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The role and therapeutic
targeting of the CCL2/CCR2
signaling axis in inflammatory
and fibrotic diseases
Shan Guo, Qi Zhang, Yingjie Guo, Xiaoyan Yin, Peng Zhang,
Tao Mao, Zibin Tian and Xiaoyu Li*

Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
CCL2, a pivotal cytokine within the chemokine family, functions by binding to

its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in

the development of fibrosis across multiple organ systems by modulating the

recruitment and activation of immune cells, which in turn influences the

progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs,

kidneys, and other organs. This paper introduces the biological functions of

CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic

disorders in various organ systems, and reviews recent progress in the diagnosis

and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling

pathway. Additionally, further in-depth research is needed to explore the clinical

significance of the CCL2/CCR2 axis in fibrotic conditions affecting different organs.
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Introduction

Chemokines are a large family of small proteins that play a crucial role in regulating cell

movement (1), particularly in guiding leukocyte migration (2), which is central to

maintaining immune system balance (3). In 2000, chemokines were systematically

classified into four families: CXC, CC, CX3C, and C (4). Among these, CC chemokine

ligand 2 (CCL2), also known as monocyte chemotactic protein-1 (MCP-1), is a key regulator

in immune response. Discovered in 1989, CCL2 is primarily anchored to endothelial cell

membranes (5) and is most abundantly expressed in monocytes, macrophages, and

lymphocytes (6). Other cells, such as smooth muscle cells, endothelial cells, and fibroblasts,

can also secrete CCL2 (7), particularly in response to cytokines like interleukin (IL)-6, tumor

necrosis factor-a (TNF-a), and transforming growth factor-b (TGF-b) (8).
CCL2 exerts its effects mainly by binding to the receptor CCR2 (9), which has the

highest affinity for CCL2 due to its specific structural characteristics (10). This binding
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activates various downstream pathways (Figure 1), resulting in

diverse chemotactic responses, particularly in monocytes. The

CCL2-CCR2 interaction not only promotes cell migration but

also regulates cell adhesion and macrophage chemotaxis. Upon

ligand binding, CCR2 experiences conformational changes that

initiate the activation of phospholipase C (PLC). This activation

leads to an increased release of Ca2+ ions and the subsequent

activation of protein kinase C (PKC) and phosphoinositide 3-OH

kinase (PI3K). These processes further activate signaling molecules

such as protein kinase B (PKB, Akt) and mitogen-activated protein

kinase (MAPK). This signaling pathway is crucial for the regulation

of central transduction mechanisms within the cell (11–13).

Additionally, it plays a significant role in cancer progression by

activating pathways such as p38-MAPK (14, 15) and PI3K/AKT/

mTOR (16–18), which enhance tumor cell invasion, migration,

and survival.

CCL2 is extensively involved in disease regulation, particularly in

inflammation, fibrosis, and cancer. It mobilizes monocytes from the

bonemarrow into the bloodstream and directs their migration to sites

of inflammation (19), underscoring its essential role in immune

defense (20). Beyond inflammation, CCL2 contributes to fibrosis

development in various organs like the liver, pancreas, and kidneys

(Figure 2). It also plays a role in cancer biology, known as the “tumor

chemokine” (21), aiding in tumor initiation, growth, and metastasis

(22, 23). Tumor-associated macrophages secrete CCL2 (24), which

aids in the progression of cancers like breast (25) and pancreatic

cancers (26, 27). CCL2 expression in the tumor microenvironment,

involving various cell types, highlights its significance in cancer

pathology (28) and its potential as a therapeutic target.
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Chemokine receptors have been targeted in therapeutic

strategies, and recent years have seen promising results from

CCL2/CCR2 antagonists in treating inflammatory and fibrotic

diseases (29) and cancer immunotherapy (30, 31). This review

explores the mechanisms and the diagnostic and therapeutic

potentials of the CCL2/CCR2 axis in inflammatory and fibrotic

diseases. These conditions are characterized by chronic

inflammation leading to fibrosis, where prolonged immune

responses cause excessive extracellular matrix deposition, tissue

scarring, and organ dysfunction. Understanding the role of the

CCL2/CCR2 axis in fibrosis will provide a basis for developing

novel therapies.
Mechanisms of the CCL2/CCR2 axis in
inflammatory and fibrotic diseases

CCL2 plays a pivotal role in fibrogenesis in the liver, pancreas,

and intestine by attracting immune cells such as monocytes and

macrophages to fibrotic areas, promoting inflammatory responses

and matrix remodeling. In viral hepatitis, CCL2 helps create an

immunosuppressive microenvironment that facilitates fibrosis

progression and favors viral infection. In liver fibrosis, CCL2

synergizes with TGF-b to activate hepatic stellate cells (HSCs)

and promote matrix deposition. In intestinal fibrosis, CCL2 works

with intestinal-specific factors like IL-17. In pancreatic fibrosis,

CCL2 leads to M2-like polarization of macrophages after attracting

immune cells to the tissue.
FIGURE 1

Schematic diagram of the CCL2/CCR2 axis and its associated signaling pathways. CCR2, a classic G protein-coupled receptor, activates a variety of
downstream signaling pathways upon binding to its ligand CCL2, such as PI3K/Akt, JAK/STAT, and P38/MAPK. Activation of these pathways leads to
the regulation of various transcription factors and genes involved in cell survival, proliferation, cytokine production, migration, and apoptosis. This
figure was created with biogdp.com.
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Hepatic fibrosis diseases

CCL2 is crucial in liver diseases such as acute and chronic liver

injury, cirrhosis, and tumor progression (32). Liver inflammation

often coexists with fibrosis, driven by the recruitment and

polarization of macrophages, particularly through hepatic stellate

and Kupffer cell activation (33, 34). Key pathways like hedgehog

(35) and TGF-b (36) are involved in these processes, contributing to
conditions like non-alcoholic steatohepatitis (NASH) and

hepatocellular carcinoma (HCC) (37).
NASH

NASH results from excessive fat accumulation in the liver,

causing hepatocyte damage and triggering inflammation. This

inflammatory state activates HSCs, leading to fibrosis, cirrhosis, or

liver cancer. Studies have shown that increased expression of CCL2 is

a hallmark of NASH, promoting the infiltration of monocyte-derived

macrophages through CCL2-mediated chemotaxis.

CCL2 is implicated in NASH progression through several

mechanisms. Li et al. (38) identified methyltransferase 3

(METTL3) as a key negative regulator, loss of Mettl3 accelerates

NASH by enhancing CD36-dependent fatty acid uptake and CCL2-

driven inflammation. The absence of CX3CR1 promotes a shift

from M1 to M2 macrophages, slowing NASH progression. CCL2

deficiency in Cx3cr1-/- mice reduces macrophage infiltration and
Frontiers in Immunology 03
supports M2 dominance in the liver, alleviating NASH (39). Recent

research has indicated that the activation of Notch signaling

pathways in hepatocytes is crucial for the advancement of liver

fibrosis linked to NASH (40). Additionally, existing literature has

underscored the role of Notch signaling in hepatocytes, which

further facilitates the infiltration of macrophages dependent on

CCL2, thereby exacerbating fibrosis (41).

Autophagy in liver sinusoidal endothelial cells is also involved

in NASH. Insufficient autophagy increases the expression of CCL2,

CCL5, and CD68, exacerbating fibrosis in high-fat diet-fed mice

(42). CD11c+CD206+ cells, which express high levels of CCR2, show

increased CCL2 expression in NASH, correlating with disease

severity. Inhibition of CCR2 reduces the infiltration of

CD11b+CD11c+F4/80+ monocytes and improves l iver

inflammation and fibrosis in NASH models (43).

Multiple signaling pathways are implicated in steatohepatitis, with

the CCL2/CCR2 axis playing a key role. Gasdermin D, involved in

programmed necrosis, promotes the secretion of pro-inflammatory

cytokines IL-1b and CCL2 and activates the NF-kB pathway, driving

NASH progression (44). The NLRP3-IL-1b pathway also contributes

to inflammation and obesity-related comorbidities. Inhibition of

NLRP3 inflammasome reduces lipopolysaccharide-induced

inflammation by down-regulating CCL2 mRNA levels (45).

Suppressing the IL-33 signaling pathway can inhibit NASH

progression by down-regulating CCL2 and a-SMA expression (46),

while activating IL-19 signaling reduces HSC migration by down-

regulating CCL2 expression, alleviating liver fibrosis (47).
FIGURE 2

The primary role process of CCL2 in fibrotic diseases. CCL2 facilitates the mobilization of monocytes from the bone marrow into the bloodstream
and guides their migration to targeted inflammatory fibrotic areas. Once there, these monocytes differentiate into macrophages to address tissue
damage (as exemplified by atherosclerotic plaques), this process is frequently associated with the activation of the NF-kB signaling pathway (as
exemplified by systemic mastocytosis). Additionally, the regulation of CCL2 secretion is often influenced by various receptors, which in turn
modulate the release of inflammatory mediators (as seen in fibrosis associated with chronic kidney disease). This figure was created with
biogdp.com.
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Viral hepatitis

CCL2 plays a specific role in immune evasion during hepatitis B

virus (HBV) infection. Chronic HBV infection, a major risk factor

for liver diseases such as HCC, can persist for decades. HBV evades

immune response by downregulating CCL2 (48), reducing

inflammatory monocyte and macrophage recruitment to the liver.

In chronic HBV cases complicated by cirrhosis, plasma CCL2 levels

tend to decrease (49). Additionally, HBeAg can promote HSC

proliferation, movement, and contraction in a macrophage-

dependent manner, inducing CCL2 production that activates

HSCs and worsens liver fibrosis (50).

Hepatitis C virus (HCV)-mediated hepatitis is also a significant

global health issue, particularly in the United States. Studies show

that HCV-infected individuals can downregulate specific

microRNAs, such as miRNA-107 and miRNA-449a, to regulate

CCL2 expression by targeting the interleukin-6 receptor (IL-6R)

complex (51), suggesting potential therapeutic avenues. A novel

pathway involving the HCV core protein interacting with gC1qR

has been identified, leading to CCL2 and CXCL10 secretion in

macrophages via the NF-kB signaling pathway (52).
Other hepatic fibrotic diseases

Analysis of the liver fibrosis expression dataset GSE84044 from

the GEO database identified 10 key genes in the protein interaction

network, including CCL2, highlighting its importance in fibrosis

and inflammation (53). Glucocorticoid-induced leucine zippers

(GILZ), encoded by the Tsc22d3 gene in mice, mimic

glucocorticoids’ anti-inflammatory effects. Mice deficient in GILZ

show increased CCL2 production and pro-inflammatory leukocyte

infiltration in early liver fibrosis, accelerating its progression (54).

Moreover, sphingosine kinase 1 (SPHK1) levels were significantly

higher in fibrotic compared to normal human livers. SPHK1

knockout in Kupffer cells reduced CCL2 secretion, while its

knockout in HSCs decreased CCR2 expression (55).

CCL2 also has a role in pediatric liver fibrosis. A recent study

identified FOCAD germline recessive mutation in pediatric liver

cirrhosis. In a zebrafish model with FOCAD deficiency, liver injury

was accompanied by increased CCL2 expression, suggesting that

targeting the CCL2/CCR2 axis could be a new approach for treating

pediatric liver cirrhosis (56).
Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic autoimmune

inflammatory disease affecting the gastrointestinal tract, with two

main subtypes: ulcerative colitis (UC) and Crohn’s disease (CD). The

dextran sodium sulfate (DSS)-induced colitis model, which activates

the classic NF-kB signaling pathway, is widely used to study UC. In

intestinal tissues, CCL2 responds to diverse signals. Inflammatory

damage triggers monocytes to secrete CCL2, recruiting white blood

cells or macrophages to injury sites, ultimately leading to

intestinal fibrosis.
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In early intestinal inflammation, Ly6c high-expressing cells

markedly enhance the expression of CCL2 and CCR2 genes

through the activation of STAT1 signaling, in contrast to

Ly6c intermediate-expressing cells. Additionally, inhibiting the

CCR2 pathway can mitigate colonic damage in models of acute

colitis (57). PC3-secreted microproteins (PSMP) upregulate

phosphorylated ERK levels via the CCR2 pathway (58), driving

CCR2+ monocyte migration to inflamed colonic tissue. PSMP

attracts Ly6chi monocytes in a CCR2-dependent manner, aided by

Dectin-1 on myeloid cells (59, 60), while cobalt protoporphyrin IX

(CoPP) reduces the migration of CCR2+ Ly6chi monocytes to the

inflamed colon (61).

As inflammation reaches the muscle layer, Ly6c+ monocytes

infiltrate, adopting a unique transcriptional state and promoting

muscle inflammation. They alter the microenvironment, promoting

more monocyte infiltration, which then differentiates into anti-

inflammatory CD206+ macrophages through CCL2 (62). Bone

marrow-derived mesenchymal stromal cells (BM-MSCs) secrete

CCL2, influencing colitis development, while IL-10 in MSCs

polarizes resident macrophages (63). During chronic inflammation,

CCR2+ monocytes and fibrocytes infiltrate the colon, promoting

fibrosis by inhibiting collagen degradation (64).

CCL2 promotes intestinal fibrosis by activating pro-

inflammatory factors, notably IL-6, a process reversible with

CCR2 antagonist RS102895 (65). Antisense IL-7 (IL-7-AS)

accelerates inflammation by upregulating IL-6 and CCL2 (66).

Poly(rC)-binding protein 1 (PCBP1) deficiency reduces CCL2 and

IL-6 production in colitis macrophages (67). Additionally, in colitis

models, CCR2 and CD30L expression in monocytes are positively

correlated; CD30L drives monocyte homing and differentiation via

the CCL2/CCR2 axis and NF-kB pathway, enhancing

inflammation (68).

CCL2 is also involved in hyperoxia-induced intestinal injury.

IL-17D, a member of the IL-17 family, promotes CCL2 expression

in intestinal epithelial cells under hyperoxic conditions, leading to

chronic intestinal inflammation (69).
Chronic pancreatitis

Chronic pancreatitis (CP) is characterized by progressive,

irreversible inflammation and fibrosis, with pancreatic stellate

cells (PSCs) playing a key role in this process (70). Studies in CP

patients have shown that prostaglandin E2 mediates CCL2 synthesis

in PSCs via TNF-a regulation, and inhibiting cyclooxygenase

(COX)-2 activity can slow the progress of pancreatitis and

fibrosis (71).

Research on CCL2’s role in CP progression is limited.

Interestingly, alternatively activated macrophages (M2) secrete

PDGF and TGF-b, which activate PSCs and promote fibrosis—a

key factor in CP development (72). This contrasts with the immune

microenvironment in NASH (39), highlighting the plasticity of

macrophages and suggesting that CCL2 regulates immune cells

differently across organs. Additionally, during chronic pancreatic

inflammation, CCL2 secretion and NF-kB pathway activation

persist (73).
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Cardiovascular fibrotic diseases

Cardiovascular diseases remain a leading cause of morbidity

and mortality worldwide (74). Recent studies highlight the

inflammatory immune response as a central mechanism in their

pathogenesis (75). Among the key mediators, CCL2 plays a crucial

role in regulating leukocyte migration and infiltration in various

cardiovascular diseases. Consequently, CCL2/CCR2 inhibitors are

being explored as novel therapeutic targets for inflammation-

related cardiovascular conditions (76).
Myocardial infarction

During the healing process of Myocardial infarction (MI),

macrophages undergo dynamic polarization. CCL2 is

differentially expressed in LPS-induced M1 and IL-4-induced M2

macrophages (77). Unlike in the liver and pancreas, CCL2

deficiency in the heart results in reduced total macrophage and

M1 macrophage numbers in the infarcted area, while M2

macrophages increase (78). This suggests that CCL2 is a pivotal

regulator of macrophage polarization during MI healing, both in

vivo and in vitro, and it specifically promotes M1 polarization. The

organ-specific and environment-dependent nature of CCL2’s role

likely explains these differential effects.

The repair process following MI is critical for cardiac recovery.

In response to acute myocardial ischemia-reperfusion (MIR),

macrophages infiltrate damaged heart tissue and shift their

polarization to manage acute inflammation and subsequent

fibrotic remodeling. Studies indicate that CCL2/CCR2 signaling in

macrophages facilitates the transition from acute injury to chronic

fibrosis in MIR in mice through the NLRP3 inflammatory pathway

and phenotypic changes (79). Furthermore, IL-34 enhances CCL2

expression by maintaining NF-kB pathway activation, aggravating

cardiac remodeling and fibrosis after reperfusion injury (80).
Other cardiovascular
inflammatory diseases

A meta-analysis by Georgakis et al. demonstrated that

circulating CCL2 levels, synonymous with CCL2, are strongly

associated with cardiovascular mortality (81). Elevated CCL2

levels in atherosclerotic plaques correlate with increased plaque

vulnerability, and persistently high circulating CCL2 levels heighten

the risk of adverse outcomes following plaque removal (82).

Moreover, circulating CCL2 levels appear genetically influenced;

higher levels are linked to a greater risk of stroke, suggesting that

CCL2-targeted therapies might reduce stroke incidence (83).

CCL2 is also implicated in the regulation of circadian rhythms

during atherosclerosis progression. Winter et al. (84) revealed that

CCL2 is a key chemokine at atherosclerotic sites and that the chronic

inflammation of large blood vessels depends on the rhythmic release

of CCL2, which peaks in the early stage and declines later. This

discovery opens new avenues for chronotherapy targeting the CCL2-

CCR2 axis in atherosclerosis treatment.
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Mast cells (MCs), known for their roles in allergy and parasitic

infections, are also pivotal in inflammation and fibrosis. CCL2 acts

as an activator of MCs (85). Luo et al. (86) highlighted that early

MC-fibroblast interaction and the stem cell factor/mast cell/CCL2/

monocyte/macrophage axis are critical for initiating myocardial

fibrosis. Additionally, hypoxia, which can be both a cause and a

result of heart failure, induces CCL2 expression in both right

ventricle (RV) and left ventricle (LV) of mice, potentially

contributing to cardiac inflammation, fibrosis, and ventricular

dysfunction (87).
Pulmonary fibrotic diseases

Pulmonary inflammatory lesions tend to progress to fibrosis

more consistently than in other organ systems, with CCL2 playing a

significant role in this process. Pulmonary fibrosis is a multicellular

phenomenon involving alveolar epithelial cells (AECs), recruited

monocytes/macrophages, and fibroblasts. Several cell types,

including AECs, produce CCL2, which promotes fibrosis via

CCR2 activation (88). CCR2 signaling is therefore crucial for the

development and progression of pulmonary fibrosis.
Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial

lung disease characterized by chronic inflammation, AEC damage,

and excessive deposition of extracellular matrix proteins, with

myofibroblasts acting as the main effector cells (89). In mouse

models of bleomycin-induced pulmonary fibrosis, transcriptional

analysis has shown a significant increase in CCL2 expression (90,

91). FoxF1, an endothelial transcription factor, has also been

implicated in pulmonary fibrosis. In vitro, studies reveal that

FoxF1-deficient endothelial cells enhance lung fibroblast

proliferation, invasion, activation, and macrophage migration by

secreting chemokines such as CCL2, collectively contributing to

fibrosis (92). Moreover, IL-33 treatment increases CCL2 and

CXCL2 production in NFATc3+/+ macrophages, but not in

NFATc3+/- mice, suggesting that NFATc3 regulates pulmonary

fibrosis by regulating CCL2 and CXCL2 expression in

macrophages (93).

Myofibroblasts play a central role in IPF pathogenesis. Single-

cell RNA sequencing (scRNA-seq) data from IPF patients indicates

that the CCL2/CCR2 axis is essential for M1 macrophage

polarization (94). Pathogenesis varies among IPF subgroups, with

ligand-receptor analysis suggesting a monocyte-macrophage

chemotactic axis, potentially involving CCL2-CCR2, particularly

in cilia-rich subgroups (95). Immunohistochemical analysis of

human lung tissues has shown that activated IPF fibroblasts

possess high contractile forces and produce abundant CCL2 (96),

with the NF-kB signaling pathway contributing to CCL2

production and release in these fibroblasts (97). Another study on

acute exacerbation of IPF found significantly higher CCL2

concentrations in bronchoalveolar lavage fluid compared to

serum, indicating a localized inflammatory response (98).
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Radiation-induced pulmonary fibrosis

Radiation exposure to the lungs triggers a damage response,

including the release of cytokines and chemotactic mediators,

signaling the recruitment of immune cells for inflammation and

wound healing. A recent study has reported significantly elevated

CCL2 expression in macrophages of irradiated lungs, which

potentially stimulates the fibrotic phenotype in lung fibroblasts

(99). Following radiation, bone marrow-derived inflammatory

monocytes migrate to the lungs, where CCR2+ monocyte-derived

macrophages infiltrate andmay play a critical role in the development

of Radiation-induced pulmonary fibrosis (RIPF) (100).
Other pulmonary fibrotic diseases

CCL2 also contributes to receptor-mediated pulmonary fibrosis

progression. Adhesion G Protein-Coupled Receptor F5 (ADGRF5)

is a key regulator of lung surfactant homeostasis in type II alveolar

cells. Research has shown that ADGRF5 can regulate CCL2 gene

expression, maintaining its potential role in lung immune

homeostasis. Disruption of ADGRF5 results in airway

inflammation mediated by type 2 immune response and CCL2-

induced inflammation (101). In a mouse model of pulmonary

fibrosis, Leucine-Rich Repeat Kinase 2 (LRRK2) expression is

significantly reduced in alveolar type II epithelial (ATII) cells, and

LRRK2-deficient ATII cells exhibit an enhanced ability to recruit

profibrotic macrophages via the CCL2/CCR2 axis. This recruitment

triggers extensive macrophage-associated profibrotic responses and

progressive pulmonary fibrosis (102).

Additionally, while IL-17 is known for its pro-inflammatory

role in the intestine, it also contributes to parenchymal fibrosis in

chronic pulmonary graft-versus-host disease (cpGVHD). Blocking

IL-17A leads to reduced CCL2 expression in cpGVHD-related

pulmonary fibrosis (103), though this effect is not observed in

kidney diseases (104).
Renal fibrotic diseases

During kidney injury, CCL2 recruits immune cells such as

macrophages and T cells to the site of injury, activating them and

triggering the release of additional inflammatory mediators. These

mediators not only worsen kidney damage but also promote

fibrosis. Proteomic analysis of an in vitro model of renal fibrosis

identified CCL2 as a key factor contributing to collagen deposition

in the kidney (105).
Unilateral ureteral obstruction

Unilateral ureteral obstruction (UUO) can lead to renal

interstitial fibrosis and is a potential precursor to chronic kidney

disease (CKD), promoting extensive research into the underlying

mechanisms. As mentioned earlier, activation of the Notch

signaling pathway is known to upregulate CCL2 expression,
Frontiers in Immunology 06
contributing to fibrosis in organs like the liver (41). Recent

animal studies have shown that Notch3 is newly expressed in

damaged renal epithelium at early stages of CKD. Notably,

systemic deficiency of Notch3 prevents leukocyte invasion and

organ fibrosis, suggesting that targeting Notch3 may protect the

epithelial epithelium and interrupt pro-inflammatory signaling,

thereby alleviating kidney injury (106). Brandt et al. (107) utilized

chimeric mice with Notch3 deficiency in hematopoietic cells and/or

resident histiocytes to analyze renal fibrosis and inflammation

following UUO. Their results indicated that a pro-inflammatory

environment is characterized by upregulation of CCL2 and CCL5,

which are regulated in a Notch3-dependent manner.

A recent study identified increased Twist1 expression in both

the UUO mouse model and IgA nephropathy. Knockout of Twist1

in macrophages partially inhibited CCL2-mediated macrophage

chemotaxis and suppressed M2 macrophage polarization, thereby

mitigating fibrosis progression (108). Conversely, IL-15 has been

shown to reduce CCL2 expression in the UUO mouse model,

alleviating fibrosis and decreasing the likelihood of progression to

CKD (109). Nicotinamide exhibits similar effects (110).
Other renal fibrotic diseases

In CKD patients, angiopoietin-1 has been found to reduce the

expression of chemokine CCL2 in fibrotic renal endothelial cells.

In contrast, angiopoietin-2 induces CCL2 expression in

endothelial cells, which promotes macrophage infiltration and

increases apoptosis in fibrotic renal endothelial cells. This process

negatively impacts the renal survival rate in CKD patients (111).

Consistently, angiotensin-converting enzyme 2 (ACE2), which is

inversely correlated with CCL2 expression, is strongly associated

with CKD and is known to limit renal fibrosis (112). Another

important factor is protease-activated receptor 2 (PAR2), which

is involved in renal inflammation and fibrosis. Activation of

PAR2 in cultured renal tubular epithelial cells triggers

extracellular signal-regulated kinase signaling and CCL2

secretion, contributing to tubulointerstitial inflammation and

fibrosis (113).

Abnormal immune system activation is also implicated in CKD

development. Wilkening et al. (114) analyzed glomerular CCR2

expression in focal segmental glomerulosclerosis (FSGS) and

demonstrated that macrophages expressing CCR2 contribute to

kidney damage and fibrosis remodeling in conditions such as

glomerulonephritis and diabetic nephropathy. In contrast,

atypical chemokine receptor 2 (ACKR2), also known as D6,

degrades CCL2, limiting the recruitment of immune cells and

myofibroblasts to renal mesenchymal cells. This degradation

inhibits renal inflammation and fibrosis remodeling in

glomerulonephritis (115).

Kashyap et al. (116)reported that CCL2 deficiency protects

against chronic kidney damage in a mouse model of renovascular

hypertension caused by renal artery stenosis (RAS). The deficiency

leads to reduced monocyte infiltration and lower expression of

CCR2 and CD206, suggesting that CCL2 is a key mediator of kidney

injury in renovascular hypertension.
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Bone marrow fibrotic diseases

Myelofibrosis (MF) is a prominent clinical feature observed in

patients with myeloproliferative neoplasms (MPN). Prior research

has established a correlation between the progression of MF and the

aberrant expression of cytokines (117). Within the context of

myeloproliferative disorders, CCL2 and its associated signaling

pathways may play a critical role. CCL2 is thought to be involved

in both the proliferation and differentiation of fibrosis-associated

cells, thereby impacting the bone marrow microenvironment.
MPN

A recent investigation revealed that among the MPN cohort, the

proportion of CCR2+ cells is significantly associated with the

severity of myelofibrosis in patients, and CCR2 expression on

CD34+ cells correlates with higher-risk classifications in MF and

the presence of circulating blast cells (118). Additionally,

polymorphisms in the CCL2 gene have been shown to influence

the bone marrow microenvironment in MPN, with homozygosity

for the CCL2 rs1024611 SNP linked to diminished survival in

individuals with primary myelofibrosis (119). The -2518 A/G SNP

of CCL2 has emerged as a potential susceptibility marker for MPN

and myelofibrosis (120).
Systemic mastocytosis

As noted in the aforementioned myeloproliferative neoplasms,

there is also a frequent elevation in the production of profibrotic and

angiogenic cytokines in Systemic mastocytosis (SM), which contributes

to alterations in the bone marrow microenvironment. A defining

characteristic of SM is the abnormal accumulation of neoplastic MCs

harboring the activating KIT mutation D816V within the bone

marrow. Recent studies indicate that KIT D816V enhances CCL2

expression in abnormalMCs via the classical NF-kB signaling pathway.

Furthermore, it has been demonstrated that CCL2 derived from MCs

facilitates the migration of endothelial cells in SM, both in vitro and in

vivo, thereby modifying the tumor microenvironment to favor fibrosis

and angiogenesis. Serum CCL2 levels are markedly elevated in SM

patients, with significantly higher concentrations observed in

individuals with advanced SM compared to asymptomatic SM

patients and those with cutaneous mastocytosis. Importantly, CCL2

levels exhibit only a moderate correlation with MCs infiltration in the

bone marrow and instances of myelofibrosis (121).
Acute myeloid leukemia

Literature indicates that the CCL2/CCR2 axis may be implicated

in cell migration in acute AML. However, plasma CCL2 levels in

Acute myeloid leukemia (AML) patients are reported to be lower

than those in healthy donors (122). This finding contrasts with earlier

observations made by Manzur et al. (123), highlighting the need for

further investigation.
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Other fibrotic diseases

Fibrosis of the skin and internal organs is a hallmark of systemic

sclerosis (SSc), with monocytes playing a crucial role in the skin’s

inflammatory response (124). Studies have shown that CCL2

expression is significantly higher in SSc mouse models compared

to normal mice (125), and CCL2 holds significant promise as a

valuable biological marker for SSc (126). Additionally, knockout of

STAT6 in SSc mouse models significantly reduces the expression of

CCL2 and CD206, indicating that CCL2 is involved in the immune

response that drives skin and organ fibrosis (127).

Experimental autoimmune orchitis (EAO) serves as an animal

model for studying chronic testicular inflammation and fibrosis,

replicating pathogenic changes similar to those seen in humans.

During EAO, there is an increase in pro-inflammatory CCL2

expression, which coincides with leukocyte infiltration into the

testicular parenchyma. Elevated levels of activin A are correlated

with the severity of EAO, while high CCL2 levels mediate leukocyte

transport and the recruitment of macrophages through its receptor,

CCR2. These findings suggest that both CCR2 and activin A

promote fibrosis in testicular inflammation by regulating

macrophage function (128).
CCL2/CCR2 axis as a diagnostic
marker for fibrotic diseases

Renal diseases

Urine is an easily obtainable sample that can reflect the severity

of kidney disease, making it a focus for studying CCL2 levels as a

diagnostic tool and for predicting prognosis. Urrego-Callejas et al.

(129) included 120 systemic lupus erythematosus (SLE) patients

and found that serum anti-C1Q antibody and urinary

ceruloplasmin levels were associated with CCL2 activity in

chronic injury. Similarly, in 125 patients with active lupus

nephritis (LN), urinary CCL2 levels were positively correlated

with interstitial inflammation, glomerulosclerosis, interstitial

fibrosis, and tubular atrophy based on kidney biopsies (130).

Standard LN therapies, like mycophenolate and rapamycin,

improve glomerular sclerosis by downregulating CCL2 and

reducing fibrosis-related proteins (131).

Studies have shown that excessive cisplatin administration

induces renal interstitial fibrosis in C57BL/6 mice, and CCL2

serves as a marker of renal injury in this model (132).

Additionally, high urinary CCL2 and low urinary epidermal

growth factor (EGF) levels are associated with renal

tubulointerstitial fibrosis (133), suggesting that urinary CCL2

could be a useful diagnostic marker for CKD patients.

Identifying early prognostic markers in high-risk renal transplant

recipients can help optimize immunosuppressive therapy and

improve outcomes. The ratio of CCL2 to creatinine (CCL2:Cr) has

been shown to predict BK nephropathy; however, the diagnostic

value of CCL2 for BKV infection in immunocompromised transplant

recipients still needs further investigation (134).
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Cardiovascular disease

Macrophages drive vasculopathy changes in Takayasu arteritis

(TA) through phenotypic transformation. Peripheral CCL2 levels

fluctuate at different disease stages, suggesting CCL2 as a potential

biomarker for disease activity (135). In human atria, markers of

leukocyte infiltration and matrix degradation indicate severe

inflammation—a key factor in atrial fibrillation—linked to CCL2

(136). In a study of 131 patients undergoing aortic valve

replacement, CCL2 was identified as an inflammatory marker for

aortic remodeling (137). In diabetic cardiomyopathy (DCM), both

serum CCL2 and myocardial CCL2 mRNA levels are elevated (138).
IBD

An interesting study of 33 children with IBD found that blood

CCL2 levels were significantly higher in patients with CD compared

to those with UC at all stages of the disease (139). This suggests that

CCL2 could serve as a diagnostic biomarker for CD and help

differentiate subtypes of pediatric IBD. However, it remains

unclear if the same pattern is present in adult IBD patients. Given

that both heart failure and IBD have immune-related pathogenesis,

a study identified 34 genes associated with immune diseases,

including CCL2, through Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis (140).
IPF

As an inflammation-related gene, CCL2 may help predict the

prognosis of IPF (141). While combined detection of CCL2, KL-6,

and CXCL13 improves diagnostic accuracy for idiopathic

interstitial pneumonia (IIP), it does not effectively differentiate

among lung fibrosis diseases (142). Interestingly, serum CCL2

levels may help distinguish between IPF and fibrotic

hypersensitivity pneumonitis (fHP), two conditions that are often

difficult to differentiate (143).
CCL2 as a therapeutic target for
fibrotic diseases

Recent research has identified CCL2 as a key therapeutic target

for treating fibrotic diseases across various organs. Its significance in

fibrosis pathogenesis has led to the development of diverse

treatment strategies, including traditional Chinese medicines

(TCM), chemical agents, and application of nanotechnology. The

broad potential of targeting CCL2 underscores the need for further

research to fully leverage its role in creating effective antifibrotic

therapies. CCR2 antagonists show significant potential for treating

fibrotic diseases by specifically blocking CCR2 receptors. These

antagonists have demonstrated positive effects in various

conditions, including liver, lung, and renal fibrosis. Studies

suggest that CCR2 antagonists reduce inflammatory cell
Frontiers in Immunology 08
infiltration, inhibit profibrotic gene expression, and slow fibrosis

progression by modulating relevant signaling pathways.
Liver diseases

In addition to the previously mentioned GILZ and SPHK1 that

play a role in regulating CCL2 expression and thereby affecting liver

fibrosis progression (54, 55), several pharmacological agents can

also mitigate liver fibrosis by targeting the CCL2/CCR2 signaling

pathway. Moreover, recent developments in nanotechnology have

shown promise in the treatment of liver fibrosis through the

modulation of CCL2 levels.

A recent investigation has introduced an innovative strategy

involving the silencing of CCR2 through small interfering RNA

(siCcr2) encapsulated within tetrahedron framework DNA

nanostructure (tFNA) vehicle (tFNA-siCcr2). This method

effectively overcomes the challenges associated with the in vivo

efficacy of siCcr2 by facilitating targeted delivery to the liver, and

resulting in improved therapeutic effects for liver fibrosis (144).

Additionally, genetic engineering is being explored to create

transgenic nano decoys that interfere with liver fibrosis. These

decoys, engineered to overexpress CCR2 on their surface, can

neutralize CCL2 levels. When loaded with curcumin and delivered

to the liver, this combined therapy effectively reduces macrophage

infiltration, offering promising therapeutic outcomes (145).

TCM formulations like Dahuang Zhizhu Pill, Tianhuang

formula, and Fu-Gan-Wan have been shown to reduce the

expression of CCL2 and its receptor CCR2 in the liver, particularly

targeting CCR2+ macrophages (146–148). Similarly, Fuzheng Huayu

(FZHY) modulates macrophage recruitment and polarization via

CCL2 and CX3CL1, providing anti-inflammatory and antifibrotic

effects. The Ganxianfang formula exhibits comparable benefits and

may offer superior protective effects compared to FZHY (149). These

findings suggest that TCM’s antifibrotic effects primarily result from

inhibiting CCL2-induced macrophage recruitment to fibrotic sites,

though the exact mechanisms—direct or indirect—remain

unclear.Cenicriviroc (CVC) has gained attention for its therapeutic

value in liver diseases. Krenkel et al. (150) conducted studies in

NAFLD patients and C57BL/6 mice, demonstrating that CVC is

effective and safe. CVC also enhances the therapeutic effect of

fibroblast growth factor 21 on NASH, primarily by reducing liver

fibrosis (151). In a mouse model of liver fibrosis induced by CCL4

and using Ccr2 knockout (Ccr2-/-) mice, Guo et al. (152) showed that

CVC treatment was effective in both mice and human liver samples.

Yu et al. (153) further demonstrated that CVC was effective in

treating cholestatic liver injury in bile duct-ligated rats and Mdr2

(Abcb4-/-) mouse models. Additionally, Mbade et al. (154) found that

CVC could prevent liver injury and steatosis in an alcoholic liver

disease mouse model.
Bile duct diseases

The CCL2/CCR2 axis’s chemotactic effect on monocytes and

macrophages is a key driver of primary sclerosing cholangitis (PSC)
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progression. Studies have shown a positive correlation between

serum CCL2 levels and fibrosis severity in primary biliary

cholangitis (PBC) patients (155). In acute sclerosing cholangitis

mouse models treated with the apoptosis-inhibiting BV6 inhibitor,

both CVC treatment and CCR2 deletion were found to reduce

macrophage accumulation, liver damage, and biliary fibrosis (156).

Similarly, Reuveni et al. (157) observed improvements in primary

biliary cholangitis models using Cx3cr1gfp/+ and Ccr2-/-Cx3cr1gfp/+

mice following intraperitoneal CVC injection.
Intestinal diseases

In the treatment of IBD, agonists or inhibitors targeting specific

factors or receptors have been developed. For example, SARI,

commonly used as a colon cancer inhibitor, has been found to

increase CCL2 production when deficient, whereas knocking out

CCR2 can block this effect, thereby reducing colitis symptoms

(158). Dimethyl itaconate decreases CCL2 production in epithelial

ce l ls , reduces macrophage recruitment to the tumor

microenvironment, alleviates the hyperinflammatory state of UC,

and lowers the risk of colitis-associated cancer (159).

Several other drugs directly target the CCL2/CCR2 axis.

Luteolin and homoharringtonine both exhibit strong anti-

inflammatory effects by inhibiting NF-kB signaling and reducing

CCL2 production in colonic tissues (160, 161). Nobiletin reduces

CCL2 expression and collagen deposition in colitis-induced mice

(162), while berberine and geniposide show similar effects in

chronic colitis (163, 164).
Pulmonary diseases

Excessive inflammation in silicosis is triggered by silica

exposure. Research has shown that the Caspase-1 inhibitor VX-

765 reduces the infiltration of inflammatory M1 alveolar

macrophages and decreases CCL2 expression, thereby

mitigating the inflammatory response (165). TAS-115, a novel

polytyrosine kinase inhibitor, has been found to inhibit the

phosphorylation of the macrophage colony-stimulating factor

receptor c-FMS in mouse bone marrow-derived macrophages,

both in vivo and in vitro. This inhibition reduces CCL2

production, highlighting CCL2 as a key molecule in pulmonary

fibrosis development (166).
Pancreatic diseases

Oxidative stress is a major pathway in pancreatitis pathogenesis.

Hydroxytyrosol has anti-inflammatory and antioxidant effects,

reducing CCL2 release in pancreatic and colon tissues (167).

Additionally, the classic TCM formulation known as Dahuang

Chaihu Decoction has been shown to lower the levels of CCL2 in

the pancreas, which in turn reduces macrophage infiltration and

fibrosis associated with CP (168).
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Renal diseases

In a glomerulosclerosis model, the use of a CCR2 antagonist

(CCR2A) can inhibit renal macrophage accumulation and enhance the

effects of conventional treatments like angiotensin-converting enzyme

inhibitors (ACEi) (169). CKD often leads to complications such as salt-

sensitive (SS) hypertension. Daily intraperitoneal administration of a

CCR2 antagonist (RS 102895) during active disease stages has been

shown to reduce renal leukocyte infiltration, kidney injury, and

hypertension incidence (170). Additionally, bladder outlet

obstruction (BOO) causes bladder remodeling, affecting its structure

and function. Wang et al. (171) demonstrated that treatment with a

CCR2 antagonist (RS504393) may offer a therapeutic strategy for

managing bladder remodeling in such conditions.
Clinical applications of CCL2/
CCR2 antagonists

In recent years, a considerable number of clinical studies

focusing on adult patients have been conducted to explore the

effects of CCL2/CCR2 antagonists (Figure 3). Currently, significant

advancements have been made in clinical research concerning the

treatment of NASH-related liver fibrosis using CVC, with clinical

trials advancing to Phase III. It is widely acknowledged that the

medication shows good tolerability, with a safety profile similar to

that of a placebo (172). Initial results from ongoing trials indicate

that CVC may offer additional benefits for patients suffering from

advanced fibrosis (173, 174). However, the combination of CVC

with Tropifexor did not yield improved therapeutic efficacy (175).

Although the Phase III clinical trial demonstrated good therapeutic

efficacy, it still lacks histological data from clinical studies to

confirm its efficacy in the treatment of liver fibrosis (176).

Primary sclerosing cholangitis (PSC) is a chronic cholestatic

condition that can result in liver fibrosis. A multicenter clinical trial

conducted with adult patients diagnosed with PSC revealed that

after 24 weeks of treatment with CVC, there was a moderate

decrease in the surrogate marker of serum alkaline phosphatase

(ALP), and the therapy was well tolerated by the participants (177).

In addition to fibrotic diseases, there has been notable

advancement in clinical trials involving CCL2/CCR2 antagonists

for other conditions, including pancreatic ductal adenocarcinoma

(PDAC) (178, 179) and coronary stent restenosis (180). Future

exploration of larger clinical studies in these domains is

warranted (Table 1).
Conclusions and future perspectives

Recent research underscores the crucial role of the CCL2/CCR2

axis in the development and progression of inflammatory and

fibrotic diseases across various organs (Table 2). While the

mechanisms by which CCL2 mediates cell interactions differ

slightly between organs (Figure 4), its primary role in most

fibrotic conditions is to recruit macrophages to sites of tissue
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FIGURE 3

Schematic representation of clinical trials for CCL2/CCR2 inhibitors. This figure was created with biogdp.com.
TABLE 1 Clinical trials of CCR2/CCL2 antagonists in treating inflammatory and fibrotic diseases.

Drug(s) Mechanism Disease
Research
Stage

Efficacy and safety
Trial

identification

Authors
(year)

[reference]

CVC;
Tropifexor
(TXR)

TXR, a potent nonbile
acid FXR agonist

NASH IIb
Combination therapy safety similar
to monotherapy; no significant

improvement in efficacy.
NCT03517540

Anstee et al.
(2023) (175)

CVC CCR2/5 dual antagonist

NASH

II
While overall safety remains

satisfactory, the patient’s condition
has not improved significantly.

NCT03059446
.Francque et al.

(2024)
(172)

IIb
Safe and improves liver fibrosis in

some patients.
NCT02217475

Friedman et al.
(2018) (173)

III
Good efficacy and tolerability;

significant effect on
advanced fibrosis.

NCT02217475
Ratziu et al.
(2020) (174)

III
Safe, but did not meet histological

efficacy criteria.
NCT03028740

Anstee et al.
(2024) (176)

PSC II
Demonstrated good efficacy

and safety.
NCT02653625

Eksteen et al.
(2021) (177)

PF-
04136309

PF-04136309(CCR2
antagonist) in
combination

with FOLFIRINOX

PDAC Ib
Good tolerance, most patients

experienced remission.
NCT01413022

Nywening et al.
(2016) (178)

PF-
04136309

PF-04136309 in
combination
with nab-

paclitaxel/gemcitabine

PDAC Ib
High incidence of lung toxicity;
combination therapy showed no
better efficacy than monotherapy.

NCT02732938
Noel et al.
(2020)
(179)

Bindarit
Selective inhibitor

of CCL2
Coronary

stent restenosis
II

Showed therapeutic effect with good
tolerability; did not reach a

primary endpoint.
NCT01269242

Colombo et al.
(2016) (180)
F
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CVC, Cenicriviroc; NASH, Nonalcoholic steatohepatitis; PSC, Primary sclerosing cholangitis; PDAC, Pancreatic ductal adenocarcinoma.
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damage. An exception is viral hepatitis, where CCL2 expression is

downregulated in liver cells, contributing to an immunosuppressive

environment that allows viral persistence, a key early step in the

disease’s pathogenesis.
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In pancreatic fibrosis, the role of the CCL2/CCR2 axis is less

understood. It remains unclear whether CCL2 is the primary

chemokine driving macrophage infiltration in the pancreas or

which genes trigger its activation during fibrosis. Recent evidence
TABLE 2 The role of CCL2/CCR2 axis in organ fibrosis.

Disease Main role of CCL2/CCR2 axis in fibrosis Reference

Hepatic fibrosis The CCL2/CCR2 axis not only attracts chemotactic macrophages to the liver but also promotes M1 polarization of macrophages,
activating hepatic stellate cells (HSCs) via inflammatory factors like IL-1b and TNF-a and signaling pathways such as NF-kB.

(39, 41, 43)

Intestinal fibrosis In intestinal tissues, the CCL2/CCR2 axis attracts chemotactic monocytes/macrophages to fibrotic regions, induces M2
polarization, and participates in inflammation-mediated fibrosis through factors like IL-6 and IL-17.

(57, 59, 60, 62,
65, 67, 69)

Cardiovascular fibrosis The CCL2/CCR2 axis recruit leukocytes to inflammatory areas and promotes monocyte differentiation into macrophages,
where M1-type macrophages aid in myocardial healing.

(77, 78)

Pulmonary fibrosis In pulmonary fibrosis, alveolar epithelial cells and macrophages are primary sources of CCL2. They release IL-4 and IL-13
upon inflammatory stimulation, which activates myofibroblasts and promotes fibrosis progression.

(94–97)

Renal fibrosis In kidney injury, various cells such as renal tubular epithelial cells, macrophages, and fibroblasts release CCL2. Binding to
CCR2 recruits chemotactic monocytes to the damaged site, releasing TGF-b and IL-6.

(106–108)
FIGURE 4

The role of CCL2 in mediating intercellular interactions within fibrotic tissues in various organs. (A). In liver fibrosis, CCL2 plays a critical role by
recruiting macrophages to the fibrotic regions and facilitating their M2 polarization, which subsequently activates hepatic stellate cells (HSCs) and
promotes collagen deposition. (B). In intestinal fibrosis, Ly6Chi monocytes are predominant, and an increase in their proportion significantly
enhances the expression of CCL2. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) can release IL-10, which facilitates the M2
polarization of intestinal macrophages, subsequently contributing to the development of fibrosis. (C). In pancreatic fibrosis, M2 macrophages secrete
pro-fibrotic factors that activate pancreatic stellate cells (PSCs), a process similar to that in liver fibrosis. (D). In lung fibrosis, alveolar epithelial cells
(AECs) exhibit increased CCL2 production, facilitating macrophage recruitment to fibrotic regions. Additionally, activated fibroblasts release
significant amounts of CCL2 via NF-kB signaling, contributing to collagen accumulation. This figure was created with biogdp.com.
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suggests that SPHK1 is critical in promoting fibrosis in CP models

(181). Given SPHK1’s regulatory effect on CCL2 in liver fibrosis, it

is worth investigating if a similar mechanism occurs in SPHK1-

induced pancreatic fibrosis.

Another area needing exploration is the role of CCL2 in pain

associated with fibrotic diseases. Emerging studies have linked

CCL2 to pancreatic tumor growth, neural invasion, and

pancreatic cancer-related pain (182, 183). Since pain is a

common, debilitating symptom in many inflammatory and

fibrotic conditions, such as CP (184), understanding how CCL2

contributes to neural invasion and pain mechanisms could reveal

new research and treatment avenues.

The therapeutic potential of targeting the CCL2/CCR2 axis is

promising. Various strategies, including natural compounds,

chemical agents, and traditional Chinese medicine, have

been explored to modulate this pathway in treating fibrotic

diseases, highlighting its clinical translation potential. Beyond

inflammatory and fibrotic conditions, targeting CCL2 could also

enhance cancer treatment, particularly immunotherapy in cancers

such as esophageal squamous cell carcinoma (185, 186) and

breast cancer (187). Circulating CCL2 levels may also serve as

biomarkers for predicting the onset, progression, and prognosis

of various cancers, including liver and prostate cancers.

Further research is needed to determine if CCL2 has similar

predictive value in other cancers and its potential to improve

chemotherapy outcomes.

Clinical trials of CCL2/CCR2 antagonists are ongoing

for various diseases. In conclusion, recent studies investigating

the role of CCR2 antagonists in treating fibrotic diseases have

shown promising safety profiles, with the majority of participants

reporting significant symptom relief. However, there is an urgent

necessity for more sophisticated assessment methodologies to

rigorously evaluate the effectiveness of CCL2/CCR2 inhibitors in

various fibrotic conditions. Notwithstanding these challenges,

CCL2 is anticipated to undergo further evaluation as a viable

therapeutic target for a broader spectrum of organ-related

diseases, potentially providing patients with innovative and

effective treatment alternatives.
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