed particularly in

men ( (74) Riboflavin stimulates the phagocytosis and proliferation of

macrophages and neutrophils. In a contrasting effect, it also

suppressed the migration and infiltration of neutrophils, as well as

the accumulation of activated granulocytes at peripheral locations,

potentially leading to a reduction in inflammatory responses (75).

Given the close association of riboflavin with immunity, it was

reasonable to speculate that the C2 subtype might have exerted a

significant influence on immune-related pathways or responses. The

presence of riboflavin could have potentially modulated immune cell

activity, enhanced immune system function, or affected inflammatory

processes. Therefore, the C2 subtype might have had a certain impact

on the direction of immune regulation, possibly altering immune cell

infiltration, cytokine production, or other key mechanisms involved

in immune surveillance and tumor progression. Further research

could have clarified the precise role that riboflavin and the C2 subtype

played in shaping immune responses.
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Similarly programmed cell death, which was recognized as a

crucial process in the development and progression of cancer (76).

The relationship between the IGF2+ and programmed cell death

has been investigated in recent studies (77). Pyroptosis was a form

of programmed cell death primarily associated with immune

responses. Unlike apoptosis and necrosis, pyroptosis was triggered

by the activation of intracellular inflammasomes, which was

characterized by cell membrane rupture and a strong

inflammatory response (78). In the context of cancer, the role of

pyroptosis was multifaceted. Specifically, while pyroptosis could

inhibit cancer by eliminating tumor cells and inducing an immune

response, it could also, conversely, support tumor growth and

metastasis through excessive inflammation (79, 125). Entotic cell

death was a form of cell cannibalism, distinguished by one cell

engulfing another live cell, which led to its death (80). This

phenomenon was first observed in cancer cells, thereby linking it

closely to tumor initiation and progression (81). Although it was

considered a unique mode of cell death with a critical regulatory

role in cancer development, entosis had a dual impact. On the one

hand, it could suppress tumors by eliminating abnormal cells (82).

On the other hand, it could also promote tumor progression by

inducing chromosomal instability and providing cancer cells with a

survival advantage (83). Consequently, its role in tumors was

complex and varied, depending on the specific cancer type and

microenvironment. Lysosome-dependent cell death was a type of

regulated cell death triggered by disruptions in intracellular

homeostasis and characterized by the rupture of lysosomal

membranes (84). Other studies found that lysosome-dependent

cell death was a significant mechanism in cancer treatment. Various

anticancer agents targeted the lysosomal membrane, causing its

disruption and leading to cancer cell death (85). However, some

tumors adapted by upregulating lysosomal function, enabling them

to resist this form of cell death (86). In our study, we aimed to

explore the enrichment of the C2 subtype in programmed cell death

pathways, specifically pyroptosis, entotic cell death, and lysosome-

dependent cell death. We found that the C2 subtype was

significantly associated with these programmed cell death

pathways. These pathways are regulated by intrinsic signaling

pathways and involve various molecular mechanisms that can be

targeted for therapeutic intervention (87). Therefore, the

relationship between the C2 subtype and programmed cell death

was complex and might have involved multiple factors, including

the tumor’s genetic makeup, microenvironment, and the immune

response. Further research was needed to fully understand these

interactions and to develop effective targeted therapies.

The CytoTRACE technique’s support for these findings was

crucial, as it provided a quantitative measure of cellular stemness, a

key feature of aggressive cancer cells. The identification of C2

subtype through Slingshot analysis further emphasized the high

degree of malignancy in terminally differentiated cells. The ordered

developmental trajectory of cancerous cell subtypes from C4 to C2

suggested a progression towards higher malignancy, which was a

critical aspect of tumor evolution. The expression patterns of

cluster-specific genes like IGF2 and TFF3 were indicative of the

cells’ positions within this trajectory, with IGF2 being more

prevalent in later stages and TFF3 in earlier stages. In oncology
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studies, cancer cells at the final stage of differentiation often showed

considerable heterogeneity and were associated with greater tumor

aggressiveness and difficulties in treatment (88).

We screened for the BMI1, KLF4, LGR5, NES and ZFP42

stemness gene, Additional research has discovered that the

polycomb complex protein BMI-1 is increased in tumors with

proficient homologous recombination. It has also been found that

a higher level of BMI-1 is associated with a worse prognosis in terms

of OS for patients with homologous recombination, but this

correlation is not observed in patients with homologous

recombination deficient HGSOC (64). Exogenous expression of

Klf4 significantly inhibited cell proliferation (89). The expression of

nuclear LGR5 appeared to be protective in terms of OS (90). The

structural features of ZFP42 imply that it might have a

transcriptional regulatory function that played an important role

in determining the state and developmental stage of stem cells (91).

These genes were known to be associated with stemness and

malignancy, further supporting the characterization of the C2

subtype as highly malignant. In summary, the comprehensive

view of the C2 subtype’s developmental trajectory and malignant

potential, as provided by the integration of pseudotime analysis and

computational techniques, was essential for understanding the role

of this subtype in tumor progression. This understanding not only

enhanced our knowledge of cancer biology but also offered potential

targets for therapeutic intervention, which could lead to more

effective treatments for patients with advanced cancer (92).

In the communication network between C2 IGF2+ tumor cells

and fibroblasts, key signaling pathways such as the MK pathway was

identified, revealing the complex interactions between tumor cells

and stromal cells in the TME. This paracrine signaling exchange

may have played a crucial role in the formation of tumor-

supporting stroma, affecting the invasiveness, metastatic potential,

and response to treatment of the tumor. MDK was a heparin-

binding growth factor that interacted with NCL, a multifunctional

phosphoprotein present on the cell surface and in the cell nucleus.

The MDK-NCL pathway played a key role in the proliferation,

migration, and invasion of tumor cells (93). In C2 IGF2+ tumor

cells, the expression of MDK might have been upregulated, which

could promote the activation and transformation of fibroblasts by

binding to NCL on fibroblasts, thus forming CAF that support

tumor growth and progression. Specifically, this crosstalk between

tumor cells and fibroblasts might have been a key mediator of

immune suppression and pro-angiogenic activities in the TME. For

example, CAFs could suppress the activity of immune cells by

secreting immune-suppressive factors, such as Transforming

Growth Factor-beta and Interleukin-10, thereby promoting the

immune evasion of the tumor (94). In addition, CAFs could also

promote the formation of new blood vessels by secreting angiogenic

factors, such as vascular endothelial growth factor, to provide

nutrients and oxygen to the tumor (95).

TFs are pivotal in regulating gene expression within cells, as

they can either activate or suppress the transcription of specific

genes, thereby affecting essential biological processes such as cell

proliferation, differentiation, migration, and apoptosis (96). Prior

research has suggested that the interactions between TFs and cell

death regulators in the TME may influence the vulnerability of
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tumor cells to programmed cell death. By targeting these signaling

pathways, the effectiveness of cancer therapies could be improved

by facilitating tumor cell death (97). Consequently, TFs emerged as

significant targets for developing targeted therapeutic strategies,

particularly in cancer treatment.

As a TF, PRRX1’s poor prognosis made it an attractive target for

targeted therapy (98). PRRX1 might promote gastric cancer lymph

node metastasis by regulating EMT, which in turn affected patient

prognosis (99). Furthermore, PRRX1 was upregulated in various

tumors, including colorectal cancer, pancreatic cancer and other

cancers, and its expression was closely linked to malignant

characteristics such as tumor cell stemness, invasiveness, and

angiogenesis (100, 101). The mechanism of action of PRRX1 in

HGSOC remained unclear and required further experimental

validation. By modulating the regulatory modules involving

PRRX1, new drugs could be developed to inhibit its activity,

thereby blocking the proliferation and metastasis of tumor cells

and improving patient treatment outcomes. We analyzed the TF

regulatory network of HGSOC and found that PRRX1exhibited

high specificity and expression levels in the C2 subtype, and its

correlation with poor prognosis suggested that it may have played a

significant role in the development and progression of cancer.

Therefore, PRRX1 was not only considered a potential biomarker

for predicting patient outcomes and disease progression but also a

potential therapeutic target that could be inhibited by targeted

therapy to suppress tumor growth and metastasis (102). The

results of in vitro experiments further supported this viewpoint.

Studies showed that after knocking down the expression of PRRX1

using RNA interference technology, the proliferative and migratory

abilities of tumor cells were significantly reduced. This indicated

that PRRX1 played a key role in regulating the biological behavior of

tumor cells, and the loss of its function could lead to a decrease in

the proliferative and invasive capabilities of tumor cells.

The development of a prognostic model based on tumor cell

subtypes offers a personalized approach to predicting patient

outcomes and guiding treatment decisions. The model’s ability to

distinguish high-risk patients suggests its utility in stratifying patients

for clinical trials and routine care (103). The identification of

differential drug sensitivities between risk groups provides a

foundation for tailored treatment strategies (104, 105). High-risk

groups, for instance, may benefit from specific drugs like Cisplatin,

while others might require alternative therapeutic approaches.

Immune checkpoints played a crucial role in modulating

immune responses, with tumor cells often evading immune

detection by upregulating these checkpoints, which in turn

dampened local immune activity (106). Given the high

abundance of immune cells in the TME of HGSOC, we

investigated variations in immune cell infiltration among different

risk assessment groups. The high ITRS group exhibited significantly

greater infiltration of naive B cells and resting CD4+memory T cells

compared to the low ITRS group. Naive B cells, a subtype of B cells,

have the capacity to differentiate into mature B cells that produce

antibodies upon encountering pathogens. In contrast, resting CD4+

memory T cells represent long-lived T cells that develop following
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prior infections or vaccinations. The presence of these immune cells

within the TME, particularly naive B cells and resting CD4+

memory T cells, profoundly influences tumor growth and

metastasis, potentially indicating an immune response associated

with immune evasion (107). We posited that the increased

infiltration of naive B cells and resting CD4+ memory T cells

may reflect an immune response related to the immune evasion

process (108). Elevated TIDE scores indicated a higher probability

of tumor immune escape, suggesting that patients may experience a

reduced response to immune checkpoint inhibitor therapies (109).

Our findings revealed that the high ITRS group had elevated TIDE

scores, further implying a stronger capacity for immune escape

within this group.

Macrophages, which were a part of the innate immune system,

could change their functions based on the signals they received from

their surroundings. There was significant interest in manipulating

these cells to reduce inflammation by shifting them from a pro-

inflammatory (M1) state to an anti-inflammatory (M2) state, which

could have been beneficial for treating inflammatory diseases (110).

Subsequently, we evaluated the correlation between immune cells

and ITRS. The results demonstrated a significant positive

correlation between ITRS and Mast cells activated, Macrophages

M2, and a negative correlation with B cells memory, Macrophages

M1, among others. In the course of tumor development, M2

macrophages might adversely affect prognosis by supporting

tumor growth, angiogenesis, immune evasion, and resistance to

therapies. On the other hand, M1 macrophages typically possess

anti-tumor properties, inhibiting tumor progression by stimulating

inflammation and activating the adaptive immune system.

Targeting M2 macrophages could represent a viable treatment

approach, while boosting the anti-tumor function of M1

macrophages may further improve patient outcomes. Notably, an

inverse correlation was observed between the predictive model

score and the levels of M1 and M0 macrophages, implying that

tumors might have encouraged the shift of macrophages towards

the M1 phenotype Such alterations may have been associated with

tumor advancement and unfavorable outcomes.

Additionally, our drug sensitivity analysis revealed differences

in the sensitivity of specific drugs between different risk score

groups, which may aid in the development of personalized

treatment strategies in the future. HGSOC exhibited substantial

heterogeneity, with tumors from different patients revealing distinct

molecular characteristics and varying sensitivities to drugs. As a

result, precision medicine was deemed crucial for the management

of HGSOC. Our drug sensitivity analysis indicated that Shikonin,

PF562271, GDC0941, Bleomycin, MK.2206, NVP.TAE684,

Midostaurin and AP.24534 likely showed enhanced efficacy in

patients classified in the high ITRS group.

Shikonin, a natural compound from the Lithospermum plant,

had its antitumor activity validated in several studies (111). It was

discovered in other studies that shikonin enhanced chemotherapy

effectiveness by inhibiting DNA damage response DDR and

reducing DNA damage response activation caused by different

chemotherapeutic agents in various cancer cell lines (112).
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Coincidentally, our findings reveal that patients in the high ITRS

category exhibit greater sensitivity to Shikonin, aligning with

previous research. Similarly, PF562271, a FAK inhibitor,

potentially improved drug sensitivity through enhanced immune

responses (113). Studies showed that PF562271 effectively

suppressed OCa cell growth following chemotherapy (112).

GDC0941 exhibited preliminary activity in OCa patients,

particularly those with PI3K amplification or PTEN loss (114).

GDC0941 was believed to have the potential to deliver better

outcomes for OCa patients who had been treated multiple times

and showed diminished sensitivity to conventional therapies. By

combining these insights, it appeared that both compounds played a

role in improving the efficacy of chemotherapy, albeit through

different mechanisms: DDR inhibition and immune modulation

and direct tumor suppression. This supported further investigation

into combination therapies for more effective cancer.

Meanwhile, Bleomycin inhibited cancer cell proliferation by

damaging DNA and showed promising efficacy across various

cancers (115). MK-2206 specifically targeted the AKT signaling

pathway, which could have increased the sensitivity of BRCA-

deficient tumors to cisplatin and Olaparib (116). Additionally,

NVP-TAE684 (Cabozantinib), another multi-targeted tyrosine

kinase inhibitor, demonstrated antitumor activity in other cancers

(117). Midostaurin acted as a multi-targeted tyrosine kinase

inhibitor, primarily used for certain leukemias (118). Although its

application in OCa was limited, the significant role of tyrosine

kinase inhibitors in antitumor activity suggested it might serve as a

new treatment option for high ITRS patients in the future (119).

Although the specific antitumor mechanisms of AP-24534

remained to be fully elucidated and warranted further

investigation (120), our study indicated that this drug exerted

significant effects with a relatively low IC50 value in the high

ITRS group. This finding highlighted AP-24534’s potential as a

novel therapeutic target for advanced HGSOC. Future research

should have focused on clarifying the underlying mechanisms of

action and evaluating its clinical efficacy in patient populations,

thereby facilitating

Although chemotherapy plays a role in the treatment of ovarian

cancer, its limitations such as drug resistance, adverse effect, high

recurrence rates, and the specific characteristics of HGSOC

underscore the necessity for ongoing research into new therapies

and medications to enhance treatment efficacy and improve quality

of life. Notably, existing studies on chemotherapeutic agents

predominantly focus on ovarian cancer as a whole, with

insufficient attention given to HGSOC, which is associated with a

more aggressive clinical course and poorer prognosis. If the

aforementioned drugs have not been studied within the context of

advanced HGSOC, it is crucial to recognize this research gap.

Future investigations should aim to address this shortfall by

exploring tailored therapeutic strategies to augment treatment

responses and ultimately improve patient outcomes.

Single-cell sequencing technology transformed biological

research by enabling the detailed analysis of individual cells. This

advancement provided critical insights into cellular heterogeneity and

the complex molecular mechanisms underlying diseases like
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HGSOC. In the context of personalized treatment, single-cell

analysis opened new avenues for understanding the tumor

microenvironment and identifying specific cell types or

subpopulations that contributed to disease progression or

therapeutic resistance. By allowing a more nuanced view of tumor

heterogeneity, single-cell analysis enhanced our understanding of

HGSOC biology. The identification of the C2 IGF2+ tumor cell

subtype, in particular, presented a valuable opportunity for future

clinical research. Investigating this subtype led to the development of

targeted approaches for early screening and treatment strategies,

including the identification of potential biomarkers to enhance

detection capabilities and therapeutic targets to improve treatment

effectiveness. Additionally, comprehending the unique characteristics

of the IGF2+ subtype facilitated patient stratification and enabled

personalized treatment decisions, ultimately leading to better patient

outcomes. However, this study had several important limitations.

Firstly, the sample size was relatively small, focusing primarily on

single-cell data from a subtype of HGSOC patients, which may have

limited the generalizability of the results. Secondly, the analytical

methods relied mainly on single-cell sequencing and transcriptomic

analysis without considering other influencing factors. Therefore,

future research needed to conduct multicenter studies with larger

sample sizes to validate the roles of PRRX1 and the prognostic model

in HGSOC. Moreover, incorporating proteomics and metabolomics

approaches provided deeper insights into the functional

characteristics of specific subgroups, offering a more comprehensive

basis for early diagnosis and individualized treatment strategies for

HGSOC. Through multi-omics analysis, the biological mechanisms

of tumors and potential therapeutic targets were better understood. In

summary, our research focused on the diversity of tumor cells in

HGSOC at the individual cell level, further revealing the significance

of PRRX1. We also identified several prognostically relevant genes,

finding a significant correlation between higher ITRS and poorer

prognosis. These findings enhanced our understanding of HGSOC

development and offered new opportunities for predicting and

diagnosing the disease. Future studies should explore these

discoveries to advance research and treatment in HGSOC.

Collectively, the integration of scRNA-seq into basic and

translational research promoted personalized therapy by identifying

potential treatment targets for the development of novel drugs and

revealing promising biomarkers to monitor treatment efficacy and

guide therapeutic decision-making.
Conclusion

In conclusion, our findings underscored the important role of

the C2 IGF2+ tumor cell subtype in HGSOC, particularly its link to

advanced disease stages and resistance to therapy. This subtype

exhibited distinct gene expression patterns and higher CNVs that

contributed to its malignancy and metabolic reprogramming.

Additionally, the interactions between tumor cells and the TME,

particularly with fibroblasts, suggested potential targets for

therapeutic intervention. Future studies should build on these

findings to advance HGSOC research and treatment. These
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insights paved the way for personalized treatment strategies aimed

at improving outcomes for HGSOC patients.
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SUPPLEMENTARY FIGURE 1

The analysis of inferCNV. The analysis of inferCNV. Using scRNA-seq data of
ECs to predict CNV. Orange indicated amplification, while blue

indicated deletion.

SUPPLEMENTARY FIGURE 2

The analysis of the C2 subtype marker gene and the top five TFs in bulk.
Kaplan-Meier survival curves and ROC curves depicted the marked genes of

C2 Tumor cell subtypes and the top five TFs (IGF2, PRRX1, MAFB, LBX2,
GATA2, MAFG).

SUPPLEMENTARY FIGURE 3

Risk scores and differential expression of gene sets. (A) The t-SNE plots

illustrated the distribution of riskscores, obtained from the top-ranked GSVA
enrichment entries for all differential gene sets, within the high ITRS Group

and low ITRS Group. (B) The violin plots compared the score differences of
the aforementioned enrichment entries between the high ITRS Group and

low ITRS Group.
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