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Retinoblastoma is the most common type of eye tumor in infants and children.

Current treatments for retinoblastoma include intravenous chemotherapy, intra-

arterial chemotherapy, intravitreal chemotherapy, cryotherapy, radiotherapy, and

surgery. However, these treatments come accompanied by adverse effects such as

the toxic side effects of chemotherapeutic drugs, post-operative complications

including blindness after surgery, or other complications caused by radiotherapy.

Immunotherapy is more promising for its low toxicity on normal cells and effectively

improves the quality of life of patients. Disialoganglioside (GD2), a sphingolipid

expressed on the surface of retinoblastoma, is a potential therapeutic target for

retinoblastoma. We summarized immunotherapeutic approaches for both

preclinical studies and clinical trials of GD2. An anti-GD2 monoclonal antibody

(Dinutuximab), which has been approved for the treatment of high-risk

neuroblastomas, has shown promising efficacy in improving patients’ prognosis.

Additionally, chimeric antigen receptors (CAR)-T therapy, GD2 vaccines and

nanoparticles are also potential therapeutics. Finally, we discuss the prospects and

current limitations of these immunotherapeutic approaches for treating

retinoblastoma, as well as how to address these problems.
KEYWORDS

retinoblastoma, GD2, anti-GD2 monoclonal antibody, GD2-CAR cell therapy,
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1 Introduction

Retinoblastoma (RB) is the most common type of intraocular malignancy in infancy

and childhood, usually caused by a mutation in the retinoblastoma 1 (RB1) gene on

chromosome 13, which occurs in one or both eyes (1). The survival rate of children with

retinoblastoma varies in countries with different income levels, depending on early
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diagnosis, staging, and treatment options. In high-income

countries, the 3-year survival rate can reach more than 99%. In

contrast, in low-income countries, many children present to the

clinic with disseminated lesions and some with distant metastases,

resulting in a 3-year survival rate of less than 58% (2, 3). It is not

satisfactory that there are essentially no treatment options available

for children with disseminated retinoblastoma (4). Therefore, new

therapeutic approaches are desperately needed for both intraocular

and extraocular illnesses.

The blood-retinal barrier (BRB), which prevents the interchange

of macromolecules between the retina and the circulatory system, is

considered to keep retinoblastoma separate from blood cells, in

contrast to the majority of malignancies that frequently interact with

the vascular system (5, 6). Immunohistochemistry of retinoblastoma

and immunocytochemical analysis of tumor-infiltrating vitreous

samples detected immune cells but not in normal retinal tissue or

normal vitreous samples, suggesting that destruction of the BRB by

retinoblastoma cells promotes immune cell infiltration and disrupts

immune homeostasis (7).

Current treatments for retinoblastoma include intravenous

chemotherapy, intra-arterial chemotherapy, intravitreal chemotherapy,

cryotherapy, radiotherapy, and surgery (8, 9). Intravenous

chemotherapy not only controls the tumor, but also plays a role in

preventing distant metastases (10). However, it is difficult to avoid

complications such as alopecia and ototoxicity with intravenous

chemotherapy (8, 11). In contrast, intra-arterial chemotherapy can

lead to a higher concentration of locally delivered chemotherapeutic

drugs and better control of ocular tumors (12). Although intra-arterial

chemotherapy also results in reduced systemic complications, it causes

complications localized to the eye including periorbital edema,

periocular congestion, and vitreous hemorrhage (13). Intravitreal

chemotherapy also directly delivers chemotherapeutic drugs to the

tumor lesion, which plays a very good therapeutic effect on patients

with intravitreal dissemination (8). Cryotherapy as a local treatment is

usually combined with intravenous chemotherapy or intra-arterial

chemotherapy. However, this local treatment can cause choroidal

retinal scarring and even lead to vision loss (8). Radiation therapy is

now generally considered as a treatment of last resort, which is related to

its complication rate, as external radiation radiotherapy (EBRT) can

cause cataracts, orbital hypoplasia, and in severe cases, secondary

tumors (14). Some advanced patients must undergo surgical removal

to prevent metastasis of the tumor, but postoperatively, patients may

face physical effects such as postoperative hemorrhage, infection, and

psychological effects such as anxiety and depression (15). With the

advent of systemic chemotherapy, the use of external beam radiation

therapy has been gradually relinquished. Although novel methods for

delivering chemotherapeutic agents to tumor sites are now available, the

toxicity associated with chemotherapy remains a significant concern.

Thus, there is an urgent need to develop new targeted therapies that can

preserve patients’ vision and improve their overall quality of life (16).

In recent years, targets related to RB immunotherapy include

GD2 (17), PD-1 (18), B7H3 (19), EpCAM (20), SYK (21). With

high density in tumor cells and limited expression in normal

tissues, GD2 is ideally suited as a target for cancer therapy, and has
Frontiers in Immunology 02
been ranked by the US National Cancer Institute as one of the

most promising anticancer therapies accordingly (22). Malignant

transformations are commonly accompanied by alterations in cell

surface glycosylation. GD2 has been identified as a potential

serum marker for retinoblastoma since as early as 1993 (23).

GD2 has served as an effective target on human retinoblastoma

cell lines (17). This review focuses on ganglioside GD2 as a

therapeutic target for retinoblastoma and the therapeutic

approaches being investigated.
2 Disialoganglioside (GD2)
in retinoblastoma

2.1 Introduction of GD2

GD2 is enmeshed with its ceramide tail (fatty acid-linked

sphingosine) in the cell membrane (24, 25). The sugar moiety,

which is made up of galactose (Gal), N-acetylgalactosamine

(GalNAc), and glucose (Glc; connected to ceramide), is exposed

to the extracellular milieu and has antigenic properties that promote

mutual recognition and adhesion between cells (25, 26). Gal is

formed by two more sialic acid residues (N-acetylneuraminic acid,

NeuAc), which also give GD2 a negative charge (25). Gangliosides

first synthesize ceramide in the endoplasmic reticulum (27), which

is subsequently transferred to the Golgi apparatus via ceramide

transfer protein or vesicles (28, 29) and glycosylated under

the action of glycosyltransferase and sialyltransferase (30). The

glycosylated and sialylated ceramides are then transferred to the

plasma membrane via the cytosolic action of the Golgi apparatus by

the transfer of vesicles (Figure 1) (31). Ceramide binds to glucose in

the presence of UDP-glucose-ceramide-glucosyltransferase,

resulting in glucosylceramide (GlcCer). The GlcCer combines

with galactose in the presence of lactosylceramide synthetase to

produce lactosylceramide (LacCer), which then combines with

salivary acid to form GM3. In the presence of GD3 synthetase,

GM3 continues to bind to salivary acid to produce GD3, which then

binds to N-acetylgalactosamine (GalNAc) to produce GD2

(Figure 1) (32). Sialic acids can be further O-acetylated (33),

allowing the O-acetylated derivative of GD2, O-acetyl-GD2, to

gain attention as a novel antigen targeting GD2-positive cancers

(34). O-acetyl-GD2 is coexpressed with GD2 in a variety of tumor

cells including lung carcinoma, melanoma, osteosarcoma, brain

tumors, and neuroblastoma (35, 36).

The catabolism of GD2 begins with the formation of endosomes

by endocytosis, which then fuses with lysosomes to form invaginated

vesicles. The outer layer of these vesicles carries GD2, which is then

degraded when exposed to lysosomal matrix glycohydrolases (37).

GD2 removes one salivary acid in the presence of sialidase to form

GM2, then removes N-acetylgalactosamine in the presence of

hexosaminidase to form GM3 (24). The remaining salivary acid is

removed in the presence of SAP-B and sialidase to form LacCer,

which is subsequently degraded to ceramide in the sequential

presence of b-galactosidase, b-glucosidase, and SAP-C. This is
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ultimately broken down into sphingomyelin base and fatty acid in the

presence of ceramidase and SAP-D (24, 37).

Several glycosyltransferase (GT) genes implicated in GD2

biosynthesis (ST3GAL5, B4GALNT1, and ST8SIA1) were found to

be substantially elevated in cancer stem cells (CSCs) by gene

expression analysis (38, 39). GD2 expression was decreased by

ST8SIA1 knockdown, which changed the phenotype from CSCs to

non-CSCs, thereby inhibiting tumor formation in vivo.

Before birth, GD2 is expressed in neural and mesenchymal stem

cells (40). Whereas after birth, it is expressed in the central nervous

system (41), peripheral nerves (41), dermal melanocytes (41), and

mesenchymal stromal cells (42, 43). However, the normal human

retina does not exhibit GD2 expression (44, 45). The high

expression level of GD2 is associated with reduced apoptosis and

enhanced proliferation, adhesion, angiogenesis, migration and

invasion of tumor cells in a variety of solid tumors, including

retinoblastoma (RB) (23, 45–48), neuroblastoma (NB) (41, 49),

breast cancer (BC) (38, 50), bladder cancer (BLCA) (51), small cell

lung carcinoma (SCLC) (52, 53), osteosarcoma (OS) (54), ewing

sarcoma (ES) (47, 55, 56) and diffuse intrinsic pontine glioma

(DIPG) (57). The tumor stage and proliferation of retinoblastoma

are both positively correlated with GD2 expression (7). GD2 is also

detectable in the serum (23), bone marrow (48), and cerebrospinal

fluid (58) of patients with extraocular dissemination.
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2.2 Functions of GD2

GD2 activates receptor tyrosine kinase (RTK)-mediated

signaling and engages in cell proliferation and migration,

angiogenesis, and tumor metastasis (59). GD2 is directly involved

in RTK activation, possibly realized by specific interaction of the

oligosaccharide portion of GD2 with the RTK receptor (60). The

activation of c-Met was found to be associated with GD2 (60, 61),

which in turn activated the MEK/Erk and PI3K/Akt signaling

pathways, resulting in enhanced cell migration, proliferation, and

tumor growth (60). Moreover, carbohydrate interactions between

GD2 and c-Met induce constitutive activation of c-Met even in the

absence of hepatocyte growth factor (62). Additionally, GD2 is

physically associated with integrins on the same cell (61, 63), which

are strongly associated with focal adhesion kinase (FAK) both

physically and functionally. The formation of a tertiary complex

consisting of GD2, integrins, and FAK further generates, and/or

maintains the malignant properties of SCLC cells by activating

MAPK signaling (63). In addition, associations between GD2 and

the FAK/AKT signaling pathway were found in melanoma cells,

glioma cells, prostate cancer cells, triple-negative breast cancer cells,

and osteosarcoma cells with high GD2 expression (24).

The expression of GD2 is increased when epithelial-

mesenchymal transition (EMT) is induced (38). Studies have
FIGURE 1

The biosynthetic process of GD2. Ceramide (Cer) is first synthesised in the endoplasmic reticulum (ER), ① Cer transfers to the inner Golgi
(cytoplasmic side) via vesicles or ceramide transfer protein (CERT), ② Cer binds to glucose to produce glucosylceramide (GlcCer), ③ GlcCer is
transferred to the cytoplasmic face of the ER via FAPP2 (phosphatidylinositol 4-phosphate adaptor protein), ④ GlcCer is flipped to the luminal side of
the ER by ATP-independent flippase, ⑤ GlcCer in the lumen of the ER is translocated to the Golgi via vesicles, ⑥ GlcCer binds to galactose in the
Golgi to form lactosylceramide (LacCer), ⑦ LacCer binds to salivary acid (Neu5Ac) to produce GM3, ⑧ GM3 continues to bind to Neu5Ac to generate
GD3, ⑨ GD3 binds to N-acetylgalactosamine (GalNAc) to produce GD2, ⑩ GD2 is transferred to the cell membrane via vesicles secreted by the
Golgi apparatus.
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shown that in bladder cancer, the EMT process could be reversed

upon inhibition of GD2 synthesis (51). Additionally, GD2 might

have indirect impacts on the development of tumors. It has been

noted to suppress human dendritic cells (64) and T-cell immune

responses (24, 65), most likely via myeloid-derived suppressor cells

(66) and regulatory T cells (67). Moreover, GD2-positive melanoma

cells produce small extracellular vesicles (sEVs), which enable

nearby GD2-negative melanoma cells to take on more malignant

characteristics, such as cell proliferation, invasion and

adhesion (68).

GD2 has been used as a biomarker of retinoblastoma (23, 48, 58,

69), aggressive high-grade bladder cancer (51), and a CSC-specific

cell surface marker in breast cancer (38). Additionally, correlation

has been verified between GD2 expression and lung cancer

malignant phenotypes (70). Moreover, GD2 synthase serves as a

marker for minimal disseminated disease in retinoblastoma patients

(69, 71–73).
3 GD2 targeting
monoclonal antibodies

The blood-brain barrier (BBB) prevents intravenous anti-GD2

mAbs from entering the central nervous system (CNS), making

GD2 an ideal target for CNS extranodal neuroectodermal tumors

(74). Three mechanisms of action have been identified for anti-GD2

monoclonal antibody (mAb) against tumor cells expressing

GD2 (26):
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Firstly, anti-GD2 mAbs initiate phagocytosis of tumor cells by

macrophages, destruction of tumor cells by natural killer (NK) cells,

and granulocyte-mediated cytotoxicity (Figure 2A) (75, 76). Siglec

(sialic acid-binding immunoglobulin-like lectin)-7 is an inhibitory

receptor expressed on immune cells, inhibits immune cell activity

through the cytoplasmic immunoreceptor tyrosine-based inhibitory

motif (ITIM) domain (77). Siglec-7 is a ligand for GD2 and binds to

GD2 to inhibit immune cell activity via ITIM. Anti-GD2 antibody

blocks GD2 from binding to Siglec-7 so that immune cells are

not suppressed.

Furthermore, anti-GD2 mAbs mediate the lysis of tumor cells

through complement-dependent cytotoxicity (Figure 2B) (76, 78).

Besides, it was shown that cell death directly induced by

anti-GD2 mAb was associated with a mitochondria-dependent

pathway. Anti-GD2 mAb interacted with GD2 to cause rapid

hyperpolarization of the membrane potential of mitochondria,

followed by apoptotic volume decrease (AVD) and alteration of cell

membrane permeability, suggesting that anti-GD2 mAb-induced cell

death is characterized by apoptosis and necrosis (Figure 2C) (79). We

summarize some of the studies on anti-GD2 monoclonal antibodies

(Table 1).
3.1 Main types of anti-GD2 mAbs approved
for treatment

Dinutuximab (Ch14.18/SP2/0): Dinutuximab binds specifically

to GD2 and is the first GD2 monoclonal antibody licensed for the
FIGURE 2

Immunotherapeutic mechanisms on GD2. (A) Binding of the Fc segment of the antibody to the FcR of the effector cell (e.g. granulocyte) initiates the
killing of the cell. (B) Antibodies mediate tumour cell lysis via complement-dependent cytotoxicity. (C) Antibodies directly induce cell death.
(D) CAR-T cells recognize GD2 and promote cell lysis. (E) Nanoparticles recognize GD2 by antibodies and deliver cytotoxic drugs and RNA to
tumour cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1499700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1499700
treatment of high-risk neuroblastoma (HRNB) (80). The Children’s

Oncology Group (COG) conducted a large randomized trial in

2010, which revealed that immunotherapy with the addition of

ch14.18, alternating with granulocyte–macrophage colony-

stimulating factor(GM-CSF) and interleukin-2, significantly

improved outcome as compared with standard therapy in patients

with HRNB (81) with similar long-term follow-up results (82).

Dinutuximab beta: Dinutuximab beta is an analog of

Dinutuximab, which has been approved for use as frontline post-

consolidation therapy (81) and as a second-line drug to improve

survival chances in patients with HRNB (83, 84).

Naxitamab (humanized anti-GD2 mAb, Hu3F8): Naxitamab is

an FDA-approved anti-GD2 monoclonal antibody that is being

used in combination with GM-CSF in children and adults with

HRNB (85), and is associated with modest toxic effects, low

immunogenicity, and substantial anti-neuroblastoma activity (86).
3.2 Human/mouse chimeric
anti-GD2 mAbs

Dinutuximab binding to CD16-expressing NK-92MI cells

incites strong antitumor effects on RB cell. Mechanism analysis

shows antibody-dependent cell-mediated cytotoxicity (ADCC) is

increased, meanwhile, the perforin-granzyme cytolytic pathway is

activated by NK cells (7).

A combination of Dinutuximab and anti-CD47 antibodies

results in the recruitment of tumor-associated macrophages

(TAMs) to mediate robust and durable anti-tumor responses,

which might expand the clinical use of anti-GD2 mAbs to other
Frontiers in Immunology 05
GD2+ diseases beyond NB (77). Potent synergy for the combination

of Dinutuximab and anti-CD47 has been established in a xenograft

mouse model of NB, where the combination eradicates tumors (77).

Additionally, a similar effect was seen in small cell lung cancer,

where the combination significantly reduced tumor burden and

extended survival (77).

Recently, a novel IgA anti-GD2 immunotherapy (IgA3.0

ch14.18) was developed, which could replace Dinutuximab to

treat HRNB since it provides similar efficiency but does not

induce neuropathic pain (87). Moreover, it offers an extended

half-life, and enhanced stability, and may reduce the risk of

developing potential side effects, such as Berger’s disease (87).
3.3 Humanized anti-GD2 mAbs

Compared to Dinutuximab, a humanized anti-GD2

monoclonal antibody with the K322A mutation (hu14.18K322A),

is effective in treating refractory or recurrent neuroblastoma,

potentially reducing pain and other side effects (88). Currently,

hu14.18K322A has entered phase II clinical trials and has been

shown to significantly improve early response and outcomes in

children with newly diagnosed HRNB (89).

To enhance anti-tumor efficacy, an immunocytokine (IC) was

developed by linking interleukin (IL)-2 to the COOH terminus of a

humanized anti-GD2 mAb (hu14.18-IL2) (90, 91). Recently,

Nguyen, R. et al. developed two new ICs, hu14.18-IL15 and -IL21

and demonstrated their superior antibody-dependent cell-mediated

cytotoxicity compared to hu14.18-IL2 in fully immunocompetent

syngeneic mouse models with orthotopic NB. This ultimately led to
TABLE 1 lists studies on the anti-GD2 monoclonal antibody collected from https://clinicaltrials.gov/.

Agent Clinical
Trial
Number

tumour phase status Description of the study

hu14.18K322A NCT01857934 Neuroblastoma II Active,
not
recruiting

This study will be a pilot Phase II study of a unique anti-disialoganglioside (anti-GD2)
monoclonal antibody (mAb) called hu14.18K322A given with induction chemotherapy.

m3F8 NCT00492167 Neuroblastoma I Completed This phase I trial investigated the side effects and optimal dose of B-glucan in
combination with the monoclonal antibody 3F8 in patients with
metastatic neuroblastoma.

Ch14.18 NCT00005576 Neuroblastoma I Completed This phase I trial investigates the maximum tolerated dose of Ch14.18 in combination
with sargramostim and interleukin-2 in children with neuroblastoma who have
completed bone marrow or peripheral blood stem cell transplantation.

Ch14.18/CHO NCT01704872 Neuroblastoma I Completed The primary objective of this Phase I clinical trial was to reassess the toxicity of
ch14.18/CHO, and the secondary objectives were to determine pharmacokinetics
and immunostimulation

dinutuximab NCT05400603 Neuroblastoma I Recruiting This clinical phase I trial treats children with refractory, recurrent or progressive
neuroblastoma with yo T cells in combination with Dinutuximab, Temozolomide,
Irinotecan and Zoledronate.

naxitamab NCT05489887 Neuroblastoma II Recruiting The Phase II clinical trial evaluated the efficacy and safety of the antibody with an
induction regimen by adding Naxitamab to induction chemotherapy in patients with
newly diagnosed high-risk neuroblastoma.

dinutuximab
beta

NCT05080790 Leiomyosarcoma II Recruiting The study focuses on evaluating the feasibility of combination therapy by treating
patients with metastatic or inoperable smooth muscle sarcoma with Dinutuximab Beta,
Zoledronic Acid and Low-dose Interleukin (IL-2).
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complete tumor regression and long-term survival beyond 100 days

(92). IL15 and IL21 act on both CD8+ T cells and NK cells (93).

Moreover, IL15 also acts on the myeloid compartment by

decreasing the recruitment of polymorphonuclear/granulocytic

myeloid-derived suppressor cells to the tumor microenvironment

and increasing pro-inflammatory M1-like TAMs (92).

Radiopharmaceutical therapy (RPT) is a type of radionuclide

labeling associated with monoclonal antibodies. It has been shown

that actinium-225 radiolabels humanized anti-GD2 mAb (hu3F8),

which is specifically targeted to the tumor site by an antibody,

causes an ionization event that damages the double-stranded DNA

of the tumor cells (94). Hu3F8-based alpha-particle therapy has

been proven to be a safe and effective approach for OS. Liatsou, I

et al. demonstrated the feasibility of such therapy by treating both

an orthotopic canine OS xenograft mouse model and two dogs with

spontaneously occurring OS, using an alpha-particle emitter labeled

Hu3F8 (94). Moreover, hu3F8 labeled with Indium-111 enables

good imaging of human and canine OS patients (95).
3.4 Major challenges for anti-GD2 mAbs

Treatment with anti-GD2 antibodies is associated with a

temporary painful neuropathy syndrome in patients (81), which

could be attributed to the antibodies’ ability to bind to the GD2+

myelin sheath of nerve fibers (96, 97), complement fixation (97) and

direct electrophysiologic effects on nerve fibers (98).

At least 40% of NB patients relapse despite having received anti-

GD2 mAbs dur ing upfront therapy (81 , 99) . Ki l l er

immunoglobulin-like receptors (KIR) could affect NK cell activity

which in turn affects patients’ response to immunotherapy.

Recurrent HRNB Patients with a KIR2DL2+/ligand+ genotype or

a KIR3DL1+/ligand+ genotype had better survival outcome in the

setting of GD2-directed immunotherapy (100), shedding light on

therapy selection in the setting of relapsed and refractory disease.

More than 40% of NB patients fail to respond or develop

resistance to anti-GD2 mAbs (101). Recently, two mechanisms

for the development of anti-GD2 mAbs resistance have been

identified. Firstly, GD2 expression is reduced when NB patients

relapse (102). Adeiye A et al. found that NB patients with high

expression of YAP (yes-associated protein) had high resistance to

GD2 immunotherapy (103). Mechanistically, YAP transcriptionally

suppresses ST8SIA1 that encodes GD3 synthase, the rate-limiting

enzyme for GD2 synthesis, suggesting that YAP could serve as both

a mediator and potential biomarker of anti-GD2 mAb resistance.

Additionally, NB-derived small extracellular vesicles (sEVs) induce

resistance to Dinutuximab by promoting an immunosuppressive

tumor microenviroment characterized by a decrease in tumor-

infiltrating NK cells and an increase in TAMs (104). Meanwhile,

Tipifarnib, a farnesyltransferase inhibitor, enhances the efficacy of

Dinutuximab by inhibiting sEV secretion (104). Given that

Tipifarnib has entered phase II clinical trials in pediatric patients

with advanced solid tumors, the combination of Dinutuximab

and Tipifairnib could be rapidly translated to the clinic for

HRNB patients.
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4 GD2-CAR cell therapy

Chimeric antigen receptors(CAR)-T therapy has shown great

promise in relapsed or refractory B-cell cancers (105, 106).

However, in solid tumors, only a minority of patients have a good

prognosis (107–109). This is mainly due to the limited persistence

of CAR-T cells in vivo and impaired T-cell function when treating

solid tumors (110). In four trials, a cumulative total of 42 patients

with active NB were treated with GD2-CAR T-cell-based therapy, of

which only three achieved a sustained objective response (111–114).

Similarly, NK cells have been applied in various types of CARs

immunotherapy against both hematological malignancies (115) and

solid tumors (116–121). Preclinical and clinical trials using CAR

NK cells have demonstrated that CAR NK cells have several

advantages over CAR T cells, such as increased general

availability of modified immune cells from healthy donors, potent

anti-tumor effects, and therapeutic safety (122–126).
4.1 Recent advances on GD2-CARs in RB

GD2 has been suggested as a possible target for RB-specific

CAR-T cell treatment by Andersch, L et al. (Figure 2D) (17). RB

cells are effectively targeted and killed in vitro by GD2-CAR T cells

(17, 44) in a manner dependent on antigen density and cytokine

release (17). The increased expression of inhibitory molecules

programmed death protein 1(PD-1) in CAR T cells and

programmed death ligand 1 (PD-L1) in RB cells, suggests the

presence of immune escape in tumor cells, and repeated exposure

to antigens also inhibits the function of CAR-T cells (44). This

suggests that combination therapy involving immune checkpoint

inhibitors and GD2-CAR T cells may be beneficial for patients

with RB.

Furthermore, Wang, K. et al. developed a local immunotherapy

strategy that effectively eradicated RB cells in a mouse model

without impairing vision, and even enhanced the structural and

functional recovery of the retina. This was achieved by employing a

hydrogel-encapsulated GD2-CAR-T releasing IL-15, which

enhances the antitumor effects of GD2-CAR-Ts by sustaining

their local survival (45).
4.2 Challenges for GD2-CAR T

Wagner, J. et al. have identified four major challenges to CAR-T

therapy for solid tumors (108): Firstly, there is a limited number of

targetable antigens and heterogeneous antigen expression.

Heterogeneity of the structures in carbohydrate chains is a

characteristic hallmark of gangliosides (127). GD2 is heterogeneously

expressed in RB (7), DMG (128), pediatric high-grade gliomas (128)

and NSCLC (129) tumor tissue. Secondly, there is restricted T cell

viability and longevity prior to reaching tumor areas. Thirdly, T cells

remain incapable of effectively navigating to tumor sites and

overcoming physical barriers. Lastly, a tumor microenvironment

suppresses immunity.
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Among them, the lack of tumor-specific targets is a key factor

hindering progress in CAR development for solid tumors. To date,

clinical studies of adoptive cell therapy for NB have focused on

GD2-CAR T cells. However, potential other targets or more refined

CAR engineering will need to be sought out to improve the efficacy

of CAR T cells for NB. Recently, Sun, M. et al. developed a CAR T

therapy called CT3.28H.BBz for children with NB, which involves a

new immunotherapy target called glypican-2(GPC2) which

outperformed GD-2 CAR, K666.28H.BBz, both in vivo and in

vitro trials (130). In addition, Bergaggio, E. et al. developed CAR

constructs targeting the anaplastic lymphoma kinase (ALK)

receptor (131), which is selectively expressed by neuroblastoma

cells, and showed that ALK.CAR-Ts was as effective as GD2. CAR-

Ts in a metastatic NB model. ALK.CAR-Ts were less active than

GD2.CAR-Ts in cell lines with low ALK expression but high GD2

expression. Besides, ALK.CAR-Ts were more active than

GD2.CAR-Ts in cell lines with low GD2 expression. Given the

complementary nature of ALK.CAR-Ts and GD2.CAR-Ts, dual

CAR constructs that co-target ALK and GD2 could combine the

broad activity of GD2.CAR-Ts with the specificity of ALK.CAR-Ts.
4.3 Latest findings to improve
GD2-CARs efficacy

The tonic signaling of CAR is thought to be a vital factor in

controlling CAR-T efficacy. Strong CAR signaling can lead to rapid

T-cell exhaustion, which can impair anti-tumor function (132).

Chen, J. el al. reveal that positively charged plaques (PCPs) on the

surface of CAR antigen-binding domains mediate CAR clustering

and generate CAR tonic signals (133). For GD2-CAR with high

tonic signals, reducing PCPs or increasing ionic strength in the

culture medium during ex vivo CAR-T cell expansion minimizes

spontaneous CAR activation and alleviates CAR-T cell exhaustion.

This suggests that rational adjustment of PCPs to optimize tonic

signaling and in vivo fitness of CAR-T cells is a promising design

strategy for the next-generation CAR-T cells. Furthermore, they

developed a bioinformatics tool (PCP score) to quantify positively

charged plaques on the surface of the CAR as a predictor of CAR

tonic signals. They proposed that a PCP score around 46-56 can

produce optimal CAR signals. Targeting CARs at the T-cell receptor

alpha constant (TRAC) gene to modify tonic signaling and

phenotype could present a viable strategy to slow T-cell

differentiation in the treatment of GD2+ solid tumors. Mueller,

K.P. et al. developed viral-free TRAC-targeted CAR T cells for

GD2+ solid tumors using CRISPR technology and found evidence

of viral-free CRISPR CAR T cells induced solid tumor regression

in vivo by reducing differentiation, tonic signaling, and

exhaustion (134).

All currently commercialized CAR-T cells use viral vector-

based transgene delivery (135). These therapies fail to meet

clinical needs, in part due to high costs and supply chain

constraints associated with manufacturing and qualifying GMP-

grade vectors. Balke-Want, H. et al. demonstrated for the first time

that plasmid DNA-mediated homology-independent targeted

insertion (HITI) could be used for targeted insertion of a
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transgene into primary human T cells and demonstrated that the

combination of HITI with CRISPR EnrichMENT (CEMENT)

resulted in clinically relevant CAR-T cell yields, thus providing a

highly efficient, genotoxic-free, clinical-scale production process

(136). To transfer the “all-in-one” vector concept from T cells to

NK cells for the treatment of solid malignancies, Rudek, L.S. et al.

designed alpha retroviral “all-in-one” vector that combine

constitutive GD2-CAR expression and inducible cytokine

expression under the control of an inducible NFkB promoter

element (137). This demonstrated a tightly linked induction of

antigen-specific transgenes, with enhanced cytolytic potential, as

evidenced by increased NK cell activation and cytokine release in

NK cell subsets.
5 Other anti-tumor
targeted immunotherapies

5.1 GD2 vaccines

The duration of passive immune effects triggered by anti-GD2

monoclonal antibodies is generally short-lived (138), whereas

vaccination against GD2 as a form of active immunization may

have a prolonged effect on tumors (139). Vaccination may

specifically target tumor-associated antigens (TAAs), whereas

non-specific active immunization may influence normal tissues of

the body, which is an important distinction between the two (140).

Since many TAAs are autoantigens, the body may develop immune

tolerance, which can be effectively addressed by anti-Id Abs as an

antigen-based vaccine (141). The mechanism of anti-Id antibody

production is that when the antigen enters the body, it immunizes

against the Ag and produces Ab1 against that Ag, which in turn can

produce Ab2 against Ab1, i.e., anti-Id antibody. Additionally,

portion of Ab2 can mimic the starting antigen and produce a

specific immune response similar to that of the starting antigen,

which is referred to as Ab2b (142). A major advantage of anti-Id

vaccines is that they can be administered against antigens of non-

protein origin. In a phase I clinical trial against an anti-unique

antibody (TriGem), 40 out of 47 patients had hyperimmune sera

that had Ab3 capable of binding specifically to GD2, and this anti-

unique antibody vaccine showed a good IgG immune response as

well as minimal toxicity (143). Another vaccine combines

gangliosides with an immune carrier protein (KLH) in

combination with an immune adjuvant thereby exerting an

immune response. In a phase I trial, GD2 and GD3, i.e., GD2L

and GD3L, formed from lactone, were combined with the immune

carrier protein keyhole limpet hemocyanin (KLH) to form GD2L-

KLH, GD3L-KLH, and finally with the immune adjuvant, OPT-821.

The treatment also included oral immunostimulant, b-glucan. 12
out of 15 patients developed an antibody response to GD2 and/or

GD3, and 6 of 10 evaluable patients showed disappearance of

minimal residual disease (MRD) (144). In a subsequent phase II

trial, the use of GD2/GD3 vaccine and oral b-glucan produced a

strong antibody response in HR-NB patients with previous disease

progression, and the results showed that high titers of anti-GD2-

IgG1 were associated with improved survival (145).
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5.2 Targeted nanoparticles

Nanoparticles can deliver cytotoxic drugs or RNA targets to tumor

cells for therapeutic effects (Figure 2E). Nanoparticles for drug delivery

can be made from lipids, polymers (e.g., dendrimers), organometallic

compounds, and viruses (146). Most nanoparticles targeting tumors will

usually consist of a polyethylene glycol (PEG) coating and a targeting

ligand. Initially, the reticulo-endothelial system (RES) destroys the

nanoparticles, which can be protected by the use of PEGs (147, 148).

With this protection, the nanoparticles can safely reach the lesion and

release the drug, increasing the accumulation in the bloodstream and at

the site of the tumor. Secondly, the targeting ligands may be structures

such as monoclonal antibodies (149), antibody fragments (150),

aptamers (151), peptide-based targeting molecules (152) and small

molecules (153), which can deliver the nanoparticles to the tumor

lesion. When MicroRNA-34a is overexpressed in tumor cells, it can

activate the cysteine asparaginase-mediated apoptotic pathway (149).

Tivnan et al. found that anti-GD2 nanoparticle-mediated targeted

delivery of miR-34a inhibited the growth of tumor cells by coupling

MoAb ch14.18 to silica nanoparticles piggybacked with MicroRNA-34a

(149). Adrian et al. found that neuroblastoma can down-regulate

vascular endothelial growth factor A (VEGF-A) through GD2-

mediated endocytosis by uptake of anti-GD2 liposome piggybacked

siRNA (154). Etoposide was encapsulated into liposomes and coupled

with anti-GD2mAb to form immunoliposomes, which not only targeted

GD2-positive tumor cells and inhibited tumor cells proliferation, but

also reduced systemic side effects (155).
6 Conclusion

This review briefly describes the expression of ganglioside

disialoglycate (GD2) on the surface of retinoblastoma and its biological

functions. We review several immunotherapeutic approaches against

GD2, an anti-GD2 monoclonal antibody that has been applied in the

clinical treatment of neuroblastoma and achieved good therapeutic effect,

and recent research progress. Cellular immunotherapy attacks tumor

cells via T cells or NK cells, which has shown promising therapeutic

effects in the treatment of B-cell malignancies. However, the current

research on GD2 is not yet available good therapeutic effect, while the

treatment for solid tumors is currently in the stage of preclinical research

and clinical trials. The GD2 vaccine, an active immunotherapy, has

demonstrated favorable antibody responses in clinical trials. Targeted

nanoparticles can deliver cytotoxic drugs or RNA to tumor cells via

antibodies and other substances.
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