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Osteosarcoma is a highly malignant tumor with unsatisfactory therapeutic

outcomes achieved by chemotherapy, radiotherapy, and surgery. As an

emerging oncological treatment, immunotherapy has shown potential in the

clinical management of many tumors but has a poor response rate in

osteosarcoma. The immunosuppressive microenvironment in osteosarcoma is

the main reason for the ineffectiveness of immunotherapy, in which the low

immune response rate of immune effector cells and the high activation of

immunosuppressive cells contribute to this outcome. Therefore, modulating

the function of the immune microenvironment in osteosarcoma is expected to

remodel the immunosuppressive microenvironment of osteosarcoma and

enhance the efficacy of immunotherapy. This article reviews the role of

immune cells in the progression of osteosarcoma, describes the

corresponding regulatory tools for the characteristics of different cells to

enhance the efficacy of osteosarcoma immunotherapy, and concludes the

prospects and future challenges of osteosarcoma immunotherapy.
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1 Introduction

As a highly malignant tumor, osteosarcoma predominantly affects adolescents and the

aged (1–3). Patients with untreated osteosarcoma usually have a poor prognosis, with a low

5-year survival rate, and are typically accompanied by distant metastases (4–6). According

to the National Comprehensive Cancer Network (NCCN) guideline, the main treatments

for bone tumors include surgery, radiotherapy, and chemotherapy. Still, the treatment

results are unsatisfactory, and often accompanied by recurrence (7). Surgical treatment is

usually more effective in patients who have not developed metastases, however, it is less
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effective in patients who have developed metastases. The addition of

neoadjuvant chemotherapy has increased the five-year survival rate

of patients to 50-60%. However, the ensuing problems of

chemotherapy drug resistance and drug toxicity remain

challenging (8, 9).

Immunotherapy, despite some successes, remains helpless

against osteosarcoma. Cytokine therapy is usually associated with

severe systemic side effects due to tumor suppression by high-dose

administration (10). Immune checkpoint blockade therapies appear

helpless in the face of tumors that lack immune infiltration (11).

Chimeric Antigen Receptor T-Cell (CAR-T) therapies have not

achieved excellent results in clinical trials for a wide range of solid

tumors (12). Researchers are working to regulate the tumor

immune microenvironment, enhance immune cell infiltration and

anti-tumor effects, and improve the efficacy of tumor

immunotherapy by searching for new targets for immunotherapy,

building a novel drug delivery platform, and combining multiple

immunotherapies (13).

Since the advent of immunotherapy, it has achieved satisfactory

results in hematologic tumors, melanoma, and other tumors (14).

The use of immunotherapy in osteosarcoma has been inhibited by

the strongly immunosuppressive microenvironment of

osteosarcoma as well as by the lesser infiltration of immune cells.

Cytokine therapy was one of the first therapies used in tumor

immunotherapy. Interferon-alpha was approved for treating

leukemia in 1986, followed by IL-2 for treating metastatic renal

cell carcinoma and advanced melanoma (15). Immune checkpoint

blockade (ICB) therapy has also been approved by the U.S. Food

and Drug Administration (FDA) for clinical use (16). FDA-

approved treatments include Ipilimumab for CTLA-4,

pembrolizumab and nivolumab for PD-1, and atezolizumab,

durvalumab, and avelumab for PD-L1 (17–19). CAR-T therapy

has also been used for hematologic tumors and has progressed in

some solid tumors. Since 2017, CAR-T therapies have been

approved for hematologic tumors such as acute lymphoblastic

leukemia, B-cell lymphoma, and relapsed or refractory mantle cell

lymphoma. The approval of Iovance’s non-transgenic tumor-

infiltrating lymphocyte (TIL) therapy lifileucel (Amtagvi) in

February of this year, making it the first FDA-approved cellular
Frontiers in Immunology 02
therapy product for solid tumors (metastatic melanoma), may

signal the future of CAR-T’s boon to solid tumor patients (20–23).

Tumor immunotherapy is closely associated with the tumor

immune microenvironment (TIME), which encompasses immune

cells, various cytokines, and chemokines, tumor-derived exosomes,

among other components, and plays a crucial role in tumor

progression (24). TIME is critical to the prognosis of tumor

immunotherapy and has been studied extensively (25). According

to the theory of cancer immunoediting, the interaction between the

tumor and the immune system can be divided into three stages

(Figure 1): immune surveillance, immune equilibrium, and immune

escape (26). In the resistant surveillance stage, the leading role of the

tumor immune microenvironment is to remove tumor cells. Still,

when tumor cells escape from surveillance and start to mutate, they

enter the resistant homeostasis stage. In this stage, the immune

system can no longer altogether remove tumor cells, while tumor

cells cannot increase rapidly, and they form a dynamic balance.

After continuous mutation, tumor cells can eventually evade the

surveillance of the immune system, start to grow, and finally,

develop into a tumor and enter the immune escape stage (27, 28).

In the early stages of tumor development, TIME usually inhibits

tumor progression, and as tumors gradually evade immune

surveillance, TIME promotes tumor progression in the presence

of the tumor.

This article highlights an overview of some of the new

immunotherapeutic strategies that have emerged in recent years

that ultimately lead to immunotherapy of bone tumors by

enhancing immunity and reversing the immune microenvironment

(Figure 2).
2 Enhance the response in the tumor
immune microenvironment

In the tumor immune microenvironment, many immune cells

and cytokines play anti-tumor roles, which inhibit tumor growth by

attacking tumor cells or secreting cytokines (29, 30). In the

immunotherapy of bone tumors, tumor progression can be

inhibited by enhancing the responsive regulation of TIME by
FIGURE 1

Three phases of cancer immunity editing.
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immune effector cells (31, 32). People have enhanced the immune

response in the immune microenvironment of bone tumors by

improving the response of antigen-presenting cells, enhancing the

tumor-killing activity of T cells, enhancing the tumor-killing

activity of NK cells, enhancing the anti-tumor capacity of M1-

type macrophages, and enhancing systemic immunity.
2.1 Enhance antigen presentation by
antigen-presenting cells

Antigen-presenting cells (APCs), an essential component of the

immune system, can take up specific antigens, process them, and

express them as antigenic peptide/MHC molecular complexes on

the cell surface, where they are recognized by T cells in tumor-

draining lymph nodes and activated to produce an immune

response (33). In the immune microenvironment of bone tumors,

APCs are mainly dendritic cells (DCs) (34). The conserved status of

DCs in solid tumor infiltration was reviewed by Gerhard et al. They

activate initial T cells and turn on a specific immune response after

recognizing the tumor-associated antigen (TAA) (35).

In a preclinical study in 2006, Joyama et al. were the first to report

that DC immunotherapy was effective against pulmonary metastasis

of osteosarcoma in mice (36). They used tumor lysates to stimulate

DCs, which were inoculated on LM8 tumor-bearing mice and

effectively inhibited the progression of osteosarcoma and lung

metastasis in mice, a result that has attracted interest. Miwa et al.

reported a phase I/II clinical trial using DC and autologous tumor

lysates for bone and soft tissue sarcoma conducted from 2008-2014, in

which patients’ peripheral blood mononuclear cells (PBMCs) were

extracted and induced into DCs and treated with autologous tumor

lysates, TNF-a, and OK-432 (37, 38). The DCs were then injected into
the patients to observe the adverse and treatment effects. In all 37

patients, no treatment-related adverse reactions were found. Patients

had significantly elevated serum IFN-g and IL-12 levels, suggesting

that DC immunotherapy activated the immune response of the

patients. However, most of these patients had to undergo other

treatments because of tumor progression. This suggests that we

cannot satisfy the anti-tumor needs by enhancing the strength of

the DC-activated immune system alone. Therefore, DC-based

immunotherapy needs to be used in combination with other therapies.

Liu et al. enhanced effective DC cell presentation by

photothermally triggered immunogenic monotherapy (Figure 3)

(39). Combining titanium carbide with manganese ion-containing

ovalbumin (OVA) to form a nano platform, the release of mt-DNA

and Mn2+ under near-infrared laser irradiation synergistically

activated the immune system and enhancing the antigen

presentation of DCs, thereby enhancing the tumor-killing ability

of cytotoxic T lymphocytes (CTL). This study significantly activated

natural and passive immunity and effectively inhibited primary

and distant tumor progression in a subcutaneous model of

osteosarcoma in LM8 mice. The glucocorticoid-induced tumor

necrosis factor receptor (GITR) family-related protein is

expressed at high levels on Tregs. Kawano et al. investigated the

anti-tumor effects of DCs combined with anti-GITR antibodies on

osteosarcoma (40). In a subcutaneous model of osteosarcoma in
Frontiers in Immunology 03
LM8 mice, treatment with anti-GITR antibodies or DCs alone

showed little difference compared with the control group. Still,

when both were used in combination for treatment, tumors were

significantly suppressed. Meanwhile, TGF-b, IL-10, and IL-6

expression significantly decreased, and more CD8+ T cells were

recruited to the tumor area. These studies of enhancing DCs in

combination with other immunotherapies suggest that how the

antigen-presenting ability and T-cell recruitment capacity of DCs

can be used as a critical immunotherapeutic adjunct should be

further investigated and developed.
2.2 Enhance tumor killing by T cells

T cells play a direct tumor-killing role in the immune system;

however, when tumors progress to the immune escape stage, the

anti-tumor capacity of T cells is suppressed (41). In addition, T-cell

infiltration in bone tumor tissues is undesirable, and less T-cell

infiltration is often associated with a poorer prognosis (42).

Therefore, enhancing the tumor-killing ability of T cells is a

current focus of bone tumor immunotherapy.

CD8+ cells play an important role in tumor clearance as an

essential part of tumor-specific immunity (43). Unfortunately,

however, CD8+ cells infiltrate significantly less in bone tumors

than in other solid tumors (44). Casanova et al. noted that the rate

of CD8+ infiltration is an important influence on the survival of

patients with bone tumors (45). This was also demonstrated in

another clinical analysis of sarcomas, where the killing of tumor

cells by CD8+ T cells was often blocked by immune checkpoints on

the tumor, such as PD-L1 and CTLA-4, and in recent years there

has been a flurry of activity regarding ICB therapies (46, 47).

Sundara et al. found high PD-L1 expression in patients with

metastatic osteosarcoma, so anti-PD-1/PD-L1 therapy in this group

of patients may result in a better prognosis (48). In a clinical trial, 60

patients with osteosarcoma presenting with metastases received TIL

infusion combined with anti-PD-L1 therapy, and only 2 (3.33%)

patients experienced grade 3 or 4 treatment-related adverse effects.

22 of 60 (36.6%) patients experienced tumor regression, and the results

showed that TIL infusion combined with anti-PD-L1 therapy

prolonged the survival of chemotherapy-resistant metastatic in

patients with osteosarcoma (49). He et al. explored the immune

response generated by combining L-arginine and anti-PD-L1

antibodies for treating osteosarcoma in mice (50). They found that

L-type arginine significantly increased the number of CD8+ T cells,

serum IFN-g, granzyme B, and perforin in the spleen, while anti-PD-L1

antibody effectively prevented T cell depletion, and the two

synergistically prolonged the survival of K7M2-bearing mice. Ge

et al. used metal-organic nanoparticles to modulate osteosarcoma

autophagy and enhance anti-PD-1/PD-L1 immunotherapy (Figure 4)

(51). After enhanced autophagy and immune checkpoint blockade

treatment, tumor tissue flow patterns of K7M2 tumor-bearing mice

showed that tumor cell autophagy was significantly enhanced, the

number of CD8+ T cells and DCs were significantly increased, and

tumor growth was significantly inhibited.

In addition to immune checkpoint blockade therapy, other

approaches to enhance CD8+ T cells have been explored. Sand
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et al. found by gene sequencing that CCL21 expression in Ewing

sarcoma samples was negatively correlated with metastasis,

primarily by non-tumor-infiltrating immune cells in the samples,

suggesting an immunotherapeutic target for Ewing sarcoma (52).

Yahiro et al. explored the activation of the Toll-like receptor-4

pathway to stimulate CD8+ T cytotoxic lymphocytes to inhibit

osteosarcoma progression (53). The use of lipopolysaccharide (LPS)

in the LM8 cell line to activate TLR-4 resulted in the discovery of

more CD8+ T cells in the tumor metastases and the suppression of

tumor volume in the primary foci.

In the last decade, the ability of T cells to recognize and kill

tumors has been enhanced by chimeric antigen receptor (CAR)

technology. CAR-T cell therapy has yielded excellent results in

hematologic tumors and some solid tumors. Proven CAR-T cell

therapeutic targets for bone tumors include HER2, GD2, and B7-

H3, and many efforts have been made to treat bone tumors using

CAR-T cell technology.

Talbot et al. constructed a new model of in situ, spontaneously

metastatic osteosarcoma using LM7 cells expressing firefly

luciferase (LM7.ffLuc) for real-time imaging of tumor metastasis

(54). In this model, they investigated the anti-tumor activity of B7-

H3-CAR-T cell therapy and detected tumor metastasis. In cellular

assays, the B7-H3-CAR-T cell therapy group secreted significantly

more IFN-g and IL-2 than the control group. In animal
Frontiers in Immunology 04
experiments, the therapy demonstrated dose-dependent anti-

tumor effects, with no tumor progression and no detectable

tumor cells in amputated bone sections in the applied medium-

high dose and high dose treatment groups, demonstrating the

potent anti-tumor ability of CAR-T cells. Majzner et al. explored

the anti-tumor effects of B7-H3-CAR-T cell therapy in

osteosarcoma, Ewing sarcoma, and medulloblastoma (55). Charan

et al. inadvertently discovered that hepatocyte growth factor (HGF)

enhances GD2 expression on the surface of Ewing sarcoma cells and

achieves unexpected anti-tumor effects when combined with GD2-

CAR-T cells for the treatment of Ewing sarcoma (56). Similarly,

Kailayangiri et al. used an EZH2 inhibitor to enhance GD2

expression on the surface of Ewing sarcoma cells and significantly

inhibited tumor progression when combined with GD2-CAR-T

cells for the treatment of Ewing sarcoma (57).

ab T cells and gd T cells are two distinct subsets of T

lymphocytes that play key roles in the body’s immune response.

ab T cells, which are the most common type of T cells, express

either CD4 or CD8 co-receptors and rely on recognition of antigens

presented by major histocompatibility complex (MHC) molecules.

In contrast, gd T cells are a unique subset of T cells that lack CD4

and CD8 co-receptors and do not require antigen presentation

through MHC molecules. Although gd T cells are typically less

abundant in tumors compared to CD4+ and CD8+ T cells, they
FIGURE 2

Strategies for immunotherapy of osteosarcoma.
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possess a more potent tumor-killing ability. These cells can directly

recognize and respond to a wide range of tumor-associated antigens

without MHC restriction, and they do not require helper cells for

activation. This makes gd T cells an attractive target for

immunotherapy, particularly in overcoming some of the

limitations faced by traditional ab T cell-based therapies.

Sun et al. found that zoledronate enhanced the killing of

chondrosarcoma by gd T cells in pericyte therapy (58). Caroline M
Frontiers in Immunology 05
Hull et al. substituted the caspase 1 cleavage site within pro-IL18 with

that preferred by granzyme B, yielding GzB-IL18. They demonstrated

that GzB-IL18 enhances the efficacy of ab and gd CAR T cell

immunotherapy in a tumor-dependent manner and that GzB-IL18

provides a highly effective armoring strategy for gd CAR T cells. GzB-

IL18 promotes anti-tumor activity and myeloid cell reGzB-IL18

promotes anti-tumor activity and myeloid reprogramming without

causing CAR-T cell-mediated cytokine release syndrome (59).
FIGURE 3

TPOM nanoparticles induced mt-DNA release and DC maturation in tumor cells after irradiation in vitro. (A) Schematic illustration of TPOM mediated
immunotherapy based on PTT throughout the whole process of DCs mature. (B, C) Flow cytometric analysis and quantification of mature DCs
(CD86+/CD80+, gated on CD11c+ cells) at 24 h after various treatments including PBS, TP, OVA, TPO, and TPOM. (D, E) IL-6 and TNF-a secreted in
the culture medium by BMDCs (39).* P< 0.05, ** P< 0.01, *** P< 0.001.
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2.3 Enhance tumor killing by natural
killer cells

NK cells are generally considered to be derived directly from the

bone marrow, and their developmental maturation depends on the

bone marrow microenvironment (60). MHC does not limit the

killing activity of NK cells and does not depend on antibodies.

Therefore it is called natural killing activity (61). The cytoplasm of

NK cells is abundant and contains large asplenophilic granules, and

the content of granules is positively correlated with the killing

activity of NK cells (62). The anti-tumor effect of NK cells is very

rapid, and the killing effect is seen in vivo in about 4 hours (63). NK

cells can be activated by IL-15 and secrete IFN-g to regulate the

tumor immune microenvironment (64).

Fernández et al. determined that NK cells recognize

osteosarcoma cells and cause osteosarcoma cell lysis through the

binding between the NKG2D receptor and NKG2D ligand (65).

They also reported that spironolactone appeared to enhance the

sensitivity of this process. At the same time, Buddingh et al. used IL-

15 activation of NK cells to enhance the ability of NK cells to kill

osteosarcoma cells (66). IL-15 activation significantly enhanced

cytotoxicity, and osteosarcoma cells were susceptible to such NK

cells activated by IL-15. Successful inhibition by IL-15-activated NK

cells was still observed in osteosarcoma cells from patients resistant

to chemotherapeutic agents, while Rademacher et al. reported that

IL-12 expression in sarcoma promoted immune regulation by NK

cells (Figure 5) (67). In osteosarcoma, Ewing sarcoma, and

rhabdomyosarcoma cell lines, increased IL-12 expression levels by

lentiviral transduction successfully induced elevated levels of IFN-g
release from NK cells in vitro without systemic toxicity due to IL-12

injection, which provides a new idea for NK cell-based tumor

immunotherapy. Jamitzky et al., on the other hand, found that

inhibition of insulin-like growth factor-1 receptor (IGF-1R)

significantly promoted the proliferation of human NK cells and

could be used to combat Ewing sarcoma (68).
2.4 Enhance tumor killing by activating the
systemic immune system

As mentioned above, there are a large number of immune cells

and immunomodulatory factors in the tumor immune

microenvironment that play an immunomodulatory role, and

these factors are not independent of each other but affect each

other (69). People have also tried to suppress tumors by enhancing

the body’s overall immunity. The first idea is to activate immunity

through vaccination to enhance the immune system to recognize

and kill tumors (70). Tumor autoantigens have become the leading

research direction of tumor vaccines, and the injection of artificially

treated tumor antigens into the body can effectively activate the

anti-tumor activity of the immune system. Direct targeting of

specific tumor antigens is also a new immunotherapeutic

modality that enhances the killing effect on tumors by mobilizing

the body’s immune cells to the tumor site (71). Tumor-associated

antigens such as GD2, HER2, and B7-H3 are highly expressed in

bone tumors, so this is a promising research direction for
Frontiers in Immunology 06
immunotherapy. In current studies, this therapy usually plays an

adjuvant role and is combined with other immunotherapies.

Flesner et al. successfully inhibited tumor progression and

prolonged survival in dogs using autologous cancer cell

inoculation, passaged T-cell therapy, and injected interleukin-2 in

a canine osteosarcoma model (72). In the phase II clinical trial that

included 20 patients with bone and soft tissue sarcoma, patients of

different subtypes were vaccinated with a personalized peptide

vaccine, and no adverse effects associated with vaccination were

observed in the patients. In this study, lung metastases were reduced

in 20 patients with a median survival of 9.6 months, suggesting the

potential of this therapy for widespread use in patients with

advanced refractory sarcomas. Li et al. combined heat shock

protein/peptide immunotherapy with immune checkpoint

inhibition therapy (73). Heat shock proteins can act as carriers to

carry tumor antigenic peptides and can be used as a tumor vaccine.

In a mouse osteosarcoma model, this vaccine was combined with

anti-PD-L1 immune checkpoint inhibition therapy to inhibit tumor

growth and metastasis. At the same time, Evans et al. reported a

YLNPSVDSV peptide that can be used as a specific antigen for

immunotherapy in Ewing sarcoma (74).

Therapies targeting specific tumor-specific antigens

have been increasing in recent years. Roth et al. performed

immunohistochemistry on 44 osteosarcoma specimens and found

that GD2 was expressed in all 44 specimens and stained significantly

more intensely in tissue from patients with recurrence than in tissue

from patients with initial detection, suggesting that GD2 could be a

target for immunotherapy in osteosarcoma (75). Dinutuximab, an

anti-GD2 antibody, was used to enhance the efficacy of

chemotherapy in three patients with Ewing sarcoma. All patients

receiving the combination therapy tolerated it well, with complete

tumor remission and no signs of recurrence, making GD2 an

essential target for bone tumor immunotherapy. Theruvath et al.

combined anti-GD2 therapy with anti-CD47 therapy, which

upregulated calreticulin expression on the surface of osteosarcoma

cells, respectively, as well as promoting phagocytosis of osteosarcoma

cells by macrophages (76). Combining the two therapies in MG63

and 143B cell lines effectively inhibited tumor cell proliferation and

successfully activated macrophages in the tumor immune

microenvironment. Park et al. used anti-GD2 bis-specific

antibodies (BsAbs) and anti-HER2-BsAbs to treat osteosarcoma. T

cell engaging bispecific antibodies (T-BsAbs) using sequences of anti-

CD3 (huOKT3) and anti-disialoganglioside [GD2] (hu3F8) or anti-

epidermal growth factor receptor-2 [HER2] (trastuzumab) antibody

structured on IgG-[L]-scFv format with silenced Fc, exerting potent

anti-tumor activities. The CAR-T cells could effectively recruit T cells,

and using them in combination with anti-PD-L1 antibodies to treat

osteosarcoma is also a direction to be considered (Figure 6) (77).
3 Reverse the suppression in the
tumor immune microenvironment

Some immune cells and components of the extracellular matrix

become immunosuppressive factors in the tumor immune

microenvironment as the tumor progresses. They may directly or
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indirectly contribute to immune escape from the tumor (69, 78). In

immunotherapy of bone tumors, reversing the immunosuppressive

state caused by these factors is the primary goal of treatment (79–81).

In this paper, we review the reverse of immunosuppression by

regulatory T cells, tumor-associated macrophages, and bone

marrow-derived suppressor cells and by remodeling the tumor’s

extracellular matrix, thus reversing the immunosuppressive state of

the tumor immune microenvironment.
Frontiers in Immunology 07
3.1 Reversing immunosuppression against
regulatory T cells

Regulatory T cells (Tregs) are a subpopulation of T cells with

immunosuppressive functions, usually expressing CD4, CD25, and

FOXP3 as surface markers on the cell surface (82). Treg cells, which

usually have potent immunosuppressive functions in the tumor

immune microenvironment, have become a hot spot for research in
FIGURE 4

CBZP remodels the immune microenvironment of OS. (A) Flow cytometry shows the percentage of matured DCs from the total number of DCs in
the draining lymph nodes. (B–D, G) Cytokine levels in serum samples from mice after different treatments. (E) The percentage of matured DCs from
the total number of DCs in the draining lymph nodes by flow cytometry. (F) Quantitative evaluation of intratumoral infiltration of cytotoxic CD8+ T
cells and CD4+ T cells via flow cytometry. Quantitative evaluation of intratumoral infiltration of cytotoxic CD8+ T cells and CD4+ T cells via flow
cytometry (51).
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recent years (83). IL-35 is the main cytokine secreted by Treg cells,

and Liu et al. found that IL-35 levels significantly increased in

osteosarcoma patients’ blood. At the same time, IL-35 decreased the

anti-tumor activity of CD8+ T cells (84). In an analysis of immune

cell infiltration in tumor specimens from osteosarcoma patients by

Sun et al., Treg cells exhibited the same immunosuppressive

capacity as peripheral blood Treg cells. At the same time, Biller

et al. showed that in a canine osteosarcoma model, Treg cell

numbers were significantly increased, and the CD8/Treg ratio was

significantly correlated with prognosis in dogs (85, 86). A

multicenter validation of a retrospective study of patients with

osteosarcoma demonstrated increased mortality in patients with

increased Treg cell content in osteosarcoma specimens. Brinkrolf

et al. also found a similar profile of Treg cells in Ewing sarcoma (87).

Therefore, reducing Treg cell infiltration in tumor tissues has
Frontiers in Immunology 08
become a developmental direction for immunotherapy of

bone tumors.

Mortara et al. treated osteosarcoma with L19TNF-a (L),

marfalan (M), and gemcitabine (G) showed a decrease in Treg

cells, myeloid suppressor cells (MDSCs), and a significant increase

in CD4+ and CD8+ T cells in tumor tissue (88). The group treated

with the L-M-G-G regimen demonstrated more potent anti-tumor

activity. Since Treg cells express PD-1 and CTLA-4, in recent years,

several checkpoint inhibitors have been found to reduce Treg cell

infiltration in tumors. Yoshida et al. first reported that anti-PD-1

antibodies reduced Treg infiltration in a mouse model of

osteosarcoma (Figure 7) (89). In bone and synovial sarcoma cell

lines, Treg is usually induced to mature by DC cells. In the study by

Ocadlikova et al., osteosarcoma and synovial sarcoma cells were

treated with the PD-1 inhibitor sunitinib, and the ability of DC to
FIGURE 5

LV/hu−IL−12 transduction induces NK cell−mediated IFN−g production. (A) Non-transduced (NT) and LV/hu-IL-12 transduced human sarcoma lines
for osteosarcoma (143B), Ewing sarcoma (A673), and rhabdomyosarcoma (RD) were plated in ultralow adherent 96-well plates. After 48 h of growth,
media or NK-92mi at a 10:1 ratio were added. ELISA assessed supernatants for IFN-g. (B) Non-transduced and LV/hu-IL-12 transduced human
sarcoma lines were plated. 4 h later, conditioned supernatant was collected and 100 µL applied to NK-92mi cells. After an additional 4 h supernatant
was collected, and IFN-g was measured by ELISA. (C) NK-92mi cells were incubated in the presence or absence of anti-IL-12 antibody and 100 µL
of conditioned supernatant. After 4 h supernatant was collected, and IFN-g was measured by ELISA. (D) Primary human NK cells were plated with
nontransduced (NT) and LV/hu-IL12 transduced human Ewing sarcoma (A673) at the noted E:T ratios or conditioned supernatant (100 µL) in the
presence or absence of anti-IL-12 antibody. After 6 h supernatant was collected, and IFN-g was measured by ELISA (67). * P< 0.05, ** P< 0.01,
*** P< 0.001.
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induce Treg cell maturation was analyzed after co-culturing them

with DC for a while (90). The results showed that the PD-1 inhibitor

could completely block the DC-induced maturation of Treg.

Takahashi et al. then investigated the efficacy of anti-PD-L1

combined with anti-CTLA-4 antibody P1C4 and radiotherapy in

treating osteosarcoma in mice (91). In the combination treatment

group, CD8+ T cell infiltration was increased, Treg cell infiltration

was decreased, and the CD8/Treg ratio was significantly increased.
3.2 Reversing immunosuppression against
tumor-associated macrophages

As mentioned previously, tumor-associated macrophages

(TAMs) consist of a large number of M2-type macrophages that

are immunosuppressive components of the tumor immune

microenvironment (92). Numerous studies have shown that M2-

type macrophages strongly suppress infiltrating T cells within bone

tumors and are an essential target for bone tumor therapy. Han

et al. reported that removing M2-type (CD163+), macrophages

increased the number of T cells in tumor tissue from patients with

osteosarcoma (93). In addition, M2-type macrophage cells can

repolarize to M1-type macrophages, which has attracted the
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attention of researchers, and modulation of TAM repolarization

to M1-type macrophages has become one of the current means of

immunotherapy for bone tumors (94).

Zhou et al. found a significant reduction in pulmonary

metastases when treating osteosarcoma with all-trans retinoic acid

(95). Further study found that all-trans retinoic acid inhibited TAM

polarization to M2-type and thus inhibited tumor cell metastasis.

Shao et al. further found that all-trans retinoic acid inhibited

osteosarcoma cells’ proliferation and differentiation ability by

promoting TAM repolarization and decreasing the expression of

tumor stem cell surface markers (96). Fujiwara et al. found that

CSF1R inhibitors modulated TAM (97). The CSF1R inhibitor

Pexidartinib prevented TAM from being stimulated to differentiate

into M2-type macrophages by CSF1 secreted by tumor cells. In the

mouse osteosarcoma model, treatment with Pexidartinib

significantly reduced TAM and Treg cells and increased the

infiltration of CD8+ T cells. Li et al. regulated TAM repolarization

by inhibiting the macrophage PI3K pathway and blocking CSF1R

(98). They used nano micelles loaded with PI3K inhibitor BEZ 235

and CSF1R-siRNA to reduce M2-type macrophage levels in tumor

tissues through the synergistic effect of both. Gong et al. designed a

nanomedicine that combines CD47 inhibition therapy and acoustic

kinetic therapy (99). The nanomedicine was loaded with the CD47
FIGURE 6

PD-1 and PD-L1 expression by T cells and osteosarcoma cell line xenografts. (A) Flow cytometry analysis of PD-1 expression on tumor-infiltrating
lymphocytes (TILs) in osteosarcoma 143B cell line xenografts on day 35 post-GD2-BsAb treatment. (B) Flow cytometry analyses of human CD3(+) T
cells and human PD-1 expression by CD3(+) T cells in peripheral blood after GD2-BsAb or HER2-BsAb treatment. c IHC staining and flow cytometry
analysis of human PD-L1 in osteosarcoma 143B xenografts. PD-L1 expression levels were quantified using geometric MFI (MFI) (77).
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inhibitor RRx-001 and the acoustic sensitizer IR780, and the two

drugs were delivered to the tumor site to inhibit the proliferation and

migration of osteosarcoma cells, reduce the expression of the “don’t-

eat-me signal” on the surface of the tumor cells, and regulate the

polarization of macrophages toward the anti-tumor M1 phenotype

(Figure 8). Reximod (R848), a common Toll-like receptor inhibitor,

has also been used to modulate M2-type macrophage repolarization.

In one study, adriamycin, cisplatin, and R848 were loaded in

nanoparticles with sustained drug release (100). After reaching the

tumor site by intravenous injection, adriamycin, and cisplatin

triggered immunogenic cell death to kill tumor cells, while R848

promoted repolarization of M2-type macrophages and enhanced

phagocytosis of TAM, acting synergistically for the treatment

of osteosarcoma.
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3.3 Reversing immunosuppression against
myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of cells with immunosuppressive properties, mainly

immature granulocytes, DCs, and macrophages (101). MDSCs are

more abundant in the bone tumor microenvironment than in other

solid tumors. MDSC can directly suppress the function of CD4+ T

cells, CD8+ T cells, DCs, and NK cells and also promote the

production of Treg cells (102). Researchers have used various

methods to reduce the number of MDSCs and decrease the

immunosuppressive effects.

Horlad et al. found that Corosolic acid inhibits the

immunosuppressive activity of MDSCs in 2013 (103). Jiang et al.
FIGURE 7

Anti-PD-1 antibody changes the tumor microenvironment. The spleen and tumor immune cell proportion were evaluated (n = 3). The representative
specimen is shown left. Each specimen is plotted, and the average value is indicated by a horizontal bar, right. (A) Schema of experimental overview.
(B) Ratio of T cell to B cell. (C) Ratio of CD4 + cell to CD8 + cell in TCRb + cells. (D) Number of TILs recovered from the tumor per unit weight. (E)
Percentage of Foxp3 + cells in CD4 + cells. (F) Percentage of Ki-67 + cells in Foxp3 + cells (89).
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found that the SDF-1/CXCR4 axis promotes MDSC aggregation in

the osteosarcoma microenvironment (Figure 9) (104). They used the

CXCR4 antagonist AMD3100 to block the binding of SDF-1 to

CXCR4, which significantly reduced the infiltration of MDSCs in

osteosarcoma and had a synergistic effect when combined with anti-

PD-1 antibodies, a novel option for immunotherapy of osteosarcoma.

In a study by Shi et al., the PI3Kd/g inhibitor (S)-(-)-N-[2-(3-

hydroxy-1H-indol-3-yl)-methyl]-acetamide (SNA) enhanced the

efficacy of anti-PD-1 antibodies in the treatment of osteosarcoma,

and further studies showed that SNA inhibited MDSCs thereby

enhancing the anti-tumor effects of CD8+ T cells (105). Long et al.

used all of The abilities of trans-retinoic acid to inhibit MDSCs from

enhancing the efficacy of CAR-T cell therapy (106). In addition,

metformin was found to inhibit both MDSCs and TAM

immunosuppression in the osteosarcoma microenvironment.
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3.4 Reverse the immune suppression in
tumor extracellular matrix

In addition to cells that cause immunosuppression in the

tumor immune microenvironment, many tumor-derived

immunosuppressive factors, including cytokines, small molecules,

and immunosuppressive enzymes, are also present in the tumor

extracellular stroma (69). These immunosuppressive factors

accumulate in the tumor microenvironment and inhibit the

immune cells that enter it. In response to these immunosuppressive

factors, attempts have been made to relieve the immunosuppressive

state of tumors by remodeling the extracellular matrix and reducing

the secretion of immunosuppressive factors (107, 108). Here we focus

on using various immunosuppressive enzymes as immunotherapeutic

targets for treating bone tumors.
FIGURE 8

Regulation of macrophages by MPIRx nanodrugs. (A) Construction of MPIRx nanodrugs for CD47 immune checkpoint/sonodynamic therapy of
osteosarcoma and pulmonary metastasis. (B) Transwell migration assay of macrophages (THP1-Mj, RAW264.7) cocultured with OS cells (K7M2,
143B). (C) Flow cytometry analysis of phagocytosis. (D, F) qPCR analysis of M1 TAMs related markers in macrophages treated with conditioned
medium of OS cells. (E, G) qPCR analysis of M2 TAMs related markers in M2-macrophages treated with OS-CM (100).
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FIGURE 9

Tumor-infiltrating MDSCs express high levels of CXCR4 and are diminished by AMD3100 administration in osteosarcoma. (A, B) Percentages of Gr-1
+/CD11b+ MDSCs in intratumoral CD45+ cell population in different treatment groups, measured by flow cytometry. (C) Percentages of CXCR4+
MDSCs in intratumoral Gr-1+/CD11b+ cell population. (D) Expression levels of CXCR4 in splenic MDSCs (blue) and intratumoral MDSCs (purple),
measured by flow cytometry. (E) Immunofluorescence microscopy analysis of CD11b and CXCR4 in FACS-sorted MDSCs. (F) Splenic MDSCs and
intratumoral MDSCs were placed in a proliferation assay with CFSE-labeled CD8+ T cells at the designated MDSC/T cell ratios. Anti-CD3/CD28
beads were used at a 1:2 ratio with T cells to induce proliferation. Cells were harvested on day 5 and analyzed by FACS for Violet dilution (104). * P<
0.05, ** P< 0.01, *** P< 0.001.
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COX-2 was discovered in 1991 and has long been thought to

be involved in cancer progression. In normal cells, COX-2 levels

are low. However, in tumor tissues, they are significantly elevated.

COX-2 levels in osteosarcoma are strongly associated with disease

progression and prognosis. Zhao et al. demonstrated how COX-2

promotes osteosarcoma progression (109). They investigated the

effect of COX-2 on the proliferation, migration, and other

properties of osteosarcoma cells using a SaOS2 human

osteosarcoma cell line with the COX-2 gene knocked out. Chen

et al. demonstrated the inhibitory effect of euxanthone on COX-2

in osteosarcoma cell lines, but euxanthone could not wholly block

the expression of COX-2. Hence, the investigators speculated that

osteosarcoma should have other pathways that also lead to COX-2

expression, and how to completely block COX-2 expression in

bone tumor cells becomes an issue that needs to be addressed now

(110). Similarly, indoleamine 2,3-dioxygenase (IDO) plays an

immunosuppressive role in various tumor microenvironments,

and Liebau et al. showed as early as 2002 that IFN-g, IL-12, and IL-
18 all induced IDO expression in human osteosarcoma cell lines
Frontiers in Immunology 12
(111). MAX et al., on the other hand, used transgenic techniques

to study the CD137/CD137L pathway on Ewing sarcoma

expression of IDO regulation of the CD137L transgenic tumor

cells expressing IDO was significantly suppressed, and regulation

of CD137/CD137L pathway was effective in reducing the

expression of Ewing sarcoma cells by IL-2 stimulated expression

of IDO (112). Inducible nitric oxide synthase (iNOS) is also of

interest for its immunosuppressive ability in the tumor

microenvironment, and its expression in humans often indicates

iNOS has now been shown to be highly expressed in a variety of

solid tumors, in general, iNOS expression is closely associated

with tumor progression. iNOS was shown to promote

osteosarcoma development via the Wnt/b-linked protein

pathway in iNOS knockout mice, and tumor progression was

significantly inhibited by Chu et al. (113). In bone tumor

immunotherapy, several of the above enzymes should be given

adequate attention, and the immunosuppressive state of the tumor

immune microenvironment can be effectively relieved by blocking

the expression of one or more immunosuppressive enzymes.
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4 Discussion and Conclusions

Osteosarcoma, as a highly malignant tumor with a distinct and

suppressive immune microenvironment, presents unique

challenges for effective immunotherapy. While advancements

have been made in modulating immune responses and targeting

the tumor immune microenvironment, the outcomes remain

suboptimal compared to other solid and hematological

malignancies. Current immunotherapy for osteosarcoma has

several shortcomings, including the response rate of osteosarcoma

patients to immunotherapy, large individual differences in

treatment efficacy, the immunosuppressive microenvironment

that affects the efficacy of immunotherapy, and the lack of

molecular targets specific to osteosarcoma. These issues represent

challenges and opportunities, and when they are resolved,

immunotherapy for osteosarcoma is expected to completely

replace conventional therapies and prolong the survival of

patients with distant metastases.

Immunotherapy for osteosarcoma currently faces many

challenges in clinical application. The first step is to be fully

aware of the complexity of the immune microenvironment. An

in-depth understanding of the immunosuppressive network in

osteosarcoma is crucial. High-throughput technologies such as

single-cell RNA sequencing and spatial transcriptomics can

elucidate cell-cell interactions and identify new therapeutic

targets. Secondly, TME is characterized by resistance mechanisms

such as the recruitment of regulatory T cells (Tregs), tumor-

associated macrophages (TAMs), and myeloid-derived suppressor

cells (MDSCs). Reversing these inhibitory effects will require the

development of combination therapies and biomaterials with

controlled delivery. At the same time, given the heterogeneity of

osteosarcoma, personalized treatment regimens tailored to a

patient’s molecular and immunological profile are likely to

improve outcomes. Such an approach would require integrated

analyses of genomic, proteomic, and immunological data. The

combination of immunotherapy with other treatments is one of

the current research breakthroughs needed.The current difficulties

are mainly centered on the fact that the mechanism of combining

immunotherapy with other therapeutic approaches is still unclear,

which challenges the optimal dosage, timing and safety of

these combinations.

In response to the current status of immunotherapy for

osteosarcoma, we believe that future research should enhance

targeting through combination therapies, harness the power of

biomaterials to exert synergistic effects with conventional

therapies, and reverse the immune evasion mechanism of tumors.

Firstly in preclinical models, combining immune checkpoint

inhibitors (ICIs) such as anti-PD-1/PD-L1 antibodies with drugs

that can restore polarity to TAMs or enhance T cell function has

shown promise. CAR-T cell therapies targeting antigens such as

HER2 and B7-H3 in combination with immune checkpoint

blockers can extend the therapeutic effect. Secondly leveraging

nanotechnology innovations such as nanoparticle-mediated

delivery of cytokines or small molecule inhibitors can optimize

pharmacokinetics, reduce systemic toxicity, and ensure more
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precise modulation of TME, while immunotherapies effectively

synergize with chemotherapy and radiotherapy by enhancing

tumor antigen presentation and immune cell infiltration.

Optimizing the timing and dosage of these combination therapies

will maximize treatment efficacy. In addition, future studies should

focus on targeting extracellular matrix remodeling and

immunosuppressive enzymes such as COX-2 and IDO, which

play a key role in immune evasion.

The emergence of lysogenic viruses has provided new ideas for

immunotherapy of osteosarcoma. Adenoviruses are genetically

engineered to remove genes such as E1A or E1B, allowing them

to selectively infect and lyse osteosarcoma cells and activate the

immune system to clear the tumor. Herpes simplex virus has also

been used to treat osteosarcoma. Herpes simplex virus with the

ICP34.5 gene removed can effectively inhibit the growth of

osteosarcoma, and at the same time, combined with radiotherapy

or chemotherapy, the efficacy is more obvious. With the approval of

oncolytic viruses for other solid tumors, the use of oncolytic viruses

for the treatment of osteosarcoma has also become possible.

The field of osteosarcoma immunotherapy is poised at a

critical juncture, where novel insights into the tumor immune

microenvironment and advancements in immunomodulatory

strategies are paving the way for more effective treatments. Despite

significant progress, challenges persist in translating preclinical

findings into clinical success. To achieve meaningful therapeutic

outcomes, a paradigm shift toward multi-faceted and personalized

therapeutic regimens is imperative. This includes leveraging

advanced biomaterials, designing innovative combination therapies,

and integrating omics data to tailor treatments to individual patients.

Furthermore, establishing robust clinical trial frameworks to evaluate

these strategies is essential for their successful implementation.

Ultimately, the goal is to develop immunotherapy approaches that

not only complement existing modalities but also provide standalone

therapeutic options that can replace traditional cytotoxic treatments.

The collective efforts of researchers, clinicians, and policymakers will

be vital in overcoming these challenges and advancing

immunotherapy to the forefront of osteosarcoma treatment.
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