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The tumor microenvironment (TME) plays a crucial role in tumor progression and

immunoregulation. Major histocompatibility complex class II (MHC-II) is essential

for immune surveillance within the TME. While MHC-II genes are typically

expressed by professional antigen-presenting cells, they are also expressed in

tumor cells, potentially facilitating antitumor immune responses. To understand

the role of MHC-II-expressing tumor cells, we analyzed triple-negative breast

cancer (TNBC), an aggressive subtype with poor prognosis and limited treatment

options, using public bulk RNA-seq, single-cell RNA-seq, and spatial

transcriptomics datasets. Our analysis revealed a distinct tumor subpopulation

that upregulates MHC-II genes and actively interacts with immune cells. We

implicated that this subpopulation is preferentially present in proximity to regions

in immune infiltration of TNBC patient cohorts with a better prognosis,

suggesting the functional importance of MHC-II-expressing tumor cells in

modulating the immune landscape and influencing patient survival outcomes.

Remarkably, we identified a prognostic signature comprising 40 significant genes

in the MHC-II-expressing tumors in which machine leaning models with the

signature successfully predicted patient survival outcomes and the degree of

immune infiltration. This study advances our understanding of the

immunological basis of cancer progression and suggests promising new

directions for therapeutic strategies.
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1 Introduction

Triple-negative breast cancer (TNBC) is an aggressive subtype of

breast cancer, constituting 10%–20% of all breast cancer cases.

Characterized by the absence of estrogen receptor and progesterone

receptor as well as the human epidermal growth factor receptor 2

(HER2) receptor, TNBC is notable for its invasive nature and poorest

prognosis (1). Additionally, TNBC does not respond to existing

endocrine and HER2-targeted therapies, leading to challenges in

clinical treatment strategies. The tumor microenvironment (TME) in

TNBC plays a critical role in immunoregulation and tumor

progression (2). Within the TME, the major histocompatibility

complex class II (MHC-II) pathway is a crucial regulator for

immune surveillance: MHC-II genes activate CD4+ helper T cells by

presenting antigens that facilitate effective immune responses (3), and

the CD4+ helper T cells activate CD8+ cytotoxic T cells eliminating

tumor cells through a sustained and effective memory response (4–8).

The constitutive process of antigens mediated by the MHC-II

pathway is typically restricted to professional antigen-presenting

cells (APCs), such as dendritic cells, macrophages, and B cells. On

the other hand, several studies have shown that MHC-II genes are

also expressed in tumor cells. This expression enhances tumor

recognition by the immune system, which is thought to increase

immune infiltration and a favorable prognosis (3, 9, 10). However, it

remains unclear whether the expression of MHC-II genes originates

from tumor cells or immune cells, as previous studies have

primarily analyzed bulk RNA-seq cohorts (9, 10). While methods

like immunohistochemistry or immunofluorescence can help

address this issue, these methods are limited in detecting a

comprehensive array of proteins and may not fully differentiate

the source of MHC-II expression (3, 10).

In this study, we conducted multiomics data analysis to

computationally decompose tumor and immune cells within the

TNBC microenvironment, aiming to elucidate molecular signatures

associated with the MHC-II-expressing tumors. We then used these

molecular signatures to predict clinical survival outcomes and levels

of immune infiltration. Our findings provide insights into the

functional significance of the TME in TNBC subtypes that are

linked to improved patient survival.
2 Results

2.1 Identifying TNBC subtypes in
large cohorts

We designed a computational pipeline to cluster TNBC patients

based on cellular compositions in TNBC TME (Figure 1A) by collecting

539 bulk RNA-seq datasets from TCGA-BRCA and METABRIC

cohorts (11). To annotate cell types and determine their proportions

within these datasets, we first created reference cell types using

scATOMIC (12) with seven scRNA-seq datasets of TNBC patients

(13) (Supplementary Figure S1A). Subsequently, we employed

BayesPrism (14) to deconvolute the cellular compositions in the

cohort datasets based on these reference cell types (Supplementary

Figure S1B).
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Applying non-negative matrix factorization (NMF) (15) to the

cellular composition datasets by optimizing its hyperparameters

(Supplementary Figure S1C), we identified two patient clusters from

each of the cohorts characterized by varying proportions of tumor

cells and immune cells (Figures 1B, C). Cluster 2, characterized by a

higher proportion of tumor cells and fewer immune cells, is

hereafter referred to as tumor dense (TD) patient cluster, whereas

cluster 1 is referred to as nonTD patient cluster. This pattern

remained consistent, even when merging corresponding clusters

from both cohorts (Supplementary Figure S1D). Remarkably, these

patient groups exhibited distinct survival outcomes, indicating a

relationship between the cellular composition and aggressive

malignancy (Figure 1D).

Comparing the bulk transcriptome profiles of the TD and

nonTD patients (Figure 1E; Supplementary Figure S1E), the TD

patients exhibited upregulation of keratins (KRT81, KRT6B, KRT15,

KRT5) and kallikreins (KLK5, KLK6, KLK7), indicating active

extracellular matrix (ECM) remodeling and tumor expansion

(16–18). In contrast, the nonTD patients showed upregulation of

immune-related genes, such as HLA class II antigens (HLA-DRA,

HLA-DPA1, HLA-DQA1), CD74, and genes related to cytotoxic and

helper T- cell activities (GZMK, GZMA, CD3D, IL23A), suggesting

active antigen processing (19–21). Gene Ontology (GO) analysis

further highlighted that the upregulated genes in each patient

cluster are highly involved in crucial biological processes:

epidermis development and extracellular matrix organization in

TD-upregulated genes, and immune activity and MHC-II

arrangement in nonTD-upregulated genes (Supplementary

Figure S1F).

Collectively, our results underscored distinct subtypes of TNBC

patients characterized by significant alterations in gene expression

relevant to immune and metastatic potential. These characteristics

were identified by grouping patients based on cell-type composition

that indicated their influence on survival outcomes.
2.2 Characterizing TNBC subtypes by
single-cell data

To inspect the TD and nonTD patient clusters at a refined level,

we collected 15 scRNA-seq datasets of TNBC patients (13, 22),

comprising a total 65,496 cells for further analysis. To ensure

proper integration of scRNA-seq data from different sources, we

evaluated three batch correction tools to identify the most suitable

method (Supplementary Figure S2A). The k-nearest-neighbor batch-

effect test (kBET) (23) was used to quantify the batch effect and assess

the performance of these tools. Among CCA (24), MNN (25), and

Harmony (26), Harmony demonstrated the best performance

(Supplementary Figure S2B). Therefore, we applied Harmony to

effectively remove batch effects. Unlike the cohort analysis

requiring the deconvolution of cellular compositions, we directly

derived the cell type counts for each of the 15 patients by annotating

the single-cell population by scATOMIC (Figures 2A, B). Then, we

applied the optimized NMF (Supplementary Figure S2C) that

identified two patient clusters corresponding to the TD and nonTD

characteristics (Figure 2C).
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Consistent with the characteristics observed in the cohort

analysis, the immune-related and tumor cells markedly varying in

abundance exhibited different expression patterns of essential genes

between the clusters. For instance, differentially expressed gene

(DEG) analysis revealed that B cells and tumor cells in the nonTD

cluster exhibit upregulation of marker genes in MHC-II pathway

(e.g., HLA-DRB and HLA-DRA), whereas tumor cells in the TD

cluster show upregulation of keratins (Figure 2D), supported by

corresponding GO biology pathway (BP) term enrichments

(Supplementary Figure S2D). Additionally, CD4+ and CD8+ T

cells in the TD cluster demonstrated higher levels of exhaustion

(Figure 2E), suggesting decreased T- cell functionality and reduced

efficacy in tumor elimination (27).

Furthermore, we assessed the degree of MHC-II pathway

activity in the tumor cell population of each patient cluster by

calculating activity scores with Ucell (28). This analysis involved

standardizing the average expression levels of a relevant gene set in

scRNA-seq data. The gene set of the MHC-II pathway was obtained

from the Molecular Signatures Database (MSigDB) (29, 30). The

result revealed significant activation of the MHC-II pathway in

tumor cells from nonTD patients (Figure 2F). This finding was
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supported by the expression profiles of MHC-II pathway marker

genes in individual tumor cells (Supplementary Figure S2E).

Taken together, the TNBC subtypes identified through single-

cell analysis were distinguished by variations in cell population

abundance and their functional characteristics. These findings align

closely with those from the bulk RNA-seq data analysis. Notably, we

observed that tumor cells in nonTD patients activate MHC-II-

related genes, which may contribute to the improved survival

outcomes seen in the cohort analysis.
2.3 Identifying tumor cells expressing
MHC-II genes

To explore the relationship between tumor cell heterogeneity

and MHC-II activity, we first isolated 23,186 tumor cells from

Figure 2A and corrected batch effects using Harmony. Since directly

performing NMF on the expression data of 23,186 tumor cells was

extremely time-consuming and computationally intensive, we

applied the SuperCell method (31) for dimensionality reduction

prior to clustering. As a result, we identified 580 tumor metacells.
FIGURE 1

Identifying TNBC patient groups based on cell composition in the TME. (A) Schematic representation of the workflow deconvoluting cell
compositions and clustering the patients. (B) NMF clustering of TCGA-BRCA cohorts based on the cell compositions. Donut plot showing the cell
composition of each cluster. (C) NMF clustering of METABRIC cohorts based on the cell compositions. Donut plot showing the cell composition of
each cluster. (D) Kaplan–Meier plot showing the worse clinical outcome in TD patient cluster in the TCGA-BRCA and METABRIC cohorts (log rank
test, P < 0.05). (E) Volcano plot showing differentially expressed genes between TD and nonTD patient clusters in TCGA-BRCA and METABRIC
cohorts. Red dots and blue dots represent significantly upregulated and downregulated differentially expressed genes respectively (threshold: |
log2FC| > 1, P < 0.05). TNBC, triple-negative breast cancer; TME, tumor microenvironment; NMF, non-negative matrix factorization; TD, tumor
dense; nonTD, non- tumor dense; FC, fold change.
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Metacell is a feature aggregated by grouping highly similar single

cells, reducing the complexity of the data while retaining important

biological information (31). Subsequently, we performed principal

component analysis (PCA) on the metacell features and applied the

optimized NMF using the principal components (n = 50)

(Supplementary Figure S3A). This approach identified three

metacell clusters; C1, C2, and C3 (Supplementary Figure S3B).

Finally, we annotated the original tumor cells based on these

metacell clusters (Figure 3A) for downstream analyses.

Interestingly, the C3 cells, 7% in the total tumor cells, exhibited

a higher degree of MHC-II pathway activity, as indicated by UCell

scores (Figure 3B) and the elevated expression of key MHC-II-

related genes in DEG analysis result (Supplementary Figure S3C).

In particular, HLA class II antigens were markedly expressed in the

C3 tumor cells (Figure 3C). Additionally, comparing the GO-BP

enrichments with the upregulated genes in each cluster revealed

that the genes in C3 are notably associated with antigen processing

and presentation via MHC-II, response to type II interferon, and

activation of immune response (Figure 3D; Supplementary Figure

S3D). This suggests that the activation of the MHC-II pathway,

likely driven by IFN-g stimulation, may contribute to the

immunogenicity of the C3 tumors (3).
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To infer the interplay of each tumor cluster with immune cells, we

quantified the communication probabilities between tumor clusters

and CD4+ T cells, focusing on the MHC-II-mediated interactions,

using CellChat (32). This analysis evaluates the total links of outgoing

(sender) and incoming (receiver) signaling within a network

constructed from ligand–receptor pairs found in a given single-cell

group. The result showed that C3 has the highest level of MHC-II

interaction with CD4+ T cells (Figure 3E), suggesting that the C3

tumor cells are particularly important for robust antitumor responses.

We also investigated the interactions between tumor clusters and

other components within the TME. We further found that C1 tumor

cells exhibit strong interactions with cancer-associated fibroblasts

(CAF) via the COLLAGEN pathway, actively release VEGF signals,

and significantly engage in NOTCH signaling (Supplementary Figure

S3E). These findings suggest that C1 tumor cells are characterized by

enhanced ECM remodeling, greater invasiveness, and higher tumor

stemness, consistent with our GO-BP enrichment analysis results (33–

35). Additionally, we observed that the C1, C2, and C3 all received

IFN-II signals, even C1 and C2 showing stronger signals than C3

(Supplementary Figure S3E). However, only C3 demonstrated the

response of the IFN-g stimulation and activation of the MHC-II

pathway, highlighting C3’s unique sensitivity to the IFN-g.
FIGURE 2

Characterizing TNBC subtypes in single-cell datasets. (A) t-SNE visualization of 65,496 cells from 15 TNBC patients analyzed by scRNA-seq. (B) Bar
plot showing the cell proportions of each patient from the scRNA-seq dataset. (C) NMF clustering of the scRNA-seq dataset base on the cell
composition. Donut plot showing the cell composition of each cluster. (D) MA plot showing differentially expressed genes between TD and nonTD B
cells and tumor cells (|log2FC| > 1, P < 0.05). (E) Violin plot showing the exhaustion score of CD4+ T cell and CD8+ T cell in TD and nonTD (two-
sided Wilcoxon test, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001). (F) Half violin plot showing MHC-II pathway activity scores in TD and nonTD tumor cells.
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Collectively, our findings highlight the heterogeneous tumor

cell population in the TNBC TME. We successfully identified the

subpopulation of TNBC tumor cells, C3, that express MHC-II genes

and actively interact with immune cells and sensitivity to IFN-g,
which suggests its functional importance in repressing tumor

progression. Indeed, as shown in Figure 3F, the C3 cells were

predominantly found in the nonTD patients defined in Figure 2C,

rather than in the TD patients who exhibit impaired

immune function.
2.4 Inferring the important genes in the
MHC-II-expressed tumor cells

Given the significance of C3 tumor cells identified through

single-cell analysis, we aimed to capture prognostic signatures based

on the C3 marker genes. Firstly, we annotated cell types, including
Frontiers in Immunology 05
C1, C2, and C3, in the scRNA-seq data (13, 22) using scATOMIC.

Next, we merged cell types with similar expression profiles for

improving BayesPrism’s ability to extract features for C3 cells.

Following this, we profiled gene features for these cell types using

BayesPrism and detected 793 marker genes for C3 (Supplementary

Figure S4). Combined with 60 genes differentially upregulated in C3

compared with other tumor cells (Supplementary Figure S3C), we

used the 853 genes for analyzing prognostic signatures. To assess

the prognostic potential of these C3 marker genes, we performed

univariate Cox regression analysis on the genes to identify those

significantly associated with patient survival outcomes.

Subsequently, we applied multivariate Cox regression analysis to

refine the prognostic signature by considering potential

confounding factors and interactions between genes.

For the multivariate Cox regression analysis, we employed 10-

fold cross-validation on the METABRIC cohort to train the model.

The cohort was randomly split into training and test sets in each
FIGURE 3

Characterizing of MHC-II expressing tumor cells. (A) t-SNE visualization showing three clusters (C1, C2, and C3) of 23,186 tumor cells. (B) Half violin
plot showing MHC-II pathway activity scores in each tumor cell cluster. (C) Bubble plot showing marker gene expression profile of each tumor cell
cluster. Bubble size indicates the expression percentage of each tumor cell cluster, and the color shows the average expression level. (D) Radar plot
showing the GO enrichment analysis results of biological processes for differentially expressed genes in the three clusters, using gene ratio of
biological processes terms for each tumor cell cluster. (E) Heatmap showing the MHC-II pathway signaling interactions between the tumor cell
clusters and CD4+ T cells. X-axis represents the receiver and Y-axis represents the sender. (F) Donut plot showing the proportions of C1, C2, and C3
tumor cells in TD and nonTD.
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fold, and the TCGA-BRCA cohort was used as an independent

validation set. This analysis identified a prognostic signature

consisting of 40 genes and their coefficients from the cross-

validated training set (Supplementary Table S1). This signature

demonstrated high predictive capability with an area under the

curve (AUC) of 0.820 at 3 years, 0.841 at 5 years, and 0.829 at 7

years (Figure 4A). It also achieved remarkable AUCs in the

validation set (Figure 4B). Among the genes in the prognostic

signature, NME7 and GPX1 stood out with the highest coefficients:

NME7 has the highest positive coefficient, and GPX1 has the highest
Frontiers in Immunology 06
negative coefficient. This underscores their crucial roles in the

prognostic characterization of C3 tumor cells. Notably, the

upregulation of NME7 is known to improve survival outcomes

and function in tumor suppression (36). On the other hand, GPX1,

which has been identified highly expressed in TNBC cell lines, plays

a key role in cell adhesion and spreading by modulating FAK/c-Src

activation. The depletion of GPX1 has been shown to impair TNBC

metastasis processes, further highlighting its importance (37).

After calculating the signature score for each patient

by multiplying the 40 gene expression levels by their
FIGURE 4

MHC-II-expressed tumor cell marker genes predict prognosis and immune infiltration. (A, B) ROC curves of the prognostic signature for predicting
the risk of death at 3, 5, and 7 years in train set, test set, and validation set. (C, D) Kaplan–Meier plot showing better prognosis in patients with high
signature score in the train set, test set, and validation set. The high score group and low score group are identified by the mean score of the
signature (log- rank test, P < 0.001). (E, F) Scatter plots showing the Pearson correlation between predicted and actual immune cell infiltration levels
in the train set, test set, and validation set. X-axis represents the actual immune cell infiltration level, and Y-axis represents the predicted immune cell
infiltration level.
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corresponding coefficients, we divided the patients into two

groups based on whether their scores were above or below the

median. Notably, the patients with higher signature scores exhibited

better prognoses (Figures 4C, D). To further confirm the impact

of the C3 signature, we employed a random forest model using the

40 genes to predict immune infiltration levels: immune cell

infiltration was estimated based on the relative abundance of

immune cells annotated in Supplementary Figure S1D. We

observed strong positive correlations between the predicted and

observed immune infiltration levels (Figures 4E, F), supporting that

C3 tumor cells significantly impact immune biology within

TBNC TME.

Our findings highlight that the prognostic signature with the 40

genes captured from the C3 tumor cells effectively distinguishes

clinical outcomes and reliably estimates immune infiltration. This

suggests that these genes may serve as potential therapeutic targets

and provide valuable insights into the immune landscape associated

with TNBC progression and response.
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2.5 Spatial localization of the MHC-II-
expressed tumor cells

To investigate the spatial implications of C3 tumor cells in the

TNBC microenvironment, we analyzed the spatial transcriptomic

(ST) data, which includes manually annotated regional labels (13).

Given that ST spots may contain multiple cell types, we calculated

the signature score of the 40 C3 marker genes for each spot using

the UCell method. Of note, lymphocytes within tumor tissue are the

central regions for immune infiltration (38). We observed that spots

with higher signature scores were predominantly located near

lymphocyte areas (Figure 5A). This pattern was further supported

by quantitative analysis that showed a decrease in signature scores

with increasing Euclidean distance from the nearest lymphocyte

(Figure 5B; Supplementary Figures S5A, B).

These findings revealed spatial shapes of the immune landscape

within the TNBC TME, conferring by the association of MHC-II-

expressed tumor cells and immune infiltration.
FIGURE 5

Spatial co-localization of MHC-II expressing tumor cells with immune infiltration regions. (A) Spatial visualization of the C3 tumor cell signature
score in tumor regions of TNBC tissue sections. The top panels show three TNBC samples (CID44971, 1160920F, 1142243F) with tumor areas
outlined in red, stroma in green, and lymphocyte regions in yellow. The bottom panels display the C3 tumor cell signature score of each spot in
tumor regions. The arrow indicates the tumor area proximal to the lymphocyte spot. (B) Line plots showing the trend of scaled average C3 tumor
cell signature score of tumor spot for the Euclidean distance to the nearest lymphocyte spot. For each spatial transcriptomic data, tumor spots are
assigned to 10 bins by their Euclidean distance to the nearest lymphocyte spot, and then average C3 tumor cell signature score of tumor spots
within each bin is calculated and scaled for comparison.
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3 Discussion

We aimed to characterize tumor cell subtypes that express

MHC-II genes in the TNBC microenvironment. Although the

significance of this tumor type has been recognized (3, 9, 10),

understanding the underlying molecular mechanisms has been

challenging due to tumor cell heterogeneity. To address this, we

performed a comprehensive single-cell analysis and identified a

distinct subpopulation of tumor cells, termed C3. Despite

constituting only approximately 6% of the total tumor cells, this

population exhibited upregulation of MHC-II genes and actively

interacted with immune cells, such as CD4+ T cells, prevalent in

TNBC patients who have better survival outcomes, i.e., the nonTD

patient group. The presence of this minority subpopulation

suggests that C3 cells may represent a specialized subset with a

unique and efficient role in immune modulation, contributing

disproportionately to the immune response and better

survival outcomes.

These observations underscore the key role of MHC-II genes

in presenting tumor antigens, which are crucial for activating the

CD4+ and CD8+ T- cell responses (3–8). Traditionally, these

antigens are presented to the immune cells by professional APCs

(3). However, our findings revealed a distinct pathway of immune

modulation, extending the recent studies (9, 10), where tumor-

derived antigens are processed by the C3 tumor cells localized in

proximity to regions in immune infiltration.

The expression of MHC-II is driven by the transcriptional

master regulator class II major histocompatibility complex

transactivator (CIITA). CIITA is regulated by four distinct

promoters: pI, pII, pIII, and pIV. Among these, pI and pIII have

been shown to drive MHC-II expression in dendritic cells (DCs)

and B cells, whereas the function of pII remains poorly understood

(3, 39). In non-classical APCs, MHC-II expression is controlled by

pIV, which can be induced by IFN-g (40, 41). Our findings suggest
that although tumor cells in the TME are exposed to IFN-g, only the
C3 tumor cells demonstrate a response to IFN-g and the activation

of the MHC-II pathway. In a study by Bo et al., partial or

hemimethylation of the CIITA pIV promoter was shown to be

sufficient to silence CIITA expression, leading to a loss of MHC-II

expression (40). This loss of MHC-II could be reversed through

treatment with hypomethylating agents. Based on this, we suggest

that the heightened sensitivity of C3 tumor cells to IFN-g and the

activation of the MHC-II pathway may be regulated epigenetically.

It is important to consider the potential influence of genetic

variation on the regulation of MHC-II gene expression. The MHC

region is highly polymorphic, and this genetic diversity, particularly

through cis-eQTLs, may modulate MHC-II expression in different

tumor cells. Previous studies have identified cis-regulatory elements

that control MHC-II transcriptional activity, such as the X, Y, and

W/Z boxes. Variations within these elements could impact how

tumor cells respond to immune signals such as IFN-g and activate

MHC-II expression (42). The heterogeneity observed in the activity

of tumor cell subpopulations within the MHC-II pathway may be

influenced by genetic variation in these regulatory elements. Future

studies should incorporate genomic data, including SNP and eQTL

analyses, to better understand the genetic factors affecting MHC-II
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expression in the TME. By accounting for these genetic factors, we

may uncover additional layers of complexity that shape the immune

landscape in TNBC and further clarify the role of MHC-II-

expressing tumor cells in immune modulation.

Given the high immunogenicity of C3 tumor cells, we propose

that C3 may contribute to enhanced immune infiltration within the

TME. However, since MHC-II expression in tumor cells can also be

induced by IFN-g, there is a possibility that C3 represents a

byproduct of a favorable immune microenvironment (3, 41).

Challenging this view, studies have shown that in mouse tumor

models transfected with CIITA, increased immune infiltration and

tumor rejection were observed (43, 44). Additionally, depletion of

DCs or macrophages did not affect the tumor rejection effect,

demonstrating that MHC-II-expressing tumor cells can directly

initiate antitumor immune responses and directly promote immune

cell recruitment, rather than being merely a byproduct of a

favorable immune microenvironment (45).

Furthermore, we identified a prognostic signature comprising

40 marker genes of C3, including NME7 and GPX1, which show the

highest positive and negative coefficients, respectively. Interestingly,

NME7 has been recognized for its tumor-suppressive role in breast

cancer, whereas GPX1 is linked to the regulation of tumor

metastasis (36, 37). Additionally, HCLS1, the gene with the

second highest positive coefficient in the prognostic signature, is

known to positively correlate with immune infiltration in TNBC

(46). These genes highlight the unique functional characteristics of

the C3 tumor cells, emphasizing their potential role in modulating

the tumor microenvironment. Our results clearly demonstrated that

the combinatorial effect of these genes, in conjunction with the

upregulation of MHC-II genes in TNBC, significantly explains

patient survival outcomes and the degree of immune infiltration.

However, there is still room for improvement in the performance of

our signature. We plan to incorporate additional parameters,

including multiomics data and further integration of molecular

features in the future, to enhance the predictive accuracy.

In conclusion, our in-silico analysis highlights the significant

role of MHC-II-expressing tumor cells as a key regulator of immune

biology within the tumor microenvironment. This study advances

our understanding of the immunological basis of cancer

progression and suggests promising new directions for

therapeutic strategies.
4 Materials and methods

4.1 Preparing transcriptomics data

The RNA-seq datasets were prepared from public databases and

published papers. For bulk RNA sequencing data derived from

TNBC patients, 192 samples in the TCGA-BRCA cohort (https://

portal.gdc.cancer.gov/projects/TCGA-BRCA) and 347 samples in

METABRIC (11) were prepared. For single-cell RNA-seq (scRNA-

seq) data of TNBC patients, seven samples in GSE176078 and eight

in GSE161529 were downloaded from GEO. Spatial transcriptomic

datasets for three TNBC patients were obtained from Zenodo data

repository (https://doi.org/10.5281/zenodo.4739739).
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4.2 Processing single-cell RNA-seq data

scRNA-seq datasets GSE176078 and GSE161529 were

processed using the R package Seurat v.4.3.0 (47). Initially, for

each dataset, genes detected in fewer than three cells, cells with

fewer than 500 genes, and cells with more than 25% mitochondrial

gene content were excluded to ensure data quality. Subsequent

normalization and scaling were performed using NormalizeData()

function with default parameters. To identify features that capture

the most significant variation in the datasets, we employed the

FindVariableFeatures() function, selecting 2,000 highly variable

genes (HVGs) for further analysis. Principal component analysis

(PCA) was then applied using these 2,000 HVGs. To choose the

appropriate method for data integration, we tested three batch

correction tools, CCA (24), MNN (25), and Harmony (26). The k-

nearest-neighbor batch-effect test (kBET) (23) was used to quantify

batch effects and assess the performance of these tools. kBET

evaluates batch mixing by testing whether the distribution of

labels within a subset of neighboring samples matches that of the

full dataset. It employs a chi-squared test on random

neighborhoods to determine how well samples are mixed; a

higher acceptance rate indicates better mixing and less batch

effect. Since the Harmony demonstrated the highest performance,

we applied it to adjust the principal components for removing batch

effects (Supplementary Figure S2B). The top 10 adjusted PCs were

utilized for clustering using a shared nearest-neighbor modularity

optimization-based clustering algorithm, with the resolution

parameter set to 2. Non-linear dimensionality reduction was

conducted using t-SNE for visualization.

Following this preprocessing, cell annotation was carried out

using scATOMIC (12), a modular annotation tool specifically

designed for the accurate identification of malignant and non-

malignant cells. scATOMIC, which was trained on over 300,000

cancer, immune, and stromal cells from 19 common cancers,

employs a hierarchical approach by inputting the count matrix of

our single-cell datasets into scATOMIC; we obtained detailed cell

type annotations for each dataset.
4.3 Deconvoluting cell compositions in
bulk transcriptomic data

BayesPrism (14) is a Bayesian method designed to predict

cellular composition in individual cell types from bulk

transcriptomic data using single-cell RNA-seq as prior

information. It has demonstrated superior performance in

comparison with other deconvolution tools. BayesPrism requires

three inputs, the bulk transcriptomic data, raw count matrix of

scRNA-seq, and cell type labels of each cell. For our analysis, only

scRNA-seq dataset GSE176078 was utilized as the reference to avoid

bias due to the batch effect of the integrated dataset. We then

applied BayesPrism to estimate the proportions of different cell

types in TNBC bulk transcriptomic data. The deconvolution was

performed employing the default parameters of BayesPrism.
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4.4 Non-negative matrix factorization

To identify subgroups of TNBC patients based on cell

composition, NMF (15) was performed on the min–max

normalized output of BayesPrism with each bulk RNA-seq cohort.

For scRNA-seq dataset clustering, NMF was performed on the min–

max normalized cell composition data obtained after scATOMIC

annotation of each patient. The optimal number of clusters (rank) of

NMF was determined using the cophenetic correlation coefficient.
4.5 Analyzing survival outcomes,
differential gene expression, and
functional enrichment

For the survival analysis, we utilized overall survival data from

TNBC patients across three cohorts: TCGA-BRCA and

METABRIC. Patients with missing survival information were

excluded from the analysis. Survival curves were generated using

the Kaplan–Meier method by R package survival, and differences

between clusters were evaluated using the log-rank test to assess the

statistical significance of survival disparities among different

patient groups.

Differential gene expression analysis was performed using the R

package edgeR (48). Genes were considered differentially expressed

if they exhibited P-value < 0.05 and |log2Fold change| > 1.

Comparing the TD and nonTD patient groups, we identified 301

differentially expressed genes (DEGs) in the METABRIC dataset

and 396 DEGs in TCGA-BRCA, with 243 DEGs shared between the

two datasets.

Gene Ontology (GO) analysis was conducted with the R

package clusterProfiler (49) to explore the biological processes

enriched among the shared DEGs. The Benjamini–Hochberg

method was applied for P-value adjustment, and GO terms with

P-value < 0.05 were considered significantly enriched.
4.6 Single-cell RNA-seq data analysis

The DEG analysis of scRNA-seq data was conducted by function

FindMarkers() built- in R package Seurat v.4.3.0. The genes with |

log2Fold change| > 1 and P-value < 0.05 are considered as DEGs. The

R package irGSEA (50) was used for MHC-II pathway activity

validation, and UCell was used as the scoring method. The MHC-

II pathway gene set is obtained from MSigDB (30). Exhaustion score

was defined as the sum of the expression of the four exhaustion

markers—ENTPD1, LAYN, ITGAE, and BATF (27).

R package SuperCell (31) was used to merge cells with high

similarity to metacells within the scRNA-seq data. Metacell analysis

was performed for the normalized gene expression matrix by

parameters with n.pc = 20, k.nn = 5, gamma = 40. After the

metacell analysis, Seurat Object of metacells was created and used

for subsequent analysis. Then, Harmony was used to remove the

batch effect with default parameters. The unsupervised clustering of
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tumor cells is conducted by NMF, and optimal rank of NMF was

determined based on the cophenetic correlation coefficient

(Supplementary Figure S3A).
4.7 Spatial transcriptomic data analysis

R package Seurat v.4.3.0 was used for spatial transcriptomic

data analysis. The pathologist’s manual labels provided in original

literature were utilized as ground truth. To investigate the

distribution of the MHC-II- expressing tumor cell, each tumor

region spot was scored with the previously defined 40-gene

signature through UCell. A higher signature score represents the

higher proportion of MHC-II expressing tumor cells in each spot.

For the calculation of correlation analysis, the distance of tumor

spots to the nearest lymphocyte spots obtained by calculating the

minimum Euclidean distance from each tumor spot to all

lymphocyte spots by the following formula:

Euclidean Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x1)

2 + (y2 − y1)
2

q

where x1 and y1 are the coordinates of a tumor spot, x2 and y2
are the coordinates of the nearest lymphocyte spot.

The nearest Euclidean distance from the tumor spots to the

nearest lymphocyte spots was divided into 10 bins, and the average

of the signature score of all tumor spots in each bin was calculated

for comparison.

The nearest Euclidean distance from the tumor spots to the

nearest lymphocyte spots was divided into 10 bins, and the average

of the signature score of all tumor spots in each bin was calculated

for comparison.
4.8 Cell– cell communication analysis

CellChat (47) is an R package specifically developed for

inferring, analyzing, and visualizing intercellular communication

networks from single-cell RNA transcriptomic data. By utilizing

established ligand–receptor pairings, CellChat facilitates the

construction of probable communication networks among cells.

For the analysis of cell–cell communication within each cellular

group, a minimum cell threshold was set to 10. Communication

pairs between cells were considered significant if their P-value was

less than 0.05.
4.9 Predicting survival outcomes

To establish the prediction model, we extracted the characterize

genes of MHC-II expressing tumor cells. The marker genes of

MHC-II expressing tumor cells calculated from scRNA-seq DEG

analysis (log2FC > 1, P_value < 0.05) and marker genes from the

feature matrix returned by BayesPrism were used as the candidate

genes. Then, univariable Cox regression survival analysis was

performed based on the candidate genes to identify prognostic

genes. Finally, 40 prognosis-related genes were selected to create a
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gene signature. Then, 10-fold cross-validation multivariate Cox

regression analysis was performed to investigate the prognosis

predictive ability of the gene signature. Next, a prognostic model

was used to predict the signature score for each patient as follows:

Signature score = expgene1*bgene1 + expgene2*bgene2 +

expgene3*bgene3 + … + expgene40*bgene40
where “exp” represents the gene expression, and “b” is referred

to as the coefficient derived from the multivariate Cox

regression analysis.

Based on the signature score equation, a signature score was

obtained for each patient, and TNBC patients in each cohort could

be divided into high- or low-score group using the mean signature

score as the threshold. The receiver operating characteristic (ROC)

curve was used to evaluate the sensitivity and specificity of the

survival prediction according to the gene signature through

analyzing the area under the curve (AUC) using the R package

survivalROC. The defining point set up by 3-, 5-, and 7-year time-

dependent ROC curve analysis was employed to assess the

predictive value of the signature score for time-dependent

outcomes. The Kaplan–Meier survival curve combined with a log-

rank test was used to evaluate the differences in the patients’ survival

time in the high- and low-score group by the R package “survival”.
4.10 Predicting immune infiltration

Using the gene signature from MHC-II tumor cells, we

developed a random forest model to predict the immune

infiltration by R package randomForest. By summing the

abundance of immune cells from the bulk RNA-seq cellular

composition data, the total proportion of immune cells was

obtained and used as an indicator of immune infiltration. Cohort

MEATBRIC was used for model training with 10-fold cross-

validation, and cohort TCGA-BRCA was used as the validation

set. Then, the correlation coefficient of predicated result and actual

result was calculated to validate the efficacy of the immune

infiltration prediction model.
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