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CD80 is a molecule that plays an important role in the immune system, especially

during T-cell activation, and its ligands are mainly CD28, PD-L1, and CTLA-4.

CD80 is expressed on the surface of tumor cells, and it can be used as a

molecular target in the process of T-cell anti-tumor immune response. In

autoimmune diseases, CD80 can also regulate autoimmune diseases by

modulating immunity. This review mainly focus on the role of CD80 in the

immune system, as well as the research progress on the application of CD80-

related immunopharmaceuticals in the treatment of tumors and

autoimmune diseases.
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1 The role of CD80 in the immune system

CD80, also known as B7, B7.1, or BB1, is a member of the immunoglobulin superfamily

with a size of 44-54 kDa and is expressed by a variety of cells, including activated B cells,

T cells, macrophages, dendritic cells, and tumor cells (1–3). Its receptors are mainly CD28,

PD-L1, and CTLA-4 (4–6). CD80 plays a crucial role in T cell activation.
1.1 CD80 interacts with CD28 molecules on the surface
of T cells

The molecule now known as CD80 was initially described as a human B cell-associated

activation antigen (7). Previous studies have shown that the CD80 molecule on the surface of

B cells acts as the receptor for the CD28 molecule on the surface of T cells. Blocking the

interaction of CD28 with its natural ligand CD80 has been found to weaken the activity of

human T lymphocytes (8, 9). T-cell activation requires the activation of dual signaling

systems. The TCR-CD3 complex combined with the antigen peptide-MHC complex

mediates the first signal for T cell activation. The second signal involves the combination

of multiple pairs of costimulatory molecules on T cells and antigen-presenting cells, with the
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most important of which is the combination of the CD28

costimulatory molecule on the surface of T cells and the CD80

molecule on the antigen-presenting cells (10). In the dual signaling

system of T-cell activation, the absence of CD28 activation results in

excessive activation-induced cell death (AICD). However, after CD80

binds to CD28, the AICD of T cells can be avoided, leading to more

durable anti-tumor activity of T cells (11). Furthermore, the

combination of CD80 and CD28 can also enhance the secretion of

cytokines such as IL-2 by T cells. Moreover, it can enhance the

proliferation of CD4+ T cells and the cytotoxic activity of both CD4+

and CD8+ T cells (4). Recent studies have shown that inadequate

activity of the costimulatory molecule CD28 on T cells can lead to a

decrease in the anti-tumor activity of T cells (12). However, following

an increase in CD28 activation signal, the anti-tumor activity of T

cells is enhanced (13, 14). Consequently, the activation of the CD28

molecule on the surface of T cells by CD80 may enhance the killing

efficiency of T cells against solid tumors, offering a new approach to

immunotherapy.
1.2 CD80 interacts with PD-L1 on the
surface of tumor cells

Programmed cell death 1 ligand 1 (PD-L1) is also known as

cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1). It

is a protein encoded by the CD274 gene in humans. As early as

1999, researchers first defined a previously unknown costimulatory

molecule, PD-L1, as the third member of the B7 family. They

suggested that B7-H1 (PD-L1) may be involved in the negative

regulation of cell-mediated immune responses (15). Subsequently,

some researchers have found that the combination of PD-L1 with

its ligand PD-1 can lead to the suppression of T cell receptor-

mediated lymphocyte proliferation and cytokine secretion. In

addition, PD-1 signaling can partially inhibit the level of CD28-

mediated costimulation (16). The interaction between PD-L1 on

tumor cells and PD-1 on the surface of T cells can result in T cell

immunosuppression. The mechanism involves the interaction

between PD-1 on the surface of T cells and PD-L1 on the surface

of APC cells, which leads to PD-1 tyrosine phosphorylation and

recruitment of SHP2. This process inhibits the activation of TCR

and CD28, thereby reducing T cell immune response (17, 18). The

failure of T cells’ immune response contributes to tumor metastasis,

invasion, and recurrence during the anti-tumor immune process.

However, Haile ST et al. discovered that by transfecting human

tumor cells with a gene encoding the costimulatory molecule CD80,

they could reduce PD-L1-mediated immunosuppression by tumor

cells and restore T-cell activation (19). Subsequently, Chaudhri A

et al. found that PD-L1-CD80 could interact in cis within the same

cell, but not in trans between two cells. This competitive interaction

blocks the binding of PD-L1 to PD-1 or B7-1 to CD28 (6). Recent

studies have shown that the interaction between CD80 and PD-L1

interferes with the binding of PD-L1 of tumor cells to the inhibitory

receptor PD-1 on T cells, thereby promoting the immune response

of T cells (20). By expressing CD80 and PD-L1 on the surface of the
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same APC cells in vitro, some researchers have found that they bind

in a cis-acting manner to form a CD80-PD-L1 cis-heterodimer,

which plays an important role in the experiment. On one hand, the

CD80 cis-heterodimer can activate the costimulatory molecule

CD28 and maintain the function of T cell activation. On one

hand, the CD80 cis-heterodimer can activate the costimulatory

molecule CD28 and maintain the function of T cell activation. On

the other hand, the interaction between CD80 and PD-L1 interferes

with the binding of PD-L1 on tumor cells to the inhibitory receptor

PD-1 on T cells, thereby promoting T cell immune response (20,

21). Additionally, it can also inhibit the T cell immunosuppressive

CTLA-4 pathway (21). In addition, the results were validated in a

mouse model. It was found that introducing mutations in the

interaction site on PD-L1 or on CD80 significantly suppressed the

anti-tumor immune response in mice. In other studies, it has also

been reported that PD-L1 on T cells interacts in trans with CD80 on

APCs, and blocking this trans interaction enhances anti-tumor

immunity (22). As early as 2018, researchers combined CAR-T

with PD-1-blocking scFv to treat tumors and achieved significant

anti-tumor efficacy (23). The role played by CD80 is similar to that

of PD-1-blocking scFv, and we guess that blocking the interaction

between PD-L1 and PD-1 by CD80 may have better anti-tumor

efficacy than PD-1-blocking scFv. By applying CD80 antibodies,

fusion proteins, or combining with CAR-T or other therapies, CD80

may offer a new direction for tumor immunotherapy.
1.3 CD80 interacts with CTLA-4 on the
surface of T cells

Linsley, P et al. discovered that CD80 can bind not only to PD-

L1 on the surface of T cells but also interact with the inhibitory

molecule CTLA-4 on the surface of T cells (5). It has also been

demonstrated that the level of T cell antigen receptor stimulation is

regulated by the CD28 costimulation signal and the CTLA-4

inhibitory signal. Compared to the T cell surface molecule CD28,

its inhibitory surface molecule CTLA-4 has a stronger binding

affinity to CD80 (24, 25). Some scholars have reported the crystal

structure of the human CTLA-4/CD80 costimulatory complex at a

resolution of 3.0 A. They found that CTLA-4 and CD80 are

arranged in a surprising periodic pattern in the crystal lattice,

where a bivalent CTLA-4 homodimer bridges a bivalent CD80

homodimer (26). Further studies have shown that CTLA-4

indirectly inhibits CD28 signaling by blocking the APC surface

molecule CD80 through endocytosis (27, 28). This negative

regulation was also observed by other researchers, who found that

CTLA-4 inhibited numerous T cell-dependent immune responses

in vitro and in vivo after binding to CD80 with high affinity (29, 30).

Recen t s tud i e s have found tha t PD-L1 : CD80 c i s -

heterodimerization inhibits PD-L1: PD-1 and CD80: CTLA-4

interactions through different mechanisms, but still allows CD80

to activate T cell costimulatory receptors (21). The increased

interaction among CD80, PD-L1, and CTLA-4 presents a new

concept for anti-tumor immunotherapy.
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1.4 CD80 as a target

1.4.1 CD80 as a tumor target
CD80 is expressed in a variety of blood tumors and solid

tumors, such as Hodgkin lymphoma, non-Hodgkin lymphoma,

pancreatic cancer, breast cancer, lung cancer, etc (31–36). Targeting

CD80, or triggering natural killer cell-mediated killing of cancer

cells by inducing CD80 expression, has been explored as a possible

cancer immunotherapy.

CD80 is expressed in hematoma cells. Dakappagari N et al.

found that CD80 was expressed in both malignant B cells and non-

malignant stromal cells of non-Hodgkin lymphoma (33). CD80

expression was also found in Reed-Sternberg(R-S) and immune

cells in 50 histopathologically confirmed cases of Hodgkin’s

lymphoma (31). Some researchers have found that the IL-4/anti-

CD40 stromal cell culture system can induce high expression of

CD80 in low-grade B-cell lymphoma under in vitro culture

conditions, indicating that it is a potential immunotherapeutic

target (37). Vooijs WC et al. constructed an anti-B7-1

immunotoxin containing an anti-CD80 monoclonal antibody and

saponin as a toxin component, which has a similar affinity to

natural MAb. It can show strong cytotoxicity to CD80+ B cell

line Raji cells, Reed-Sternberg(R-S) cells, and CD80-transfected

epithelial cell line A431 (32). These findings suggest that CD80

may be a potential target for the treatment of hematological tumors,

especially B-cell lymphomas.

CD80 also plays an important role in solid tumors. It has been

found that low expression of CD80 in tumor stem cells may inhibit

the activation of the CD28 molecule on T cells in glioblastoma (38).

Data have shown that the CD80 of pancreatic cancer cells is

upregulated after treatment with TGF-b, and this is required for

migration and invasion of pancreatic tumor cells in vitro (34). The

high expression of CD80 in cutaneous squamous cell carcinoma

cells leads to the weakened killing of T cells against tumor cells by

contact with CTLA4 (39). The researchers also shed light on the

relationship of CD80 with CD28 and CTLA4. When CTLA4-

mediated interactions with squamous cell carcinoma cells were

blocked in vitro, tumor-CD80 engaged instead with CD28 on

activated T cells. Both CTLA4 and CD28 are expressed by T cells.

CD80 activates T cells via CD28 and inhibits T cells via CTLA4.

However, CD80’s affinity is higher for CTLA4 than for CD28 (25).

In addition, T cells display markedly elevated CTLA4 when

contacted with tumor cells (40). Thus, within the tumor, the

CD80 is more likely to engage CTLA4 than CD28, thereby

dampening the function of T cells at attacking the tumor. To

investigate the function of CD80 in lung adenocarcinoma, Feng

W et al. collected transcriptome data along with corresponding

clinical information from 594 lung samples in the Cancer Genome

Atlas (TCGA) database. By using bioinformatics methods, elevated

CD80 was found to improve the prognosis of patients with lung

adenocarcinoma. It suggests that CD80 may be a potential

prognostic and therapeutic target in lung adenocarcinoma (36).

Similarly, some researchers analyzed the transcriptome profiles and

related clinical information of 1090 breast cancer patients recorded

in the Cancer Genome Atlas database and found that the expression
Frontiers in Immunology 03
of CD80 was closely related to the malignant degree of breast

cancer, which also indicated that CD80 may be a promising target

for immunotherapy strategy (35). In this study, they found that

CD80 expression was elevated in basal-like and HER2-enriched

subtype when compared with the luminal A subtype. Furthermore,

CD80 showed higher expression in triple-negative breast cancer

(TNBC) when compared with the non-TNBC group. In addition,

they also observed elevated expression of CD80 in higher tumor

grades. The results indicated a positive correlation between the

expression of CD80 and the degree of tumor malignancy. Some

researchers also studied 119 patients with primary soft tissue

tumors and found that the high sCD80 (soluble form of CD80)

group had significantly lower metastasis-free survival (MS) and

overall survival (OS) at 5 years than the low sCD80 group (41).

Interestingly, cells of different tumor types seem to evade antitumor

immunity via disparate expression of CD80. Overexpression of

CD80 on different types of tumors is not always negatively

associated with patient prognosis. For example, the high

expression of CD80 on the cell surface of lung adenocarcinoma

significantly improved the overall survival of patients, while in

breast cancer and squamous cell carcinoma of the skin, CD80

overexpression was an indicator of poor prognosis. Therefore,

different types of tumors are closely related to the selection of our

subsequent targeting strategy. For tumors where high CD80

expression is associated with a poor prognosis, we can directly

choose CD80 as the targets. Conversely, for tumors where high

CD80 expression can improve patient prognosis, we guess that they

may benefit from immune checkpoint inhibitors, such as antibodies

targeting CTLA4 or PD-1/PD-L1. The role of CD80 in solid tumors

also suggests that it may be a promising target for solid tumor

immunotherapy strategies.

1.4.2 CD80 as a target in autoimmune diseases
In addition, the upregulation of CD80 is associated with a

variety of autoimmune diseases, including multiple sclerosis,

systemic lupus erythematosus, glomerular diseases, etc. The

reason may be that in these diseases, T cells are overactive, and

CD80 is closely related to T cell activation (42–44). CD80 has also

been shown to contribute to the transmission of HIV infection in

vivo (45). The complex role of CD80 in the regulation of the

immune system provides an important target for the treatment of

various diseases.

The number of CD80+ lymphocytes in the blood increased

significantly during the exacerbation of multiple sclerosis, and after

IFN-b treatment, the number of CD80+ lymphocytes in the blood

decreased significantly, which initially indicated that the number of

CD80(+) cells may be an indicator of whether IFN-b treatment is

effective (46). Subsequently, some studies have found that CD80+ B

cells can be used as a possible therapeutic target for HTLV-1-related

myelopathy/tropical spastic paraparesis and multiple sclerosis (43).

CD80 is also expressed on antigen-presenting cells (APCs) of

patients with Minimal Change Nephropathy. Various glomerular

disease models associated with proteinuria have shown that

increased urinary CD80 is closely related to patients with

frequent recurrence of Minimal Change Nephropathy, and the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1496992
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1496992
current efficacy of CD80 inhibitors (abatacept) encourages further

research on CD80 as a therapeutic target for patients with Minimal

Change Nephropathy (42). The abnormality of T cell costimulatory

molecules plays an important role in the immune pathogenesis of

SLE. Studies have found that the expression of CD80 on the surface

of T cells in patients with systemic lupus erythematosus is increased,

and CD80 is mainly expressed on CD4+ T cells. Its increased

expression is related to the disease activity of SLE (44, 47–49). The

abnormal expression of CD80 in autoimmune diseases makes CD80

a potential and effective target for autoimmune diseases.
2 Immunotherapy drugs related
to CD80

2.1 fusion protein

2.1.1 Application of CD80 fusion protein in
tumor treatment

As early as 2001, researchers utilized CD80 immunoglobulin G

fusion protein to treat myeloid leukemia. They discovered that it

could enhance the costimulatory activity of T cells and reinstate the

expression of the costimulatory molecule CD80 on human AML

blasts (50). Subsequently, researchers constructed a soluble protein

consisting of the extracellular domain of human or mouse CD80

fused to the Fc domain of IgG1. This protein binds to PD-L1,

inhibiting the interaction between PD-L1 and PD1, and promoting

T cell activation through CD28 costimulation. Moreover, compared

to the treatment with PD-1 or PD-L1 monoclonal antibodies,

CD80-Fc is more effective in preventing PD-1/PD-L1-mediated

inhibition and restoring T-cell activation (51). The team also

demonstrated that soluble CD80 has a therapeutic effect in

murine tumors in vivo. This effect was attributed to its ability to

inhibit PD-1-mediated suppression and simultaneously activate

CD28-mediated activation. This was achieved through the

activation of downstream signaling pathways, such as

transcription factors EGR1-4, NF-kB, and MAPK, which are

involved in T-cell activation. Furthermore, soluble CD80 did not

inhibit T cell function by interacting with CTLA-4, suggesting that

CTLA-4 acts as a decoy receptor for CD80 rather than as an

inhibitory signaling receptor (52).

The positive outcomes of prior preclinical studies have rapidly

promoted CD80-related fusion proteins into clinical research. In

2019, initial data of FPT155 (NCT04074759), a phase I trial of a

CD80 fusion protein, were released. The trial focused on its results

in patients with advanced solid tumors. FPT-155 is a native CD80

fusion protein that functions by (i) enhancing its costimulatory T

cell activity without inducing T cell hyperactivation through

binding to CD28, and (ii) preventing CTLA-4 from competitively

binding to endogenous CD80, thereby allowing CD28 signaling to

become dominant in T cel l act ivat ion in the tumor

microenvironment. FPT155 not only showed long-lasting

antitumor activity but was also well tolerated, with no dose-

limiting toxicity or signs of clinical or laboratory cytokine release

syndrome. In 2021, a new clinical study of the CD80 fusion protein
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ALPN-202 (NCT04186637) for the treatment of patients with

advanced solid tumors published phase 1 clinical trial data. The

data showed that the disease control reached 60%, and the trial

found no safety concerns related to cytokine risk. Unlike FPT155,

ALPN-202 is a mutated CD80-Fc fusion protein designed to

overcome checkpoint inhibitor resistance by enhancing CD28

costimulation in the tumor microenvironment while inhibiting

PD-L1 and CTLA-4. Peripheral immunoassays demonstrated

evidence of CD28 activation and other associated immune

activation, including elevated ICOS and Ki-67, as well as

increased TCM and decreased Treg. The data indicates that in the

treatment of solid tumors, PR accounts for 4%, SD accounts for

57%, and PD accounts for 39%. In addition, GI-101

(NCT04977453), a native CD80-Fc fusion protein, is currently in

phase 1/2 clinical trials. The study aims to evaluate the safety,

tolerability, pharmacokinetics, and therapeutic activity of GI-101 as

a single agent or in combination with an anti-PD-1 antibody,

tyrosine kinase (RTK) inhibitor, or local radiotherapy (RT) in a

range of advanced and/or metastatic solid tumors. It is currently

under recruitment. GI-101 is a CD80/IL2 fusion protein, which

contains the Fc segment of IgG4. The introduction of IgG4 Fc

makes the fusion protein safer and does not cause ADCC. On the

other hand, it also enhances the half-life of the fusion protein so that

it does not break down quickly in the body. In conclusion, the

potential risk and side effect of the fusion protein is the over-

activation of T-cells caused by CD28 activation, which leads to

cytokine storm, but this situation is controllable by dose

adjustment, and the benefit is much greater than the risk. In

addition, the fusion protein has a half-life in vivo, and will not

produce long-term impacts.

Although numerous immune checkpoint inhibitors, such as

CTLA-4, PD-L1, and PD-1 inhibitors, have been introduced to the

market, the majority of tumor patients will experience tumor

recurrence, metastasis, and drug resistance. This may be attributed

to the inadequate activation of T cells in the tumor

microenvironment, such as insufficient CD28 costimulation signal,

or the presence of immunosuppressive T cells in the

immunosuppressive microenvironment, characterized by elevated

levels of LAG3, PD-1, and TIM3. The combination of CD80 fusion

protein with CTLA-4/PD-1/PD-L1 inhibitors, the development of bi-

or tri-specific antibodies, or the combination of targeted drugs has the

potential to overcome the poor efficacy of PD-1 inhibitors alone.

2.1.2 Application of CD80-associated fusion
proteins in the treatment of
autoimmune diseases

Fusion proteins associated with CD80 can also be utilized in the

treatment of autoimmune diseases, including rheumatoid arthritis

(RA), renal transplant rejection, psoriatic arthritis (PsA), and others

(53–55). Currently, only Belatacept from Bristol-Myers Squibb is

available on the global market. Belatacept is a soluble fusion protein

that contains the CTLA-4 receptor on the surface of T cells in the

upper part of its structure. This protein binds to CD80 on the

surface of APC and inhibits the activation of CD28 on the surface of

T cells. So that T cells cannot be activated to function. The lower
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half of the belatace comprises the Fc portion of the IgG1 antibody,

which is utilized to extend the half-life and enhance the stability of

the drug. Belatacept, an enhanced version of abatacept, differs from

it by only 2 amino acids. Its inhibition of T cell activity is 10 times

greater than that of abatacept, and its inhibition of CD80 is 2 times

greater than that of abatacept (56). In 2020, Belatacept received

clinical approval from the China National Medical Products

Administration for the prevention and treatment of autoimmune

indications, including renal transplant rejection and rheumatoid

arthritis. They also plan to study the clinical use of belatacept to

reduce the side effects of tumor immunity. In 2021, a phase II trial of

abatacept showed that it could significantly improve transplantation

outcomes associated with acute graft-versus-host disease (AGVHD)

(57). In addition, abatacept has also been shown to stabilize b1-
integrin activation and reduce proteinuria in podocytes of patients

with CD80-positive glomerular disease (58). The fusion protein

targeting CD80 also holds great promise for application in

autoimmune diseases.
2.2 Monoclonal antibody immune
checkpoint inhibitors

2.2.1 Application of anti-CD80 monoclonal
antibodies in tumor treatment

CD80 plays a crucial role in regulating and activating both normal

and malignant B cells (59, 60). CD80 is expressed on various B-cell

lymphomas, including follicular, diffuse, small noncleaved, mantle

cell, small lymphocytic, and other subtypes (61, 62). Galiximab

(IDEC-114) is a primatized anti-CD80, immunoglobulin G1

lambda monoclonal antibody. Preclinical studies have shown that

in an immunodeficient mouse model of human lymphoma xenograft,

mice treated with galiximab had significantly prolonged disease-free

survival (DFS) compared to untreated control mice. Similarly, mice

treated with galiximab and rituximab (an anti-CD20 monoclonal

antibody) had a significantly longer DFS compared to those treated

with rituximab alone (63). Promising preclinical studies have quickly

advanced galiximab into clinical trials. In 2005, the results of a phase

I/II clinical trial of galiximab monotherapy for relapsed or refractory

follicular lymphoma (FL) showed a favorable safety and efficacy

profile, supporting further evaluation of galiximab as a treatment

option for FL. The study also suggested that combining galiximab

with other drugs may achieve better efficacy (64). Subsequently, a

phase I/II preclinical trial of the combination of galiximab and

rituximab in relapsed or refractory follicular lymphoma showed

that galiximab could be safely combined with a standard course of

rituximab (NCT00048555). This dual biologic approach offers the

potential to avoid or delay chemotherapy, or to integrate with other

lymphoma therapies (65). Some studies have also shown that for

untreated follicular lymphoma, the extended induction regimen of

galiximab-rituximab is well tolerated, and especially effective for

patients with low-risk follicular lymphoma International Prognostic

Index (FLIPI) score (66). In addition, anti-CD80 monoclonal

antibodies have also shown good efficacy in other tumors. Some

researchers have constructed mouse monoclonal antibodies against

human CD80 and studied their effects on tumor growth and
Frontiers in Immunology 05
migration. Mouse anti-human CD80 monoclonal antibodies can

specifically recognize tumor cells that naturally express human

CD80 molecules, such as Burkitt’s lymphoma cells and multiple

myeloma cells. It can bind CD80 on the membrane of tumors to

inhibit the proliferation and migration of tumor cells and promote

their apoptosis (67).

2.2.2 Application of anti-CD80 monoclonal
antibodies in autoimmune diseases

Monoclonal antibodies against CD80 also play an important

role in autoimmune diseases. In one study, researchers constructed

and characterized a monoclonal antibody (clone 4E5) against

human CD80 and found that it suppressed immune responses

and reduced the severity of lupus-like disease. It indicates that

blocking the CD80/CD28 costimulatory signaling pathway with

4E5 is a very promising strategy to slow the progression of lupus-

like diseases and other autoimmune diseases (68). Some studies

have also shown that the survival time of skin grafts can be

prolonged by using anti-CD80 monoclonal antibodies and

cyclosporin A (69). Pathological T cell activation is associated

with psoriasis progression. Relevant experimental data suggest

that IDEC-114 also has promising clinical activity in patients with

psoriasis (70, 71). CD80, a costimulatory molecule involved in T cell

activation, may play a key role in diseases related to T cell activation.
2.3 Bi-or tri-specific antibodies

In addition to monoclonal antibodies, bi-specific and tri-

specific antibodies associated with CD80 (CD3-CD28-CD38) are

currently in preclinical testing. The CD80 ligand CD28, as an

activation costimulatory signal on T cells, is also noteworthy in

the use of various disease therapies. The investigators added a CD28

binding domain to the bispecific antibody to construct a trispecific

antibody. Trispecific antibodies are composed of multiple structural

domains, including CD38, TCR-CD3, and CD28. Compared with

bispecific antibodies, trispecific antibodies can enhance the

activation of T cells through TCR-CD3 and CD28 and promote

the proliferation of T cells. What’s more, it can also enhance the

expression of anti-apoptotic protein Bclxl in T cells, and improve

the ability of T cells to kill different myeloma cell lines in vitro and

humanized mouse models (72). The main reason for including the

CD28 domain in the trispecific antibody was to mimic the second

signal of T cell activation and allow better T cell activation. We can

speculate that the activation of CD28 is so crucial that CD80 as its

ligand may bring more possibilities in tumor treatment.
2.4 CAR T-cell therapy

In addition to being used in antibodies, CD28, the ligand of

CD80, has also been used in cell therapy. The CD28 costimulatory

signal is integrated into another type of immunotherapy called

chimeric antigen receptor T-cell (CAR-T) therapy. The structure of

CAR-T includes both cancer-cell antigen recognition domains and

T-cell activation domains. T-cell activation domains include CD3,
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4-1BB, and CD28. Second-generation CAR-T containing CD28

costimulatory molecule can be better activated when exposed to

CD80 stimulation on the surface of tumor cells, which makes the

second-generation CAR-T cells much stronger than the first-

generation CAR-T cells, and also shows better therapeutic effects

in clinical treatment. In addition, dual-target dual-signal CAR-T

has also achieved better efficacy. Some researchers have found that

CAR-T cells target two tumor-associated antigens at the same time,

provide co-stimulation of CD28 and 4-1BB respectively, and share a

CD3z chain, which can rapidly exert anti-tumor effects under in

vivo stress conditions, protect tumors from re-attack, and prevent

tumor escape due to low antigen density (14). This mode of “split

costimulation” of the CD28 signal and 4-1BB signal makes CAR-T

anti-tumor efficacy better and has been confirmed to be universal

(14, 73). The activation of CD28 is so crucial that we wonder

whether we can start from CD80 to better activate CD28 through

CD80 to improve the efficacy of CAR-T. This provides another

approach to address the suboptimal response to CAR T therapy in

solid tumors.

CAR-T therapy also plays an important role in autoimmune

diseases. Recently, a researcher used CRISPR-Cas9 gene editing

technology to genetically engineer healthy donor-sourced CAR-T

cells targeting CD19 to develop a new generation of allogeneic

universal CAR-T therapies that helped three patients with

autoimmune diseases achieve long-term remission (74).

Autoreactive B cells play a key role in the pathogenesis of

autoimmune diseases such as systemic lupus erythematosus,

rheumatoid arthritis, and multiple sclerosis. Recent studies have

also shown that CD19 CAR T cells targeting B cell antigen CD19

have a good effect on crescentic glomerulonephritis (75), multiple

sclerosis (76), systemic lupus erythematosus (77), and autoimmune

rheumatic diseases (78). In addition, several clinical trials of CAR-T

therapy for autoimmune diseases are underway, indicating that the

further exploration of CAR-T cells for autoimmune diseases is very

promising. Therefore, enhancing the efficacy of CAR-T by CD80

stimulation of CD28 may promote the progress of CAR-T

immunotherapy in autoimmune diseases.

One of the effects of CD80 on CAR-T cells is to make them

better activated via CD28. We speculate that this may make CAR-T

cells over-activated. On the one hand, this over-activation may lead

to faster inactivation of CAR-T, which may result in poor anti-

tumor efficacy. On the other hand, a large number of CAR-T cells

releasing a large number of cytokines along with their activation

may lead to the emergence of a cytokine storm.
2.5 Vaccines

2.5.1 CD80-related vaccines for tumor
One reason the immune system cannot wipe out tumors is that

T cells encounter tumor antigen-derived peptides on the surface of

tumor cells in a tolerant but not activating environment since tumor

cells do not express T-cell costimulatory molecules such as CD80.

Overcoming tolerance to tumor-associated antigens remains an

obstacle to cancer vaccine-based immunotherapy. One strategy to

enhance antitumor immune responses is to add adjuvants to cancer
Frontiers in Immunology 06
vaccine regimens. The important role of CD80 in T cell activation

makes it an option for tumor vaccine adjuvant.

CD80-related hematological vaccine has also shown good efficacy

in preclinical studies. The CD80 gene was transfected into the K562

cell line by electroporation. It was found that the stimulation of CD80

could Induce toxic effects of natural killer cells on CD80+K562 cells

and suggested that these cells may be used for further development of

therapeutic tumor vaccine (79). Subsequent studies have shown that

leukemia cell vaccines co-expressing CD80 and GM-CSF can be used

for immunotherapy of Ph+ ALL (acute lymphoblastic leukemia,

ALL) patients, which can strongly inhibit the progression of

leukemia. This improves the long-term survival rate by 40-60%

(80). Similarly, Acute myeloid leukemia (AML) blasts modified

with IL-2/CD80 as a vaccine in vitro can induce peripheral blood

mononuclear cells from AML patients to secrete higher levels of IFN-

gand show stronger lytic activity against autologous, unmodified

blasts (81). It is concluded that CD80 has a good prospect in the

research of hematoma vaccine.

CD80-related vaccines have also been used in solid tumors. As

early as 1997, studies showed that IL-2(+) and CD80(+) tumor

vaccines could protect and prolong the survival time of a higher

proportion of sarcoma-bearing mice compared with IL-2(+) tumor

vaccines (82). Westermann, J et al. constructed a novel breast cancer

vaccine that co-expressed MUC1 and CD80. It could elicit tumor-

specific immune responses, which were closely related to B7

molecules (CD80), and suggested that the vaccine might be a

good candidate for immunotherapy of MUC1-positive breast

cancer (83). Preclinical studies have shown that the allogeneic

tumor cell line RCC-26 exhibits natural immunogenic potential,

which is enhanced by the expression of CD80 costimulatory

molecules and IL-2 secretion. Subsequently, they reported the

study of RCC-26/CD80/IL-2 cells in a phase 1 vaccine trial for

patients with metastatic renal cell carcinoma (mRCC). The results

showed that the disease was stable and the vaccine was safe, further

demonstrating the feasibility of CD80 application in tumor vaccines

(84, 85). Some studies have also shown that CD80-Fc can enhance T

cell immune responses to a variety of tumor-associated antigens

including Survivin and HPV, showing its potential as a universal

adjuvant for tumor vaccines (86). Thorne, AH et al. constructed

DC-PC-3 fusion vaccines with specific modifications of CD80 and

GM-CSF that strongly promoted T cell proliferation and IFN-g
secretion and induced tumor-specific cytotoxic T lymphocyte

responses. In addition, the CD80/GM-CSF modified fusion

vaccine showed more significant anti-tumor effects and a stronger

ability to stimulate immune responses in vitro than the vaccine

without specific modification (87).

These studies have shown that CD80-related vaccines play a

crucial role in the activity of T cells, and play an important role in

solid tumors or hematomas, which may provide a new development

direction for tumor immunotherapy.

2.5.2 CD80-related vaccines for
autoimmune diseases

Hiv-specific CD8+ T cells are deficient in chronic HIV

infection. Studies have shown that co-stimulation of CD80

enhances the acquisition of antigen-specific amplification and
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effector function of HIV-specific memory CD8+ T cells, which

represents a promising therapeutic HIV vaccination combination

(88). In other autoimmune diseases, there is no relevant research on

CD80-related vaccines. CD80 may provide a new direction for the

prevention and treatment of other autoimmune diseases.
3 Conclusion and outlook

The CD80 protein is expressed on the surface of antigen-

presenting cells as well as within the innate immune system. Its

role is to establish a biologically optimal dynamic balance between

the activation of the immune system and its suppression or self-

tolerance. The interaction between B7-1 and its receptors CD28,

CTLA4, and PD-L1 can stimulate or suppress immunity or regulate

immune homeostasis (Figure 1). Based on the study of CD80

physiology and pathology, CD80 or its related ligands for drug

development is a good direction for immunotherapy.

CD80 plays an important role in T cell activation. On the one

hand, as a ligand for the costimulatory molecule CD28 on the

surface of T cells, CD80 can enable better activation of T cells. On

the other hand, it binds to PD-L1 on the surface of tumor cells to

prevent PD-L1 from binding to PD-1 on T cells and reduce T cell

inhibition. Thus, CD80 plays an important role in tumor therapy.

The CD80 fusion protein, bi/tri-specific antibody, CAR-T, etc. all

play a role in the development of tumor immunotherapy. Although

clinical trials of CD80 fusion protein have demonstrated its efficacy,

its safety needs to be further investigated. CD80-related bi/tri-

specific antibodies are still in preclinical research and need to be

further improved. Although CAR-T therapy has a good effect on
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hematological tumors, its safety and efficacy in solid tumors need to

be further improved. Therefore, the combination of CD80 and

CAR-T therapy may have a better effect.

In addition to the physiological role of CD80, the pathological

role of CD80 was also investigated. The expression of CD80 on the

surface of a variety of tumor cells makes it an alternative target for

tumors. The development of new strategies for tumor

immunotherapy targeting CD80 has good application prospects.

Monoclonal antibodies targeting CD80 have entered clinical trials

for the treatment of lymphoma, but the safety of CD80 as a target

needs to be further investigated. In addition, abnormal CD80 is also

closely related to autoimmune diseases, which makes targeting

abnormal CD80 molecules in autoimmune diseases an option for

the treatment of autoimmune diseases. Its preclinical data showed

promise, but its safety needs to be further explored. In recent years,

cancer vaccines have been under investigation. The expression of

CD80 on the tumor surface and its important role in T cell

activation also make it a good choice for tumor vaccine adjuvant.

Natural CD80 exists as a dimer on the cell membrane, and the

main targets that can be bound are CD28, CTLA-4 and PD-

L1.CD80 binds differently to the three targets, with KD values of

4 mM, 1.7 mM, and 0.2 mM; for binding to CD28, PD-L1, and

CTLA4, respectively, with the strongest ability to bind CTLA-4 (25).

The interaction between CD80 and CD28, induces the activation of

nuclear factor-kB (NF-kB), mitogen-activated protein kinase

(MAPK), and the calcium–calcineurin pathway, thereby playing

an important role in manipulating the immune system (25).

In addition, some researchers have also investigated the molecular

mechanism of CD80 in the immune process. They found that CD80

activation was closely associated with the PI3K → AKT → NF-kB
FIGURE 1

The interactions between CD80 (natural CD80 and CD80 fusion protein) and the molecules CD28, CTLA4, and PD-L1.[.
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pathway and NOTCH signaling (89). Few studies have reported the

molecular mechanisms behind CD80 interactions with PD-L1 and

CTLA-4, this will be a direction we will explore further in the future.

There are still challenges in developing CD80-related drugs.

Firstly, CD80-associated drugs are usually dose-limited in clinical

trials, suggesting that appropriate concentrations of CD80-

associated drugs are critical to the safety of therapy. CD80-related

drugs have been reported in clinical studies to cause immune-

mediated myocarditis or infections that can lead to patient death

(NCT04186637). This may be due to the fact that CD80-related

immunotherapy drugs bind to the CD28 molecule causing T cells to

overactivate and secrete large amounts of cytokines thereby

generating a cytokine storm that can lead to patient death. On

the other hand, we speculate that over-activation of T cells will

make them inactive earlier, which may lead to poor anti-tumor

efficacy. Secondly, there is a limited effect of CD80-related drugs

alone in the treatment of tumors for the reason that it does not have

sufficient affinity for the ligand or has a short survival time in vivo.

So, increasing the affinity of CD80 as well as prolonging its half-life

is also critical for therapeutic efficacy. It is now clear that further

improvements in rates and durability of responses may require

combining CD80 with other therapies that stimulate a

proinflammatory immune response within the tumor

microenvironment. Finally, cells of different tumor types evade

antitumor immunity via different expression of CD80. For example,

the high expression of CD80 on the cell surface of tumor cells

significantly improved the overall survival of patients, while in other

tumor cells, CD80 overexpression was an indicator of poor

prognosis. Therefore, we need to explore the relationship between

CD80 expression and prognosis in different tumors.

Addressing the gaps needs to be followed up with further

research. For example, in the case of CD80 fusion protein, we can

change its affinity, concentration, half-life, and so on, so as to make

it more effective, gentle, and sustained in killing tumor cells while
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reducing the side effects. Using CD80 as a target, or as a T-cell

efficacy enhancer is also a solution to the CAR-T therapy in the

dilemma of treating solid tumors.
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