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Background: Lung adenocarcinoma (LUAD) is a heterogeneous tumor

characterized by diverse genetic and molecular alterations. Developing a

multi-omics-based classification system for LUAD is urgently needed to

advance biological understanding.

Methods: Data on clinical and pathological characteristics, genetic alterations,

DNA methylation patterns, and the expression of mRNA, lncRNA, and microRNA,

along with somatic mutations in LUAD patients, were gathered from the TCGA

and GEO datasets. A computational workflow was utilized to merge multi-omics

data from LUAD patients through 10 clustering techniques, which were paired

with 10 machine learning methods to pinpoint detailed molecular subgroups and

refine a prognostic risk model. The disparities in somatic mutations, copy number

alterations, and immune cell infiltration between high- and low-risk groups were

assessed. The effectiveness of immunotherapy in patients was evaluated through

the TIDE and SubMap algorithms, supplemented by data from various

immunotherapy groups. Furthermore, the Cancer Therapeutics Response

Portal (CTRP) and the PRISM Repurposing dataset (PRISM) were employed to

investigate new drug treatment approaches for LUAD. In the end, the role of

SLC2A1 in tumor dynamics was examined using RT-PCR, immunohistochemistry,

CCK-8, wound healing, and transwell tests.

Results: By employing multi-omics clustering, we discovered two unique cancer

subtypes (CSs) linked to prognosis, with CS2 demonstrating a better outcome. A

strong model made up of 17 genes was created using a random survival forest

(RSF) method, which turned out to be an independent predictor of overall survival

and showed reliable and impressive performance. The low-risk group not only

had a better prognosis but also was more likely to display the “cold tumor”

phenotype. On the other hand, individuals in the high-risk group showed a worse

outlook and were more likely to respond positively to immunotherapy and six

particular chemotherapy medications. Laboratory cell tests demonstrated that
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SLC2A1 is abundantly present in LUAD tissues and cells, greatly enhancing the

proliferation and movement of LUAD cells.

Conclusions: Thorough examination of multi-omics data offers vital

understanding and improves the molecular categorization of LUAD. Utilizing a

powerful machine learning system, we highlight the immense potential of the

riskscore in providing individualized risk evaluations and customized treatment

suggestions for LUAD patients.
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Introduction

In 2020, lung cancer (LC) was the second most commonly

diagnosed cancer and the leading cause of cancer-related deaths,

accounting for approximately 11.4% of all cancer cases and 18% of

cancer-related fatalities (1). LC is primarily divided into two

histological types: non-small cell lung cancer (NSCLC),

representing about 85% of cases, and small cell lung cancer

(SCLC), comprising roughly 15% of cases (2). NSCLC encompasses

large-cell lung carcinoma (LCLC), lung adenocarcinoma (LUAD),

and lung squamous cell carcinoma (LUSC), with LUAD being the

most common form (3). Even with multiple treatment options like

surgery, chemoradiotherapy, targeted therapy, and immunotherapy,

the outlook for LUAD patients is still bleak, with just a 16% overall

survival rate over five years (4). Although targeting EGFR, ALK, and

TKI has shown potential in improving patient outcomes, drug

resistance remains a significant challenge, leading to suboptimal

therapeutic results (5, 6). Therefore, exploring novel biomarkers

with high specificity and sensitivity is crucial for accurate diagnosis,

personalized treatment, and precise prognosis prediction in LUAD.

Cancer is an extremely diverse and intricate illness, where

individuals with identical histopathological categories may show

different genetic mutations (7). Consequently, customized strategies

for prevention, diagnosis, and treatment ought to be adapted to

the clinical and omics characteristics of each patient (8). In the case

of LUAD, molecular test results, including KRAS, EGFR, and TP53

mutations, as well as PDL1 expression, are utilized to assess

prognosis (9–12). Integrating clinical and omics data for cancer

prognosis can significantly improve predictive accuracy.

Nevertheless, relying on individual omics datasets may result in

the loss of critical genetic information, making it challenging to

identify key pathogenic genes that reflect the diverse influencing

factors present in the original sequencing data (13). Over the past

few years, an increasing number of scientists have conducted

comprehensive analyses of diverse omics datasets, achieving

notable findings (14, 15). However, most prognostic studies on

LUAD remain confined to a single omics dataset (16, 17).

Moreover, the few studies that have attempted to combine
02
multiple omics datasets with clinical data have struggled to do

so effectively.

This research employed the MOVICS algorithm to merge DNA

methylation patterns, genetic alterations, and data from mRNA,

long non-coding RNA (lncRNA), and microRNA (miRNA),

forming an extensive consensus subtype of LUAD. Subsequently,

we pinpointed 32 genes linked to stable prognosis (SPRGs) through

differential expression analysis among various subtypes and utilized

10 machine learning techniques, as well as 101 algorithmic

combinations, to create a riskscore using four separate public

datasets. This riskscore reliably predicts the prognosis of LUAD

patients and assesses their responsiveness to chemotherapy and

immunotherapy. To sum up, the riskscore obtained from various

molecular subtypes offers new perspectives on prognosis,

therapeutic targets, and the fundamental mechanisms for patients

with LUAD.
Materials and methods

Data collection and preprocessing

LUAD multi-omics data were downloaded from the TCGA

database (https://portal.gdc.cancer.gov), encompassing clinical

details (n=503), full transcriptome expression (FPKM format,

n=576), DNA methylation (Methylation450k format, n=492),

somatic mutations (mask format, n=526), and copy number

variations (gistic2 format, n=516). Gene categories and names

(lncRNA and mRNA) were annotated using official website files.

The mature miRNA IDs from TCGA were identified using the

“miRBaseVersions.db” package, while somatic mutations were

analyzed with the “maftools” package. For DNA methylation

data, b-values were logit-transformed, adjusted using ComBat,

and then reverse logit-transformed (n=503). In addition, three

other LUAD cohorts (GSE72094 (n=442), GSE68465 (n=462),

and GSE31210 (n=246)) obtained from the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo) were served as

external validation cohorts. Gene symbols were assigned to the
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microarray data probe IDs based on the GPL15048, GPL96, and

GPL570 platforms, and the expression profiles were deduplicated

and normalized using the robust multichip average (RMA)

algorithm (18). For genes associated with several probes, the

average expression value was utilized. To eliminate potential

batch effects across datasets, the ComBat function from the “sva”

R package was applied (19). LUAD patients with OS information

and shared gene expression data across all cohorts were included in

this study. The number of patients included in each cohort is as

follows: TCGA (n=503), GSE72094 (n=398), GSE68465 (n=442),

and GSE31210 (n=226). Supplementary Table 1 offers an overview

of survival data and clinical characteristics for the patients. Notably,

for multi-omics data analysis within the TCGA cohort, only

patients with shared multi-omics profiles were selected as study

subjects. This research flow chart is summarized in Figure 1.
Frontiers in Immunology 03
Integrative clustering based on multi-
omics profiles

The “MOVICS” R package was created to enable thorough multi-

omics clustering and visualization for cancer classification research

(20). For integrative clustering analysis, we utilized TCGAmulti-omics

data to create two distinct data matrices, where columns correspond to

shared samples (n=429) and rows denote omics characteristics. At first,

a univariate Cox regression analysis was performed to pinpoint

elements linked to overall survival (OS), using the pertinent data

mentioned earlier. Genes with a mutation frequency exceeding 10%

were classified as mutated. To precisely identify the subtypes, the

cluster prediction index (CPI) and the gap statistic were utilized to

assess the optimal number of clusters (21). The best cluster count for

the given data was identified by choosing the number that maximized
FIGURE 1

Diagram of analytic workflow in this study. The Diagram was drawn from the figdraw. (https://www.figdraw.com/static/index.html).
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the gap statistic and CPI. Subsequently, ten different clustering

techniques were utilized to categorize patients into unique

subgroups. A consensus-based categorization was subsequently

applied to ensure the robust identification of each subtype.
Specific molecular characteristics and
stability of consensus subtypes

To quantify pathway activity like the EGFR network, immune-

suppressed oncogenic pathways, and radiotherapy-anticipated

pathways, a sample-based gene set variation analysis (GSVA) was

conducted on each enriched pathway to determine patient-specific

GSVA scores (22). Using the “Reconstruction of Transcriptional

Regulatory Networks and Analysis of Regulons (RTN)” R package,

we built transcriptional regulatory networks (regulons) that

included 23 transcription factors (TFs) linked to activated or

suppressed targets, along with 71 potential regulators connected

to chromatin remodeling in cancer (23). Following this, the

expression levels of immune checkpoint genes were analyzed

among various subtypes, and the ESTIMATE algorithm was

utilized to calculate stromal and immune scores for each sample

(24). The MeTIL score for tumor-infiltrating lymphocytes was

determined using standard procedures for DNA methylation. To

assess the relative presence of immune cells, we employed single-

sample gene set enrichment analysis (ssGSEA) using the “GSVA” R

package. To confirm the consistency of subtypes, we initially

verified the clustering outcomes with subtype-specific biomarkers

in the other group. Subsequently, we evaluated the reliability of

consensus clustering by contrasting it with the Nearest Template

Prediction (NTP) and Partition Around Medoids (PAM) methods,

conducting these analyses on both the training and test groups (20).
Integrative machine learning algorithms
constructed an optimal signature

The “limma” R package was utilized to examine the genes with

varying expression levels (DEGs) between the two MOVICS subtypes

(25). Prognosis-related DEGs, identified as SPRGs, were determined

in the training sets through univariate Cox regression (P<0.01).

Following this, a comprehensive analysis was performed to develop

a unified signature by employing 10 machine-learning techniques

and 101 algorithm combinations for SPRGs. These included random

survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise

Cox, CoxBoost, partial least squares regression for Cox (plsRcox),

supervised principal components (SuperPC), generalized boosted

regression modeling (GBM), and survival support vector machine

(survival-SVM). The hyperparameters of all algorithms used the

developer’s default settings. The procedure for generating the

model included the following steps: (1) Prognostic biomarkers were

pinpointed using Univariate Cox regression on the TCGA dataset; (2)

Next, 101 different algorithm combinations were employed to create

prediction models within a leave-one-out cross-validation (LOOCV)

setup in the TCGA dataset; (3) These models were subsequently

validated with the GEO cohorts (GSE72094, GSE68465, and
Frontiers in Immunology 04
GSE31210); (4) For each model, Harrell’s concordance index (C-

index) was computed across all TCGA and GEO datasets, and the

model with the highest average C-index was deemed the best.

Comparable machine learning algorithms have been employed in

prior studies (26). Parameter tuning details for the R scripts used in

this study are available on GitHub (https://github.com/Zaoqu-Liu/

IRLS). The detailed procedures for model selection and

construction are described in the Supplementary Methods. Using

the developed prognostic model, we computed a riskscore for each

patient, categorizing them into high- and low-risk groups

dependented on the median riskscore from whole datasets.

Additionally, the performance of the riskscore was compared with

that of 58 published signatures for predicting patient prognosis. To

determine prognostic risk factors for LUAD, both univariate and

multivariate Cox regression analyses were performed, and a

predictive nomogram was created using the “rms” package in R,

incorporating riskscore and clinical features.
Somatic mutation and copy number
variation analysis

The “maftools” R package was employed to assess the mutation

status of individuals and to analyze patterns of mutually exclusive or

coexisting mutations (27). GISTIC2.0 identified and pinpointed

recurrent focal somatic copy number alters (CNAs) from genotype

data, using a threshold of ±0.3 for amplifications and deletions (28).

The TCGA-LUAD cohort’s scores for fractions of genome altered

(FGA), genome gained (FGG), and genome lost (FGL) were derived

from copy number fragment data. Data for tumor mutational

burden (TMB) and tumor neoantigen burden (TNB) were

retrieved from the UCSC database.
RiskScore linked to immune features of
TIME and molecular traits

Charoentong et al. identified 28 signatures associated with

immune cells in their research (29). The “GSVA” R package was

utilized to conduct single-sample gene set enrichment analysis

(ssGSEA) in order to measure enrichment scores for each gene set

and sample. Additionally, immune cell infiltration abundances were

assessed using three other methodologies: TIMER (30), MCP-counter

(31) and ESTIMAT (31). Data on the activation stages of the seven-

phase Cancer Immunity Cycle were sourced from the tracking tumor

immunophenotype (TIP) database (32). Additionally, the tumor

immune microenvironment (TIME) was defined by the presence of

35 immune checkpoint inhibitor (ICI) genes, as outlined in our prior

research (26). TIME and metabolic signatures were also gathered

from earlier research and calculated using GSVA (33). To investigate

variations in 50 hallmark pathways among different risk categories,

we performed GSVA enrichment analysis using the “GSVA” R

package, with pathways obtained from MSigDB database (34). To

confirm the crucial outcomes from the GSVA analyses, gene set

enrichment analysis (GSEA) was utilized.
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Evaluation of immunotherapy and
chemotherapy response

The SubMap technique, which operates without supervision, was

utilized to evaluate the expression similarities among patients with

different responses to immunotherapy. Greater similarity in expression

profiles indicated a higher likelihood of similar clinical outcome (35). The

TIDE framework (http://tide.dfci.harvard.edu/) was employed to

predict the likelihood of tumor immune evasion by analyzing

gene expression data from cancer specimens (36, 37). The

IMvigor210, GSE103668, and GSE79671 datasets were analyzed

to predict immunotherapy response, with the riskscore calculated

for each dataset. Drug sensitivity profiles were created using data

from the Cancer Therapeutics Response Portal (CTRP) and

Profiling Relative Inhibition Simultaneously in Mixture (PRISM)

databases, which include sensitivity information for more than

1,000 compounds (38, 39). Both databases report AUC values as

indicators of drug sensitivity, where higher AUC values correspond

to reduced sensitivity to specific compounds. Substances with over

20% of data missing were omitted from the inferential study (40).
Cell culture and transfections

Human LUAD cell lines A549, H838, and human bronchial

epithelial cells BEAS-2B were sourced from Procell from Procell

(Wuhan, China). H838 cells were cultured in RPMI-1640 medium

supplemented with 10% fetal bovine serum (FBS), whereas A549

and BEAS-2B cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) with 10% FBS. Every cell culture was maintained

in a moist environment containing 37°C and 5% CO2. Cells were

transfected with SLC2A1 siRNAs (Hanheng, Shanghai, China)

utilizing Lipofectamine 3000, adhering to the provided guidelines.

Supplementary Table 2 contains the sequences for SLC2A1 siRNAs.
RNA extracting and real time polymerase
chain reaction

Total RNA was isolated from LUAD cells with the AG RNAex

Pro Reagent (AG, Changsha, China) and subsequently converted into

cDNA using the Reverse Transcription Kit Mix (Promega, Madison,

Wisconsin, USA). cDNA amplification followed, employing SYBR

Premix Ex Taq II (Promega, Wisconsin, USA). mRNA levels were

quantified via qRT-PCR on the Roche LightCycler 480II, using the

2-DDCt method, with Beta-actin as the endogenous control. Primer

sequences are provided in Supplementary Table 3.
Immunohistochemical staining

Outdo Biotech (Shanghai, China) provided fifteen sets of LUAD

tumor and nearby normal tissue microarrays (HLugA030PG04).

Immunohistochemical staining was conducted on theses microarrays.

The microarrays were incubated overnight at 4°C with rabbit

anti-SLC2A1 antibodies (ABclonal, Wuhan, China, Cat. A6982,
Frontiers in Immunology 05
1:100). The evaluation of SLC2A1 expression utilized a scoring

method that considered staining intensity (0 for no staining, 1 for

weak, 2 for moderate, and 3 for strong) and the proportion of cells

showing positive staining (<5% = 0, 5% to <25% = 1, 25% to 50% = 2,

>50% to <75% = 3, >75% = 4). The ultimate score was calculated by

multiplying the extent rating with the intensity rating.
Cell Counting Kit-8 (CCK-8) and flat plate
clone formation assays

For the CCK-8 test, 10,000 cells per well were seeded in triplicate

into 96-well plates and incubated at 37°C with 5% CO2 in a humidified

atmosphere. The assay was conducted at 24, 48, and 72 hours

post-seeding, following the manufacturer’s instructions. During the

plate clone formation test, cells in the exponential growth phase were

plated at a concentration of 500 cells per milliliter in 6-well dishes. The

cells were cultured at 37°C in a humid atmosphere containing 95% air

and 5% carbon dioxide for approximately two weeks. Colonies were

then imaged and quantified using ImageJ software.
Transwell invasion and migration assays

Transwell experiments were conducted to assess both cell

migration and invasion. The transwell inserts were placed into a

24-well culture plate, with the insert referred to as the upper

chamber and the plate as the lower compartment. Cells were

broken down in a medium without serum, set to a concentration

of 107 cells per milliliter, and subsequently placed in the upper

chamber. The bottom compartment was occupied by a base

medium with 10% FBS. For invasion assays, the upper membrane

was precoated with 40 µl of 8% matrigel matrix. Following a

24-hour period, the cells were treated with 4% paraformaldehyde,

rinsed with PBS, stained using 0.1% crystal violet, and observed

under an optical microscope at suitable magnification.
Wound-healing assays

A 6-well plate was inoculated with a cell mixture at a

concentration of 2 × 105 cells per well. Once the cells grew more

than 80% fusion, a wound was created using a 200 µl pipette tip. The

cells were then washed twice with PBS and incubated in a serum-free

culture medium for 24 hours. Wound closure was photographed at

24 hours using a light microscope, and cell migration ability was

assessed by calculating the wound-healing rate.
Statistical analysis

R version 4.3.0 was utilized for data handling, statistical

computations, and visualization. To assess relationships between

continuous variables, Pearson’s correlation coefficients were used,

and the Wilcoxon test was applied for differential analysis. A p-value

of less than 0.05 was considered indicative of statistical significance.
frontiersin.org

http://tide.dfci.harvard.edu/
https://doi.org/10.3389/fimmu.2024.1497300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1497300
Results

Multi-omics consensus prognosis-related
molecular subtypes of LUAD

We independently identified two cancer subtypes (CSs) using 10

different multi-omics ensemble clustering algorithms. The quantity of

subtypes was established by combining multiple algorithms and

findings from prior studies (Supplementary Figures 1, 2). The

clustering results were then consolidated by a consensus ensemble

approach using multi-omics data, with the top 15 items for each omic

presented in Figures 2A-C. Notably, CS2 exhibited a significantly

higher survival probability compared to CS1 (Figure 2D).
Biological characteristics for CSs

To explore the potential biological functions of the different

subtypes, we characterized their molecular features. Using the

ssGSEA algorithm, we assessed the enrichment of various molecular

signatures within the samples. Notably, CS2 had a significant

enrichment of immune-suppressive cancer pathways, while
Frontiers in Immunology 06
CS1 showed a higher presence of pathways indicative of

radiotherapy effectiveness. This suggests that CS1 may be more

responsive to radiotherapy, while CS2 shows a greater sensitivity to

immunosuppressive therapy (Figure 3A). In order to delve deeper into

transcriptomic variations, we examined possible regulators linked to

cancer chromatin modification and 23 LUAD-specific transcription

factors (TFs) (Figure 3B). The strong correlation between regulator

activity and CSs underscores the biological significance of these

subtypes. Specifically, ERBB2, RARA, FGFR, RXRA, ERBB3, RXRB,

ARM, STAT3, GATA6, and PGR were markedly activated in CS2,

while FOXA1, RARB, FOXM1, and HIF1A were activated in CS1. The

activity profiles of regulons associated with cancer-related chromatin

changes highlight possible patterns of varied regulation among

subtypes, suggesting that transcriptional networks influenced by

epigenetics could be crucial distinguishing elements between these

molecular subtypes. Additionally, we quantified microenvironmental

cell infiltration levels and observed a significant increase in immune cell

infiltration in CS1 (Figure 3C). Through differential expression analysis

among subtypes, we choosed 50 genes that are distinctly upregulated in

each subtyp act as classifiers and confirmed their consistency across

several external cohorts. Using the NTP technique, each sample from

the external groups was categorized into one of the determined
FIGURE 2

The multiomics integrative consensus subtypes of LUAD. (A) Comprehensive heatmap depicting consensus ensemble subtypes, featuring data on
mRNA, lncRNA, miRNA, DNA CpG methylation sites, and mutant genes. (B) Clustering of LUAD patients using 10 advanced multiomics clustering
methods. (C) Consensus matrix for three clusters derived from the 10 algorithms. (D) Survival outcomes comparison between the two subtypes.
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subtypes. In line with these results, CS2 in the meta cohorts showed

improved outcomes, a pattern also seen in additional external cohorts

(Figures 3D, E). We also assessed the concordance of subtype

classifications using the NTP and PAM algorithms (Figures 3F-H).
Integrative machine learning algorithms
developed an optimal prognostic signature

More than 35 possible prognostic biomarkers underwent a

comprehensive analysis employing ten machine learning techniques,

enabling the creation of a precise and reliable prognostic model. A total

of 101 predictive models were generated, and their C-index values for

the training and testing groups are shown in Figure 4A. Out of all the

models, the one built with the RSF technique was deemed the best,

attaining the top average C-index of 0. 724 (see Figure 4A). Within the

RSF framework, the best trees were achieved when the partial

likelihood deviance hit its lowest point (Figures 4B, C). Seventeen
Frontiers in Immunology 07
genes were ultimately selected and used to construct the model.

Kaplan-Meier analysis of the training group revealed that individuals

identified as low-risk experienced notably improved outcomes

compared to those labeled as high-risk (Figure 4D). This trend was

also consistently seen in the testing and meta groups (Figures 4E-H).

Supplementary Figure 3 demonstrates significant survival disparities

between high- and low-risk groups across different subcategories such

as age, gender, T, N, M, and stage. The outcomes of the chi-squared

analysis reveal a notable link between the riskscore and clinical features

like status, stage, N, and T (Supplementary Figure 4). To further

validate the prognostic significance of the genes included in the

riskscore, we conducted a Kaplan-Meier analysis across pan-cancer

datasets, which produced results largely consistent with those derived

from the Cox algorithm. Additionally, These genes exhibited significant

associations with the majority of tumors, highlighting their strong

prognostic relevance for cancer patients (Supplementary Figure 5). In

the TCGA cohort, the AUC for predictions spanning 1 to 5 years varied

between 0.94 and 0.99 (Figure 5A), indicating that the prognostic
FIGURE 3

Molecular Landscape and Validation of LUAD Consensus Subtypes (CSs). (A) Enrichment of three subtypes with various treatment-related and
bladder cancer-related signatures. (B) Activity profiles of 23 transcription factors (TFs) and potential regulators of chromatin remodeling across the
three subtypes. (C) Immune profiles within the TCGA cohort, featuring a heatmap with annotations for immune and stromal enrichment scores, and
DNA methylation of tumor-infiltrating lymphocytes. The heatmap includes expression levels of canonical immune checkpoint genes and enrichment
levels of 24 tumor immune microenvironment-related immune cells. (D) Validation of LUAD CSs using the nearest template prediction in the META-
LUAD cohort. (E) Survival analysis of LUAD CSs within the meta cohort. (F, G) Consistency of CSs with Nearest Template Prediction (NTP) and
Prediction Analysis for Microarrays (PAM) in the TCGA cohort. (H) Consistency of NTP with PAM in the meta-cohort.
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model successfully distinguished between positive and negative

outcomes for LUAD patients. The signature’s predictive accuracy

stayed consistent and similar across both the testing and meta

cohorts (Figures 5B-E). Notably, the C-index of the riskscore

surpassed that of nearly all clinical characteristics in both the training

and testing cohorts (Figures 5F-J). To evaluate the predictive power of

the riskscore relative to other prognostic signatures, we randomly

selected 58 previously established LUAD prognostic signatures

(Supplementary Table 2) and calculated their C-index values. As

illustrated in Figure 6, our riskscore’s C-index surpassed that of the

majority of other signatures in the training, testing, and meta cohorts.

Both univariate and multivariate Cox regression analyses determined

that the riskscore independently influences LUAD patient outcomes in

the training and testing groups (refer to Tables 1–4).

Afterward, we utilized the GSCALite public platform (http://

bioinfo.life.hust.edu.cn/web/GSCALite/) to comprehensively
Frontiers in Immunology 08
examine the multi-omics characteristics of the riskscore across

31 different cancer types in the TCGA dataset. This study found

that in cancer types with over 12 tumor and para-cancer tissues, the

genes RRM2, TK1, CCNB1, DLGAP5, CCNA2, MYBL2, and

HJURP were repeatedly overexpressed across various cancer

tissues (Supplementary Figure 6A). Furthermore, we noticed a

positive relationship between mRNA expression levels and CNVs

of riskscore genes in the majority of cancer types (Supplementary

Figure 6B). Further examination of CNV frequency variations

revealed notable disparities in the CNVs of riskscore genes across

different cancer types (Supplementary Figures 6C, D). Additionally,

we noticed that the methylation levels of riskscore genes varied

considerably between cancerous and normal tissues in the majority

of cancer samples (Supplementary Figure 7A). Additionally, the

methylation levels of these genes were inversely correlated with

their mRNA expression levels across most cancers (Supplementary
FIGURE 4

A model was established and validated through a machine learning-based integrative approach. (A) Utilizing 101 different machine learning
algorithms, the optimal model was identified, and the concordance index (C-index) for each model was calculated across all cohorts. (B, C) Analysis
of the number of trees required to achieve minimal error in the model and the significance of the 16 SPRGs using the Random Survival Forest (RSF)
algorithm. (D-H) Kaplan-Meier survival curves depicting overall survival (OS) based on the risk score in TCGA, GSE31210, GSE68465, GSE72094, and
a meta-cohort.
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Figure 7B). Furthermore, riskscore genes were found to activate the

pan-cancer cell cycle while significantly inhibiting the hormone ER

pathway (Supplementary Figures 7C, D).
Correlation between genomic alterations
and the riskscore

Examining somatic mutations and CNVs uncovered notable

distinctions between the low- and high-risk categories. We charted the

20 genes with the highest mutation frequencies across both risk

categories, pinpointing TP53, TTN, MUC16, CSMD3, and RYR2 as

the leading five based on mutation rates (Figures 7A, B). Figures 7C, D

illustrate that the TNB and TMB levels were markedly elevated in the

high-risk group relative to the low-risk group. According to Kaplan-

Meier analysis, patients grouped by TNB and riskscore showed that

individuals with elevated TNB and low risk had the most favorable
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prognosis, while those with reduced TNB and high risk had the poorest

outcome (Figure 7E). A comparable trend was observed when

integrating TMB with riskscore; patients with elevated TMB and

minimal risk had the most favorable prognosis, whereas those with

reduced TMB and high risk experienced the worst outcomes (Figure 7F).

Analysis of the somatic mutation spectrum showed that the high-risk

group had increased numbers of synonymous and non-synonymous

mutations, along with a higher overall mutation count, in comparison to

the low-risk group (Supplementary Figures 8A–C). Additionally, an

increase in mutations was positively linked to the riskscore

(Supplementary Figures 8A–C). Importantly, 27 genes exhibited

markedly different mutation rates between the two cohorts, with a

notable presence of co-mutations (Supplementary Figures 8D, E).

Analyzing CNV between the two risk groups revealed a greater

occurrence of CNV events in the high-risk group (Figure 7G). These

findings were further corroborated by the FGA, FGG, and FGL

rates (Figure 7H).
FIGURE 5

Evaluation of the riskscore. (A–E) Time-dependent receiver operating characteristic curve of riskscore for predicting the prognosis of LUAD patients
from TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort. (F) The C-index of the riskscore for the TCGA, GSE31210, GSE68465, GSE72094
cohorts. (G–J) The C-index of the riskscore and other clinical factors in the TCGA, GSE31210, GSE68465, GSE72094 cohorts. *P < 0.05, **P < 0.01,
***P < 0.001.
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FIGURE 6

Comparison of riskscore and other gene expression-based prognostic signatures in LUAD based on the TCGA, GSE31210, GSE68465, GSE72094 and
meta-cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and riskscore with OS for TCGA cohort.

Characteristics

Univariate Cox Multivariate Cox

HR (95%CI) P value HR (95%CI) P value

Stage 1.977 (1.586-2.463) < 0.001 1.374 (0.956-1.974) 0.086

N 1.942 (1.575-2.394) < 0.001 1.262 (0.947-1.681) 0.113

T 1.816 (1.386-2.38) < 0.001 1.131 (0.801-1.598) 0.484

Age 1.038 (0.822-1.31) 0.754 NA NA

Sex 1.041 (0.847-1.28) 0.7 NA NA

M 1.727 (1.18-2.527) 0.005 0.906 (0.57-1.44) 0.676

Riskscore 0.106 (0.075-0.149) < 0.001 0.133 (0.09-0.197) < 0.001
F
rontiers in Immunology
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Significant value is given in bold.
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and riskscore with OS for GSE68465 cohort.

Characteristics

Univariate Cox Multivariate Cox

HR (95%CI) P value HR (95%CI) P value

N 2.029 (1.689-2.438) < 0.001 1.906 (1.568-2.318) < 0.001

T 2.062 (1.587-2.68) < 0.001 1.815 (1.373-2.4) < 0.001

Gender 1.262 (1.051-1.516) 0.013 1.257 (1.035-1.527) 0.021

chemotherapy 1.412 (1.15-1.734) < 0.001 1.319 (1.062-1.639) 0.012

Riskscore 0.728 (0.607-0.875) < 0.001 0.824 (0.679-0.999) 0.039
Significant value is given in bold.
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RiskScore correlated with immune
characters of TIME and
molecular characteristics

As previously noted, we assessed the infiltration levels of diverse

immune cells in LUAD using various TIME contexture decoding

algorithms. Among the high-risk cohort, TIME exhibited notably

increased immune cell infiltration relative to the low-risk cohort

(Figure 8A). In the high-risk group, the cancer immune cycle

exhibited greater dynamism, highlighted by elevated activities like

the release of antigens from tumor cells and the augmented

recruitment of basophils, CD8 T cells, neutrophils, and natural

killer (NK) cells (Figure 8B). Additionally, the riskscore was

positively correlated with the levels of various immune

checkpoints like CD274, CTLA4, and PDCD1, along with the

enrichment scores of gene signatures linked to immunotherapy

effectiveness (Figure 8C). Conversely, the riskscore showed a

negative correlation with many metabolic pathways (Figure 8D).

Figure 8E illustrates that the high-risk group showed notable

enrichment in pathways associated with tumor progression,

including PI3K-AKT-MTOR signaling, MYC targets, MTORC1

signaling, and the G2M checkpoint. These findings were further

confirmed by GSEA analysis (Supplementary Figure 9).
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Riskscore-based treatment strategy
for LUAD

Considering the high rate of genomic changes and tumor

mutational burden in high-risk LUAD patients, along with their

active TIME and elevated levels of immune checkpoint molecules,

we proposed that these individuals could show greater

responsiveness to immunotherapy. In support of this, the TIDE

online tool showed that the low-risk group had notably reduced

TIDE scores (Figure 9A), and Submap analysis demonstrated that

the gene expression patterns of low-risk individuals were more

similar to those of melanoma patients who responded positively to

immune checkpoint inhibitors (ICIs) (Figure 9B). These findings

suggest that patients with a low riskscore may derive greater benefit

from immunotherapy. Furthermore, we assessed the prognostic

significance of the riskscore across three immunotherapy datasets.

Importantly, there were no notable differences in survival rates

between the high- and low-risk groups in the IMvigor210 study

(Figure 9C). However, an analysis across the IMvigor210,

GSE103668, and GSE79671 cohorts demonstrated that a higher

riskscore was associated with increased immunotherapy response

rates (Figures 9D-F). Additionally, we utilized a formula to pinpoint

agents that might be effective for the high-risk group, leading to the
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and riskscore with OS for GSE31210 cohort.

Characteristics

Univariate Cox Multivariate Cox

HR (95%CI) P value HR (95%CI) P value

smoking 1.417 (0.882-2.277) 0.15 NA NA

gender 1.344 (0.839-2.152) 0.219 NA NA

age 1.263 (0.777-2.052) 0.346 NA NA

stage 2.774 (1.732-4.441) < 0.001 2.132 (1.298-3.502) 0.003

Riskscore 0.286 (0.153-0.532) < 0.001 0.456 (0.245-0.846) 0.013
Significant value is given in bold.
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and riskscore with OS for GSE72094 cohort.

Characteristics

Univariate Cox Multivariate Cox

HR (95%CI) P value HR (95%CI) P value

STK11 1.028 (0.72-1.469) 0.879 NA NA

KRAS 0.767 (0.588-0.999) 0.049 0.909 (0.692-1.194) 0.494

Age 1.258 (0.836-1.894) 0.27 NA NA

Gender 0.733 (0.564-0.952) 0.02 0.689 (0.526-0.901) 0.007

Stage 1.969 (1.477-2.625) < 0.001 2.006 (1.497-2.687) < 0.001

Smoking 1.248 (0.694-2.245) 0.459 NA NA

TP53 0.861 (0.645-1.151) 0.313 NA NA

EGFR 2.58 (1.274-5.226) 0.008 1.989 (0.969-4.079) 0.061

Riskscore 0.575 (0.438-0.755) < 0.001 0.531 (0.398-0.708) < 0.001
Significant value is given in bold.
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identification of two agents from CTRP (paclitaxel and SB-743921)

and four from PRISM (epothilone-b, litronesib, cabazitaxel, and

daunorubicin). Figures 9G, H illustrate that the predicted AUC

values for these agents have a statistically significant inverse

relationship with the riskscore.
Validation of riskscore in human tissues
and pan-cancer

To evaluate the generalizability of the riskscore across various

tumor types, we applied the same model to pan-cancer data. Using

the defined formula, we derived the distribution of the riskscore

across multiple cancers, with skin cutaneous melanoma displaying

the highest riskscore (Figure 10A). The riskscore was also identified

as a major risk factor in various cancers, such as glioma, lung

squamous cell carcinoma, kidney renal clear cell carcinoma, bladder

cancer, adrenocortical carcinoma, diffuse large B-cell lymphoma,
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pheochromocytoma and paraganglioma, kidney chromophobe,

prostate adenocarcinoma, and uveal melanoma (Figure 10A).

Furthermore, we assessed the riskscore in 31 different tumor

tissues. Analysis revealed that males had significantly higher

riskscores in esophageal, stomach, colon, gallbladder, ovarian, and

uterine cancers. Conversely, in females, elevated riskscore were

observed in skin, esophagus, stomach, colon, gallbladder, prostate,

and testicular cancers (Figure 10B). This gender-based variation in

riskscore profiles underscores the need for tailored approaches in

cancer risk assessment and management.
Inhibition of cell proliferation and
migration by SLC2A1 knockdown

To further elucidate the expression and functional implications

of the riskscore, we initially conducted RT-qPCR analyses on nine

genes in cell lines. In LUAD cells, the expression levels of SLC2A1,
FIGURE 7

Integrated comparisons of somatic mutation and CNVs between high- and low-risk groups in the TCGA cohort. (A, B) Waterfall plots showing the
mutation information of the top 20 genes with the highest mutation frequency in the risk groups. (C, D) Distribution of TMB and TNB in the high-
and low-risk groups. (E) Kaplan–Meier curves for patients stratified by both TMB and riskscore. (F) Kaplan–Meier curves for patients stratified by both
TMB and riskscore. (G) Gene fragments profiles with amplification red and deletion green among the high- and low-risk groups. (H) Comparison of
the fraction of the genome altered, lost, and gained between the different risk groups. ***P < 0.001.
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SFTPD, RRM2, CCNB1, CACNA2D2, SFTPB, DLGAP5, MYBL2,

and HJURP were significantly higher compared to normal human

lung cells, while PGC, CYP4B1, SFTPC, and CCNA2 showed

marked decreases (Figure 11). Due to its pronounced importance

and marked upregulation, SLC2A1 was selected for in-depth

experimental validation. Figures 12A, B demonstrate that

immunohistochemistry (IHC) revealed a marked overexpression

of SLC2A1 in LUAD tissues relative to normal tissue. To explore

SLC2A1’s specific role in LUAD, we engineered cell lines with stable

SLC2A1 knockdown. Post-siRNA treatment targeting SLC2A1, RT-

qPCR confirmed a significant reduction in its expression in these

LUAD cells relative to controls (Figure 12C). Functional assays,

including CCK8 and colony formation tests, demonstrated that

SLC2A1 knockdown markedly inhibited LUAD cell proliferation

(Figures 12D, E). Furthermore, Transwell assays showed significant

reductions in cell migration and invasion following SLC2A1

suppression (Figure 12F), a finding that was supported by scratch

wound healing assay (Figure 12G).
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Discussion

The incidence and mortality rates of LC are progressively

increasing each year (41). Despite advancements in therapeutic

drugs and treatment methods, managing LC recurrence or

metastasis remains a significant challenge (42). Similar to other

cancers, the variability in LUAD outcomes is primarily attributed to

inherent molecular changes. The emergence of advanced

sequencing technologies and bioinformatics has enabled a more

comprehensive insight into the molecular changes in LUAD.

Consequently, various novel risk stratification schemas have been

developed, drawing on distinct altered molecules and forms. For

example, Bhattacharjee and colleagues. classified LUAD into four

subtypes by analyzing gene expression profiles, noting that these

profiles could differentiate between primary and metastatic LUAD

(43). In a similar study, Shibata and colleagues utilized genomic

CNV data to classify LUAD into two subtypes via unsupervised

clustering, noting that patients with EGFR mutations had reduced
FIGURE 8

Immune-related characteristics of the riskscore. (A) Heatmap displaying the correlation between the riskscore and immune infiltrating cells in the
meta cohort. (B) Boxplot showing the differences of anti-cancer immunity score between different risk groups. (C) Comparison of immune
checkpoint-related genes levels between different risk groups in the meta-cohort. (D) The correlations between the riskscore and immune-related
pathways, metabolic pathways based on GSVA of GO and KEGG terms were displayed in butterfly plot. (E) The difference in the hallmark gene sets
between different risk groups. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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disease-free survival times (44). However, depending exclusively on

one omics dataset offers a narrow perspective on the inherent

molecular traits of tumors, and the insights gained from single-

omics studies for tumor classification are somewhat constrained.

Tumor heterogeneity is shaped by multiple omics layers, including

the genome, epigenome, transcriptome, and proteome. Therefore,

combining multi-omics data allows for the concurrent observation

of tumor diversity across various dimensions and merges insights
Frontiers in Immunology 14
from several angles to more precisely determine tumor molecular

classifications. This research employed ten clustering techniques to

investigate the link between comprehensive data and OS results,

identifying a cancer subtype that reflects the diversity of various

omics in LUAD tissues, such as mRNA, lncRNA expression, CNVs,

DNA methylation, and genetic mutations. The CS2 showed a more

favorable outcome compared to CS1. Moreover, these two distinct

CSs demonstrated significantly different molecular alteration
FIGURE 9

Differential putative immunotherapy and chemotherapy response for patients from high- and low-risk groups. (A) Violin plot showing different TIDE
scores from patients in different risk group. (B) Submap analysis of the meta-cohort and melanoma patients with detailed immunotherapeutic
information. (C) Kaplan-Meier curve for patients in high- and low-risk groups in the IMvigor210 cohort (D–F) Box plot showing different riskscore
from patients with immunotherapy responses in the IMvigor210, GSE103668 and GSE79671 cohorts. (G) The results of correlation analysis and
differential drug response analysis of CTRP-derived drugs. (H) The results of correlation analysis and differential drug response analysis of PRISM-
derived drugs. ***P < 0.001.
FIGURE 10

Predictive accuracy of the riskscore in the TCGA-pancancer set. (A) Distribution and predictive value of riskscore in solid tumors in the TCGA-
pancancer set. (B) Differences in the distribution of riskscore in tumor tissues in different organs.
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landscapes and signaling pathway activations, resulting in varied

immune statuses and biological behaviors.

Machine learning techniques are now recognized as effective

tools for analyzing multi-omics data (45). To understand the

molecular distinctions among different subtypes and enhance the

clinical utility, we employed 10 widely-used machine learning

algorithms to develop biomedical prognostic signatures using data

from four multicenter LUAD cohorts. The efficacy of these

signatures was evidenced by Kaplan–Meier, C-index, and ROC

curve analyses, all of which demonstrated that the riskscore

provided exceptional predictive performance across training,

testing, and meta-cohorts. Additionally, when compared with

clinical characteristics and 58 previously published LUAD

signatures, the riskscore consistently showed superior accuracy in

nearly all cohorts, underscoring its robustness.

In our research, we created a model consisting of 17 genes that

accurately forecasts the outcome of LUAD. This model includes

MYBL2, SLC2A1, CCNA2, HJURP, RRM2, CCNB1, TK1, and

DLGAP5—eight genes whose elevated expression serves as hazard

factors in LUAD. Predominantly, these genes contribute to the

progression of LC. MYBL2, a key transcription factor within

the Myb family, globally amplifies transcription, resulting in the

significant dysregulation of target genes upon overexpression

(46, 47). Xiong et al. reported that MYBL2 overexpression in LUAD
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correlates with advanced disease stages and reduced patient survival,

facilitating LC cell proliferation and migration by upregulating

NCAPH (48). CCNA2 is a cell cycle regulatory protein that controls

the G1/S and G2/M transitions by binding to CDK1 and CDK2 (49,

50). It is markedly overexpressed in LUAD, correlating with poor

prognosis (51, 52). Additionally, CCNA2 has been shown to foster

abnormal tumor cell proliferation and epithelial-mesenchymal

transition in NSCLC (53, 54). HJURP plays a critical role in DNA

binding and phosphorylation, regulating chromosomal segregation and

cell division (55). It is overexpressed in LC, enhancing NSCLC cell

proliferation and metastasis through the inhibition of the Wnt/b-
catenin pathway (56, 57). RRM2, encoding a subunit of ribonucleotide

reductase, is essential for converting ribonucleotides to

deoxyribonucleotides (58). Rahman et al. showed that RRM2

modification induces apoptosis by altering Bcl-2 expression in LC

(59), and its low expression may predict the response to platinum-

based chemotherapy in LC (60). Immunohistochemical analysis reveals

that RRM2 is a strong prognostic marker in NSCLC (61). CCNB1

belongs to the cyclin family and plays a crucial role in the transitions

between G2/M and metaphase/anaphase (62). MEOX1 inhibits LC cell

progression by targeting the cell cycle checkpoint gene CCNB1 (63).

Conversely, Bao et al. found that CCNB1 overexpression accelerates LC

cell proliferation, migration, invasion, and cell cycle, whereas miR-139-

5p can inhibit this effect (64). DLGAP5 is a microtubule-associated
FIGURE 11

Validation of the expression of genes comprising the riskscore in LUAD and lung epithelial cells. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001.
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protein that supports the stable regulation of mitotic centromere fibers

(65). Its overexpression correlates with poor outcomes in LUAD

patients (66). Additionally, inhibiting DLGAP5 triggers cell cycle

arrest and reduces the growth of NSCLC cells (67). In this study,

SLC2A1 was selected for further functional validation due to its notably

high differential expression among the evaluated genes in LUAD cell

lines and its significant impact in our models. Our findings

demonstrate that SLC2A1 enhances LUAD cell proliferation,

migration, and invasion.
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The interaction and co-evolution of the TIME and tumor cells

are pivotal in driving tumor growth and progression, significantly

influencing tumor sensitivity to treatments (68). Our research

shows that in the high-risk group, many cancer-related pathways

are significantly triggered, along with elevated TMB, TNB, and

immune cell presence. Immunotherapy has dramatically altered the

prognosis for patients with unresectable cancers (69). Although

numerous drugs targeting immune checkpoints have received

approval for cancer immunotherapy, including for LUAD, the
FIGURE 12

SLC2A1 promoted proliferation, migration, and invasion of LUAD cell lines. (A, B) Immunohistochemistry (IHC) analysis of SLC2A1 in 15 LUAD and 15
adjacent tissues. (C) Knockdown of SLC2A1 was confirmed by RT-PCR. (D, E) CCK8 and clone formation assays were performed to assess cell
viability and proliferation of A549 and H838 cells. (F) Transwell assay was performed to assess cell migration and invasion of A549 and H838 cells.
(G) Wound healing effect of SLC2A1 in cell scratch assay: at 0 hour and 24 hours. **P < 0.01, ***P < 0.001.
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lack of reliable biomarkers to predict treatment efficacy remains a

challenge. Our analyses suggest that patients classified as high-risk

may exhibit greater sensitivity to immunotherapy (70, 71). This

prompted us to evaluate the utility of the riskscore in predicting

patient responses to immunotherapy. Analysis using the TIDE and

SubMap methods indicated that patients at high risk have a greater

chance of benefiting from immunotherapy. Further analysis

revealed that the riskscore was consistently increased in the

response group compared to the non-response group within

immunotherapy cohorts, supporting our initial findings.

Therefore, the riskscore could serve as a predictive marker for

immunotherapy efficacy, with high-scoring LUAD patients

potentially achieving greater benefits from such treatments.

The concurrent use of chemotherapy and immunotherapy is a

focal point of current cancer research, as it leverages the immune-

modulating effects of immunotherapy to mitigate the immune

damage from chemotherapy, resulting in a synergistic antitumor

response (72, 73). For the high-risk group, particular chemotherapy

drugs were pinpointed to enhance treatment plans for LUAD.

Paclitaxel, cabazitaxel, and epothilone, commonly used for treating

advanced non-small cell lung cancer, work by stabilizing

microtubules, thereby preventing cell division and inducing

apoptosis in cancer cells (74–76). Furthermore, SB743921, a highly

effective next-generation KSP inhibitor, has shown tumor-fighting

capabilities in multiple types of cancer (77, 78). A phase I clinical trial

indicated that a cholangiocarcinoma patient showed a partial

response to SB743921 treatment after 7 months, which lasted until

the disease advanced approximately 12 months later (79).

Daunorubicin is well recognized for its ability to intercalate into

DNA and disrupt the DNA replication process, which constitutes its

primary mechanism for exerting anticancer effects. As a first-line

treatment for leukemia, daunorubicin is commonly administered in

combination with other chemotherapeutic agents, such as cytarabine

(80). In the case of LUAD, the combination of dendrosomal

curcumin and daunorubicin notably diminished tumor progression,

triggered cell death, and lowered cell movement in A549 cells, with

effects varying according to dosage and duration (81). Our analysis of

drug sensitivity revealed that individuals in the high-risk group

showed greater responsiveness to the specified chemotherapy

drugs, implying that patients with elevated riskscores could gain

significant benefits from these therapies.

However, several limitations of the current study should be noted

when interpreting our findings. Firstly, the biomarkers in this study

were mainly derived from patient classification based on multi-omics

data, which can reduce the impact of tumor heterogeneity on tumor

classification. More comprehensive multi-omics data could

potentially classify patients more accurately and lead to better

biomarkers. As the multi-omics data available in this study is not

entirely comprehensive, the classification results obtained may not be

optimal, with potential to include more omics data (for example,

lacking proteomics and metabolomics data) to achieve greater

accuracy in analysis. Secondly, the molecular subtypes and model

construction for LUAD in this study were based on a retrospective

cohort. Retrospective studies are typically based on historical records,

and the data often come with limitations such as information bias,

limited representativeness, and the inability to directly predict future
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trends. In comparison, prospective studies canmitigate bias by setting

standards, collecting a wider range of samples and variables, and

gathering dynamic data after testing, thereby improving the

generalizability, accuracy, and applicability of the results. Therefore,

confirmation through prospective studies is necessary. Besides,

although this research provided initial validation of SLC2A1’s role

in LUAD, genes express their effects through multiple mechanisms,

including transcriptional regulation, epigenetics, tumor

microenvironment, and mutation patterns. Therefore, we have not

yet clarified how SLC2A1 exerts its oncogenic effects in LUAD, and

further experiments are needed to verify the potential mechanisms.

Therefore, we plan to gather a sufficient number of LUAD patient

samples to reconstruct the same model as in this study and follow up

to assess the model’s applicability and reliability in the future.

Meanwhile, we will perform extensive multi-omics testing and

analysis (encompassing proteomics and metabolomics) on these

collected patient samples to discover more effective new

biomarkers. Furthermore, we will also conduct further research on

the transcriptional and pathwaymolecular mechanisms of SLC2A1 in

LUAD to clarify the details of SLC2A1’s oncogenic role in

this disease.
Conclusion

In conclusion, we have successfully classified LUAD into two

distinct subtypes by integrating various omics data. These variants

are strongly associated with variations in patient outcomes, features

of the tumor microenvironment, and molecular signatures. Our

discoveries improve the comprehension of LUAD’s diversity and its

fundamental pathological processes. This novel categorization

method has the potential to greatly enhance precision medicine

by guiding the creation of specialized clinical tactics for

radiotherapy and immunotherapy in patients with LUAD.
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73. Goł b J, Zagozdzon R, Kamiński R, Kozar K, Gryska K, Izycki D, et al.
Potentiatied antitumor effectiveness of combined chemo-immunotherapy with
frontiersin.org

https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1158/0008-5472.Can-18-0689
https://doi.org/10.7150/thno.74281
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1093/bib/bbaa164
https://doi.org/10.1093/bib/bbaa164
https://doi.org/10.1016/j.ccm.2019.10.001
https://doi.org/10.1016/s0140-6736(16)30958-8
https://doi.org/10.1073/pnas.191502998
https://doi.org/10.1158/1078-0432.Ccr-05-0293
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1016/j.devcel.2004.12.015
https://doi.org/10.1007/s11010-020-03721-x
https://doi.org/10.1002/j.1460-2075.1992.tb05135.x
https://doi.org/10.1002/j.1460-2075.1992.tb05135.x
https://doi.org/10.15252/embj.2020104419
https://doi.org/10.1111/j.1365-2559.2009.03331.x
https://doi.org/10.1111/j.1365-2559.2009.03331.x
https://doi.org/10.1016/j.pathol.2019.03.011
https://doi.org/10.1016/j.ejphar.2011.04.057
https://doi.org/10.1038/onc.2016.257
https://doi.org/10.1016/j.celrep.2014.06.002
https://doi.org/10.1016/j.celrep.2014.06.002
https://doi.org/10.18632/oncotarget.16701
https://doi.org/10.18632/oncotarget.16701
https://doi.org/10.26355/eurrev_201905_17812
https://doi.org/10.3892/or.2018.6435
https://doi.org/10.1158/1078-0432.Ccr-13-0073
https://doi.org/10.1007/s13277-013-1255-4
https://doi.org/10.1371/journal.pone.0127600
https://doi.org/10.1083/jcb.115.1.1
https://doi.org/10.1002/tox.23416
https://doi.org/10.1007/s12033-022-00465-5
https://doi.org/10.1074/jbc.RA118.003676
https://doi.org/10.1074/jbc.RA118.003676
https://doi.org/10.1155/2023/9292536
https://doi.org/10.1155/2023/9292536
https://doi.org/10.3892/or.2018.6280
https://doi.org/10.3892/or.2018.6280
https://doi.org/10.1016/j.intimp.2020.107041
https://doi.org/10.1038/s41573-018-0006-z
https://doi.org/10.1038/s41573-018-0006-z
https://doi.org/10.1158/1078-0432.Ccr-19-0558
https://doi.org/10.1158/1078-0432.Ccr-19-0558
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1097/00002820-200308000-00012
https://doi.org/10.3389/fimmu.2024.1497300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1497300
interleukin-12 and 5-fluorouracil of L1210 leukemia. vivo Leukemia. (2001) 15:613–20.
doi: 10.1038/sj.leu.2402076

74. Harper P, Marx GM. Combined modality treatments in early non-small cell lung
cancer. Lung Cancer. (2002) 38:S23–5. doi: 10.1016/s0169-5002(02)00248-9

75. Jiménez-López J, Bravo-Caparrós I, Cabeza L, Nieto FR, Ortiz R, Perazzoli G,
et al. Paclitaxel antitumor effect improvement in lung cancer and prevention of the
painful neuropathy using large pegylated cationic liposomes. BioMed Pharmacother.
(2021) 133:111059. doi: 10.1016/j.biopha.2020.111059

76. Rothermel J, Wartmann M, Chen T, Hohneker J. EPO906 (epothilone B): a
promising novel microtubule stabilizer. Semin Oncol. (2003) 30:51–5. doi: 10.1016/
s0093-7754(03)00125-8

77. Song IS, Jeong YJ, Nyamaa B, Jeong SH, Kim HK, Kim N, et al. KSP inhibitor
SB743921 induces death of multiple myeloma cells via inhibition of the NF-kB
signaling pathway. BMB Rep. (2015) 48:571–6. doi: 10.5483/bmbrep.2015.48.10.015
Frontiers in Immunology 20
78. Yin Y, Sun H, Xu J, Xiao F, Wang H, Yang Y, et al. Kinesin spindle protein
inhibitor SB743921 induces mitotic arrest and apoptosis and overcomes imatinib
resistance of chronic myeloid leukemia cells. Leuk Lymphoma. (2015) 56:1813–20.
doi: 10.3109/10428194.2014.956319

79. Holen KD, Belani CP, Wilding G, Ramalingam S, Volkman JL, Ramanathan RK,
et al. A first in human study of SB-743921, a kinesin spindle protein inhibitor, to
determine pharmacokinetics, biologic effects and establish a recommended phase II dose.
Cancer Chemother Pharmacol. (2011) 67:447–54. doi: 10.1007/s00280-010-1346-5

80. Murphy T, Yee KWL. Cytarabine and daunorubicin for the treatment of acute
myeloid leukemia. Expert Opin Pharmacother. (2017) 18:1765–80. doi: 10.1080/
14656566.2017.1391216

81. Eslami SS, Jafari D, Ghotaslou A, Amoupour M, Asri Kojabad A, Jafari R, et al.
Combined treatment of dendrosomal-curcumin and daunorubicin synergistically
inhibit cell proliferation, migration and induce apoptosis in A549 lung cancer cells.
Adv Pharm Bull. (2023) 13:539–50. doi: 10.34172/apb.2023.050
frontiersin.org

https://doi.org/10.1038/sj.leu.2402076
https://doi.org/10.1016/s0169-5002(02)00248-9
https://doi.org/10.1016/j.biopha.2020.111059
https://doi.org/10.1016/s0093-7754(03)00125-8
https://doi.org/10.1016/s0093-7754(03)00125-8
https://doi.org/10.5483/bmbrep.2015.48.10.015
https://doi.org/10.3109/10428194.2014.956319
https://doi.org/10.1007/s00280-010-1346-5
https://doi.org/10.1080/14656566.2017.1391216
https://doi.org/10.1080/14656566.2017.1391216
https://doi.org/10.34172/apb.2023.050
https://doi.org/10.3389/fimmu.2024.1497300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Multi-omics characterization and machine learning of lung adenocarcinoma molecular subtypes to guide precise chemotherapy and immunotherapy
	Introduction
	Materials and methods
	Data collection and preprocessing
	Integrative clustering based on multi-omics profiles
	Specific molecular characteristics and stability of consensus subtypes
	Integrative machine learning algorithms constructed an optimal signature
	Somatic mutation and copy number variation analysis
	RiskScore linked to immune features of TIME and molecular traits
	Evaluation of immunotherapy and chemotherapy response
	Cell culture and transfections
	RNA extracting and real time polymerase chain reaction
	Immunohistochemical staining
	Cell Counting Kit-8 (CCK-8) and flat plate clone formation assays
	Transwell invasion and migration assays
	Wound-healing assays
	Statistical analysis

	Results
	Multi-omics consensus prognosis-related molecular subtypes of LUAD
	Biological characteristics for CSs
	Integrative machine learning algorithms developed an optimal prognostic signature
	Correlation between genomic alterations and the riskscore
	RiskScore correlated with immune characters of TIME and molecular characteristics
	Riskscore-based treatment strategy for LUAD
	Validation of riskscore in human tissues and pan-cancer
	Inhibition of cell proliferation and migration by SLC2A1 knockdown

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


