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The defense mechanisms of the vertebrate brain against infections are at the

forefront of immunological studies. Unlike other body parts, the brain not only

fends off pathogenic infections but also minimizes the risk of self-damage from

immune cell induced inflammation. Some neuropeptides produced by either

nerve or immune cells share remarkable similarities with antimicrobial peptides

(AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and

net cationic charge. These similarities extend to a wide range of antibacterial

activities demonstrated in vitro, effectively protecting nerve tissue frommicrobial

threats. This review systematically examines 12 neuropeptides, pituitary

adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide

(VIP), a-melanocyte stimulating hormone (a-MSH), orexin-B (ORXB), ghrelin,

substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP),

urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST),

identified for their antimicrobial properties, summarizing their structural

features, antimicrobial effectiveness, and action mechanisms. Importantly, the

majority of these antimicrobial neuropeptides (9 out of 12) also possess

significant anti-inflammatory properties, potentially playing a key role in

preserving immune tolerance in various disorders. However, the connection

between this anti-inflammatory property and the brain’s infection defense

strategy has rarely been explored. Our review suggests that the combined

antimicrobial and anti-inflammatory actions of neuropeptides could be integral

to the brain’s defense strategy against pathogens, marking an exciting direction

for future research.
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1 Introduction

Currently, the immune response mechanism of the vertebrate

brain remains poorly understood (1, 2). Bacterial, fungal or viral

infections in brain tissue are extremely rare due to the presence of

the blood−brain barrier (BBB), which offers strong defense against

blood-borne pathogens (2, 3). The hypothalamus and pituitary stalk

are exceptions to the BBB. Infections in this region, however, are

highly uncommon. It is possible that the brain possesses an

undiscovered layer of immune defense (2).

Recent studies have indicated the potential role of neuropeptides

in regulating the immune response and neuroinflammation (4, 5).

They have direct anti-infective properties, protecting nerve tissue

frommicrobial invasion (6). AMPs or host defense peptides, are short

proteins found in various living organisms (7). AMPs serve as the

host’s primary defense against pathogens and possess the ability to

stimulate the innate immune response (8). Many neuropeptides share

similarities with AMPs in terms of size, structure, amino acid

composition, amphiphilicity, and net cationic charge. In vitro

studies have shown that certain neuropeptides possess

antimicrobial activity (9). The presence of this antimicrobial

activity suggests its potential involvement in the innate

immune response.

Furthermore, specific neuropeptides synthesized by nerve cells

(10) (such as astrocytes and sertoli cells) or immune cells (including

lymphocytes, neutrophils, and mast cells) exhibit potent anti-

inflammatory effects and actively contribute to the regulation of

immune tolerance in various immune disorders (11). It has been

reported that immune cells possess receptors for neuropeptides,

which confirms the involvement of neuropeptides in immune

regulation (12). In response to various invasive and inflammatory

st imuli , neuropeptides can inhibit the expression of

proinflammatory cytokines (11). Furthermore, they can exert

immunomodulatory effects by modulating the balance between

effector T cells and regulatory T cells, suppressing inflammation,

and maintaining immune tolerance (13). These findings highlight

neuropeptides as promising therapeutic candidates for treating

autoimmune diseases and inflammatory disorders (11).

Recent studies have revealed the potential role of neuropeptides

with antimicrobial (14) and anti-inflammatory (13) properties in

the brain’s defense against pathogens. In this review, we

comprehensively explore the structural properties and

antimicrobial activities of neuropeptides, providing a thorough
Abbreviations: a-MSH, a-Melanocyte stimulating hormone; Ab, b-Amyloid;

AG, Acylated ghrelin; AM, Adrenomedullin; AMP, Antimicrobial peptide; BBB,

Blood-brain barrier; CGRP, Calcitonin gene-related peptide; CNS, Central

nervous system; CRF, Corticotropin-releasing factor; CST, Catestatin; DAG,

Deacylated ghrelin; EC50, Median effective concentration; EPS, Extracellular

polymeric substances; eDNA, Extracellular DNA; GBS, Group B Streptococcus;

HSV-1, Herpes simplex virus 1; IC50, Half maximal inhibitory concentration;

MIC, Minimum inhibitory concentration; MV, Measles virus; NPY,

Neuropeptide Y; ORXA, Orexin-A; ORXB, Orexin-B; ROS, Reactive oxygen

species; PACAP, Pituitary adenylate cyclase-activating peptide; PIA,

Polysaccharide intercellular adhesin; POMC, Proopiomelanocortin; SP,

Substance P; UCN II, Urocortin-II; VIP, Vasoactive intestinal peptide.
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summary of their antimicrobial effects against various

microorganisms, including gram-positive bacteria, gram-negative

bacteria, fungi, parasites, and viruses. Additionally, we

comprehensively evaluated the immunomodulatory activity of

these neuropeptides and their therapeutic potential. The selective

utilization of the antimicrobial and immunomodulatory properties

of these neuropeptides holds promise for developing a potential

therapeutic approach, offering a novel and effective treatment

strategy for CNS infectious disease (11).
2 Antimicrobial mechanism of AMPs

Antimicrobial neuropeptides represent a unique class of AMPs

that possess both neural and antimicrobial properties (1). In this

section, we mainly introduce the structural characteristics and

antimicrobial mechanism of AMPs to enhance our understanding

of antimicrobial neuropeptides.
2.1 Structural characteristics of AMPs

The structural diversity of AMPs allows them to adopt different

secondary structures, enabling them to employ unique mechanisms

for targeting pathogens (15). AMPs exhibit structural variability

that is mainly determined by the cell of the peptide source (16).

Understanding the structural characteristics of AMPs is essential for

further investigation into their antimicrobial mechanisms.

Typically, AMPs consist of 10-50 amino acids and have a

molecular weight less than 10 kDa (17). The antimicrobial

activity of AMPs is influenced by various physicochemical

properties, including amino acid composition, peptide length,

presence of positively charged residues, lipid composition,

hydrophobic characteristics, net molecular charge, and helicity of

spatial structure (18).

According to the structural model of nearly 900 AMPs, natural

AMPs can be classified into four major families: a, b, ab, and non-

ab (Figure 1) (19). Among these families, a-helix and b-sheet
structures are the most commonly observed in AMPs found

in nature.

The a family of AMPs primarily adopts a linear a-helix
conformation as their dominant secondary structure (Figure 1A).

However, it is important to note that both His-rich and Trp-rich

peptides have the potential to form a-helix structures, causing some

overlap between classes. Examples of a family AMPs include

lactoferricin B, human antimicrobial peptide LL-37, and pituitary

adenylate cyclase-activating peptide (PACAP), among others. The b
family is characterized by the presence of at least two b chains

arranged in a specific structural pattern (20), with cysteine stability

and b-folding (Figure 1B). Human a-defensins and tachyplesin I

are examples of AMPs that adopt this structure. The ab family of

AMPs includes both a-helical and b-sheet conformations

(Figure 1C). Relevant examples include b-defensins, b-Amyloid

(Ab), CXCL4L1, antimicrobial chemokines, and RNases. Finally,

the non-ab family of AMPs lacks both a-helix and b-sheet
structures. However, this family exhibits an extensive secondary
frontiersin.org
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structure, including loop peptides (Figures 1D, E) and random coils

(Figure 1F) (21).
2.2 Antimicrobial mechanism of AMPs

AMPs are vital components of the innate immune system and

possess strong antibacterial, antifungal, antiparasitic, and antiviral

activities (22). Moreover, AMPs play a crucial role in various

intracellular processes, such as angiogenesis, arteriogenesis,

inflammatory response modulation, cell signal transduction, and

the wound healing cascade (23). Numerous mechanisms of action

for AMPs have been proposed, but the primary mode of action for

most AMPs is the destruction of pathogenic microorganisms by

damaging their cell membranes, also known as membrane damage

mechanism (24). Antimicrobial neuropeptides also firstly employ

this mechanism, similar to that of conventional cationic AMPs, to

combat microorganisms. The process can be summarized as

follows: (1) Positively charged neuropeptides bind to the

negatively charged surfaces of microbes through electrostatic

interactions; (2) This binding destabilizes the negatively charged

phospholipid bilayer, leading to membrane damage; (3) Membrane
Frontiers in Immunology 03
permeability is altered; and (4) Microorganisms die due to

hypotonicit (25). The membrane damage mechanism of AMPs

primarily includes four types: Barrel-stave mode, Toroidal-pore

mode, Carpet mode and Aggregate mode. The Barrel-stave model

(Figure 2A) (26) begins with the incorporation of AMPs into the

phospholipid bilayer in three possible orientations: parallel, vertical,

or inclined. When the peptide/lipid ratio reaches a certain

threshold, resulting in energetical and physical changes in the

membrane structure, including the helical hydrophobic regions of

the peptides are close to the hydrophobic regions of the membrane

phospholipid, while the hydrophilic regions of the peptide are

inwards (27, 28). This alignment of helical molecules generated a

central lumen, establishing the Barrel-stave model. The Toroidal-

pore model (Figure 2B) is similar to a transmembrane ion channel

and induces bending of the phospholipid bilayer when AMPs

accumulate to a certain level. The peptides spiral into the

membrane, bind to the lipids, and form a porous ring complex,

eliminating the need to span the complete phospholipid bilayer

(28). The Carpet model, similar to that of detergent (Figure 2C),

involves the continuous accumulation of AMPs. When their

concentration reaches a threshold, clusters of AMPs cover the

phospholipid bilayer, resulting in membrane disruption akin to
FIGURE 1

Diversity in the structural characteristics of AMPs. (A) The structure of LL37 (PDB ID: 2k6o) is characterized by an a-helix conformation.
(B) Tachyplesin I (PDB ID: 1wo0) has a typical b-sheet conformation. (C) The structure of CXCL4L1 (PDB ID: 4hsv) is classified as an ab family.
(D, E) The structures of Cyclosporin A (PDB ID: 1cya) and Kalata B1 (PDB ID: 1k48) were characterized as loop. (F) The Lasso (PDB ID: 7bw5)
structure exhibits random coiling.
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detergent action without channel formation (18). The Aggregate

model (Figure 2D) facilitates the formation of peptide-lipid

complexes, ultimately leading to ion leakage channels and cellular

death (18). The permeability of peptides across membranes is

directly influenced by their topological amphiphilic structure

rather than by their linear structure, as demonstrated by

numerous studies. As a result, the charge is systematically

distributed in regular clusters across the polypeptide surface,

which forms the basis of its antimicrobial efficacy (29).

Currently, there is a growing emphasis on investigating the

impact of AMPs in inhibiting or eradicating biofilms (30). Unlike

phospholipid bilayer membranes, biofilms exist in a rootless form in

nature (31). In 1999, Costerton et al. (32) introduced the concept of

biofilms, which are structural communities of bacteria, fungi, and

viruses adhered to any biotic surface enveloped by a self-produced

polymer matrix consisting of proteins, exopolysaccharides, DNA,

lipids, and other fragments. In general, a biofilm is an assemblage of

organisms formed by the aggregation of microbial cells and matrix

(33). The typical biofilm formation process primarily includes four

sequential stages: adhesion, proliferation, maturation, and dispersal

(34, 35) (Figure 3A). Initially, bacteria adhere to the surface, and as
Frontiers in Immunology 04
their population proliferates, they secrete extracellular

polysaccharides, thereby establishing a robust biofilm matrix.

Subsequently, the cells continue to grow and divide, facilitating

the subsequent detachment and dissemination of the bacteria (36).

The effects of AMPs on biofilms primarily include inhibiting the

formation and adhesion of biofilms, eradicating preformed biofilms,

and impeding biofilm propagation and detachment. However, the

mechanism of action of AMPs on biofilms varies across different

periods and can be categorized into the following five hypothetical

mechanisms (Figure 3B): (1) The rapid destruction of biofilm-

embedded cells indicates that AMPs act by membrane damage of

the bacteria (34). (2) Disruption of quorum sensing signaling:

AMPs increase the twisting movement of bacteria on the surface

of the biofilm by stimulating type IV Pili-mediated pulling motion,

down-regulating the transcription of Las and Rhl in the induction

system (37), and down-regulating the genes that migrate and

transport binding proteins from extrachromosomal elements to

inhibit transporter expression (38), thereby repressing the

formation of communal biofilms (34). (3) Repression of the alarm

system to mitigate biofilm resistance against AMPs, thereby

preventing strict bacterial response (39). (4) Destruction of
FIGURE 2

Membrane damage models of AMPs. (A) Barrel-septal mode: multiple helical molecules are arranged in parallel to form the central lumen;
(B) Toroldal-pore mode: it is similar to the Barrel-septal model except that toroidal pore complexes do not need to span the full double layer;
(C) The carpet model peptide: AMPs cover the membrane in clusters and cause membrane rupture in a surfactant-like manner; (D) Aggregate mode:
this pattern facilitates the formation of channels, enabling the leakage of ions and intracellular contents, thereby inducing cell death.
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biofilm potential: after the release of bacteriocin, which disrupts the

biofilm matrix, ATP is released, thereby enhancing the permeability

of the biofilm and eradicating preexisting biofilms, ultimately

leading to bacterial cell death (40). (5) Degradation of the

polysaccharide and biofilm matrix. Certain enzymatically active

AMPs, such as piscidin-3 exhibit nucleosidase activity capable of

impairing extracellular DNA (eDNA) of Pseudomonas aeruginosa

(39). Peptide PI can degrade the extracellular polymeric substances

(EPS) produced by Streptococcus mutans, leading to reduced

biofilm formation (34). Furthermore, certain non-enzymatically

active AMPs, such as hepcidin 20, exhibit the ability to
Frontiers in Immunology 05
modulate the extracellular matrix integrity by specifically

targeting polysaccharide intercellular adhesin (PIA) and inducing

structural alterations within the biofilm (34).

In addition to membrane damage and antibiofilm mechanisms,

AMPs can also exert their antimicrobial effects through various

pathways. First, AMPs can regulate the expression of genes involved

in cell wall synthesis, thereby inhibiting this process and exhibiting

antibacterial activity (41). Furthermore, AMPs can target

peptidoglycan, which is the primary constituent of the bacterial

cell wall (42). After the inwards growth of the cell wall and the

formation of a transverse cross wall (septum), the newly synthesized
FIGURE 3

Antibiofilm mechanism of AMPs. (A) The process of biofilm formation involves the stages of adhesion, proliferation, maturation and dispersal.
(B) Antibiofilm mechanism of AMPs. On the one hand, in the inhibition of bacterial adhesion and biofilm formation, AMPs can directly kill preattached
pathogenic microorganisms via membrane damage; enhance type IV pili-mediated pulling movement, thereby accelerating bacterial twisting on
surfaces and effectively inhibiting bacterial adhesion and biofilm formation; down-regulating the transcription of genes associated with quorum
sensing (e.g., Las, Rhl); and suppress the alarm system to avoid biofilm resistance to AMPs. On the other hand, AMPs can kill preformed biofilms. In
addition to causing membrane damage, enhancing type IV pili-mediated pulling movement and down-regulating the quorum sensing, AMPs can
enhance the degradation of the synthetic components of biofilm EPS and eDNA and lead to the destruction or degradation of the membrane
potential enclosed by a biofilm.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1496147
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1496147
peptidoglycan undergoes hydrolysis during cell division under the

action of AMP, ultimately resulting in bacterial death (42).

Additionally, AMPs possess endotoxin-neutralizing properties

that enhance innate immunity and effectively exert antimicrobial

effects (43). Finally, AMPs exert their antimicrobial effect by

impeding or terminating the translation process, thereby

inhibiting intracellular nucleic acid and protein synthesis through

complex mechanisms (44–46).

Compared to conventional antibiotics that only target a single

site, AMPs possess multiple targets, enabling them to eliminate

pathogens from various directions, thereby significantly reducing

the emergence of antibiotic-resistant bacteria (47). Resistance to

AMPs is more difficult than resistance to antibiotics, and the

therapeutic mechanisms employed against drug-resistant bacterial

infections can be categorized into the following five different

approaches: biofilm penetration, re-sensitization, intracellular

bacteriostatic function, immune activity regulation, and biofilm

inhibition (47).
3 Neuropeptides with
antimicrobial activity

Numerous studies have consistently demonstrated the direct

antimicrobial effects of neuropeptides in vitro, substantiating their

established role as antimicrobial agents. These neuropeptides

include PACAP, vasoactive intestinal peptide (VIP), a-
melanocyte stimulating hormone (a-MSH), orexin-B (ORXB),

ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene

related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y

(NPY), NDA-1, and catestatin (CST) (Table 1). In addition, most of
Frontiers in Immunology 06
them can be secreted by immune cel ls and play an

immunomodulatory role (Figure 4).
3.1 Pituitary adenylate cyclase activating
peptide (PACAP)

In 1989, Miyata et al. (100) successfully isolated PACAP from

sheep hypothalamic tissue and searched for peptides that can

stimulate the secretion of pituitary hormones. PACAP, an a-
helical peptide, belongs to the VIP/secretin/glucagon superfamily

and exhibits 68% sequence similarity with VIP (51). PACAP exists

in two amidated forms, PACAP27 and PACAP38, with PACAP38

being the predominant form (101). It is mainly found in

thymocytes, lymphocytes, and plasma cells of the spleen and

lymph nodes in the immune system (102), and it has potent anti-

inflammatory effects (49).

In 2021, Lee et al. (1) conducted a comparative study of the

human neuropeptide and AMP databases using bioinformatics

methods. They discovered that PACAP38 showed potential as an

AMP, sharing similarities with the known AMP LL37 in terms of

secondary structure, amino acid composition, and average

hydrophobicity. Subsequently, Lee et al. (1) employed X-ray

scattering techniques to demonstrate that PACAP38 can

penetrate the bacterial plasma membrane, causing membrane

damage. However, it had no effect on mammalian cell

membranes . Notably , PACAP38 exhibi ted s ignificant

antimicrobial activity against the gram-positive bacterium Bacillus

subtilis (minimum inhibitory concentration, MIC: 5 µM), the

fungus Candida albicans (MIC: 75 µM), and the cancer cell line

H460 (half maximal inhibitory concentration, IC50: 14.97 ± 1.16
TABLE 1 Physicochemical characteristics of antimicrobial neuropeptides.

Name Length Charge GRAVY PI Structure Activity Inflamm.
Resp.

Ref.

PACAP 38 11 -1.06 10.77 a G, F, V Anti-inflamm. (1, 49–52)

VIP 28 4 -0.64 10.20 27% a, 27.2% b,
45.8% RC

G, F, P Anti-inflamm. (53–56)

a-MSH 13 1 -0.92 9.72 Unknown G, F, V Anti-inflamm. (57–61)

ORXB 28 4.1 0.78 7.88 a G, V Unknown (62–66)

Ghrelin 28 5.5 1.68 11.53 a G-, P Anti-inflamm. (67–71)

SP 11 3 1.16 9.72 a G, F, V, P Pro-inflamm. (72–75)

AM 52 52 -0.89 9.97 a G Anti-inflamm. (76–79)

CGRP 37 4 0.21 9.91 a G-, F Anti-inflamm. (55, 80–85)

UCN II 38 4.21 0.53 12.23 a G, P Anti-inflamm. (86–90)

NPY 36 1 -1.19 7.55 a or PP-fold G, F, V, P Anti-inflamm. (91–94)

NDA-1 38 8 -0.82 12.41 b G, F Unknown (95)

CST 21 4 -0.49 12.31 b G, F Anti-inflamm. (96–99)
Charge, net charge; GRAVY, grand average of hydropathy; PI, protein isoelectric point; Structure, the secondary structure of AMPs; Inflamm. Resp., inflammatory response; a, a-helix; b, b-sheet;
RC, random coil; PP-fold, consists of a long N-terminal polyproline helix followed by a type II b-bend and a long amphiphilic a-helix; G, Gram positive and negative bacteria; G-, Gram negative
bacteria; F, fungi; V, virus; P, parasites.
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µM) (52). Furthermore, PACAP38 exhibited antiviral effects by

stimulating the synthesis and release of the b-chemokines CCL3

and CCL5, thereby inhibiting HIV-1 replication (50).
3.2 Vasoactive intestinal peptide (VIP)

VIP was initially isolated from the pig duodenum by Said et al.

(103). It is a 3.3 kDa polypeptide composed of 28 amino acids (104).

The structure of VIPs can change in response to variations in the

surrounding environment (105). According to previous studies,

approximately 27% of VIPs adopt an a-helix conformation,

whereas 27.2% adopt a b-sheet structure, and the remaining

45.8% is characterized as randomly coiled, but it appears to be an

a-helix when bound to a lipid or anion (56). VIP is found in two

sources within the immune system: terminals present in central and

peripheral lymphoid organs and immune cells, mostly lymphocytes.

VIP plays an anti-inflammatory role in immune regulation (53).

VIP exerts its antibacterial function through the membrane

damage mechanism, although its efficacy against bacteria is more
Frontiers in Immunology 07
pronounced at a lower NaCl concentration compared to the

physiological level of 150 mM (106). Moreover, the diminished

antimicrobial activities of VIP in 150 mM NaCl can be restored by

the addition of LL-37, suggesting that VIP may exhibit bactericidal

effects in conjunction with LL-37 within the physiological milieu of

mucosal tissue (107). Notable activity was observed against the gram-

negative bacteria E. coli (MIC: 1.7 mM) and P. aeruginosa (MIC: 1.4

mM), as well as the fungus C. albicans (MIC: 15.6 µM) (55).

Furthermore, VIP plays a significant role in combating parasites

(54). Unlike the membrane damage mechanism commonly induced

by AMPs, VIP is initially endocytosed by the parasite, leading to

disruption of intracellular lysosome integrity and cytoplasmic glycolytic

enzyme function, ultimately resulting in parasite death (54).
3.3 a-Melanocyte stimulating hormone
(a-MSH)

a-MSH, which was originally discovered in the bovine pituitary

gland, is amember of themelanocortin family (61, 108). It is a 13-amino
FIGURE 4

Production of antimicrobial neuropeptides by cells of the human immune system. The diagram of the immune cells was refined based on Krause’s
work (48). PACAP, pituitary adenylate cyclase-activating peptide; VIP, vasoactive intestinal peptide; a-MSH, a-melanocyte stimulating hormone; SP,
substance P; AM, adrenomedullin; CGRP, calciton-in-gene related peptide; UCN II, urocortin-II; NPY, neuropeptide Y; CST, catestatin; NK cell,
natural killer cell.
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acid polypeptide with a C-terminal amide derived from the enzymatic

cleavage of a 36 kD precursor protein known as Proopiomelanocortin

(POMC) (109). However, the secondary structure of a-MSH remains

unknown. a-MSH is primarily produced by nerve terminals, blood, and

various immune cells, such as TH2 cells and macrophages, and exhibits

potent anti-inflammatory activity (11, 58).

a-MSH is an antimicrobial neuropeptide that exerts its

antibacterial effect by inhibiting bacterial adhesion and molecular

penetration during the early stages of infection (59), similar to the

mechanism of antibiofilm action. It down-regulates the levels of b-1
integrin and HSP70, key molecules involved in Staphylococcus

aureus invasion of keratinocytes, thereby exhibiting antibacterial

activity (59). Moreover, a-MSH effectively permeabilizes the cell

membrane of C. albicans, resulting in the release of intracellular

contents and playing an antifungal role (110). Fjell et al. (60)

demonstrated a potent anti-candidiasis effect of a-MSH, leading

to its application in the treatment of vulvovaginal candidiasis and

chronic respiratory infections, with promising results observed

during phase II clinical trials. In terms of antiviral activity, a-
MSH suppresses activation of the transcription factor NF-kB, which
is known to enhance HIV expression (57).
3.4 Orexin-B (ORXB)

The neuropeptide ORXB, consisting of 28 amino acids (64), was

initially discovered in a small group of neurons in the hypothalamus and

is derived from the hydrolysis of a single precursor protein known as

prepro-orexin (111). Orexin-A (ORXA) and ORXB are two isopeptides

belonging to the orexin family (112). ORXB is the ancestral form and

exhibits significant similarity to VIP in terms of its amphiphilic nature,

isoelectric point, and net charge (106). Specifically, ORXB adopts a

disordered conformation in aqueous solution and an a-helix structure
in a simulated membrane environment (113). It is mainly expressed in

neurons located in the lateral and dorsomedial hypothalamus (114) and

can regulate the phagocytic function of macrophages in terms of

immune regulation (62).

The antimicrobial efficacy of ORXB, similar to that of VIP, was

significantly enhanced when it was coexposed to LL-37 at a

physiological NaCl concentration of 150 mM (115). This

enhancement can be attributed to the interaction between cationic

LL-37 and amphiphilic ORXB, which facilitates the binding of ORXB

to bacterial membranes and subsequently induces membrane damage

(116). ORXB exhibits a broad range of antibacterial activities against

both gram-negative bacteria (E. coli, Salmonella typhimurium,

Klebsiella pneumoniae) and gram-positive bacteria (S. aureus) and

demonstrates a strong antibacterial effect at concentrations greater than

25 mg/ml (66). In addition, ORXB has been found to have antiviral

activity in inhibiting the infectivity of herpes simplex virus 1 (HSV-1),

exceeding the IC50 value of 100 mg/mL (66).
3.5 Ghrelin

In 1999, Kojima et al. (117) first discovered that Ghrelin is a

growth hormone-releasing acylated peptide composed of 28 amino
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acids secreted by the stomach, and its secondary structure is a

putative a-helix (118, 119). Two forms of ghrelin have been

identified, namely, acylated ghrelin (AG) and deacylated ghrelin

(DAG) (70), with DAG found at higher circulating levels than the

AG form (120). Ghrelin is primarily expressed in human peripheral

T lymphocytes, B lymphocytes, and neutrophils (121) and exhibits

significant anti-inflammatory effects (67).

Ghrelin also has significant antimicrobial effects (70) and exerts

its antimicrobial effect primarily through a membrane damage

mechanism (122). Moreover, ghrelin concentrations equal to or

exceeding 12.5 mg/ml exhibit a significant bactericidal effect against

gram-negative bacteria (E. coli, P. aeruginosa), whereas the

bactericidal effects on gram-positive S. aureus and Enterococcus

faecalis are minimal or absent (70). Additionally, ghrelin shows

potent antiparasitic activity, such as lysis of parasites by pore

formation and plasma membrane disruption, particularly in

African trypanosomes (68).
3.6 Substance P (SP)

In 1931, SP was first identified in the brain and gut of horses by

Euler et al. (123), followed by its isolation and subsequent

determination of its amino acid sequence in the hypothalamus of

cattle (124, 125). SP consists of 11 amino acid residues, and its

secondary structure is primarily an a-helix structure (126) It

belongs to the tachykinin family. SP is mainly secreted by

neurons and can also be produced by inflammatory cells, such as

macrophages and dendritic cells, where it promotes the

inflammatory response and immune regulation (73).

Moreover, SP has been reported to possess significant

antimicrobial activity. Two mechanisms have been identified: one

is the acceleration of pathogen virulence factor production when

exposed to SP (10 µM), which leads to cytotoxic effects and

ultimately pathogen death (127, 128). The other mechanism is the

induction of shedding of the S-layer (a barrier against AMPs) of

Bacillus cereus (129), resulting in damage to cell membrane integrity

and exerting its antimicrobial activity (128). SP has demonstrated

good antimicrobial activity against the gram-negative bacterium E.

coli (MIC: 5.7 µg/ml), gram-positive bacterium Acidophilus (MIC:

74.1 µg/ml), and fungus C. albicans (MIC: 8.1 µg/ml) (55, 115). In

addition, SP can competitively bind to the measles virus (MV)

receptor and neurokinin-1 receptor, thereby preventing infection of

CD46+ neurons (130). In the fight against parasites, SP (10−8 M)

reduces the adherence of Leishmania brasiliensis to macrophages,

resulting in a repellent chemotactic effect (74).
3.7 Adrenomedullin (AM)

The 52-amino acid polypeptide AM belongs to the CGRP

family (131, 132). It was initially extracted from adrenal

medullary pheochromocytoma by Kitamura et al. (133) in 1993.

The secondary structure of AM shows a conserved a-helical region
from residues 21 to 33 (optimum antimicrobial activity), whereas

the remaining residues do not consistently show ordered regions
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(42). AM can be synthesized by several immune cells, including

macrophages, monocytes and T cells, as well as by lymphoid organs

and the gastrointestinal tract (11). Its expression increases under

inflammatory conditions, and exerts potent anti-inflammatory

effects (11).

AM is also an antimicrobial neuropeptide (78) that functions

mainly through a membrane damage mechanism (42). Moreover,

AM induces bacterial death by disrupting the peptidoglycan in the

cell wall (134). Notably, between 2003 and 2006, Allaker’s research

team (42, 78, 135) observed that AM demonstrated equal sensitivity

to the gram-negative bacteria E. coli (MIC: 0.06 µM), Haemophilus

influenza (MIC: 2 µM), and the gram-positive bacteria S. aureus

(MIC: 2 µM) and S. mutans (MIC: 2 µM) (78).
3.8 Calcitonin gene-related peptide (CGRP)

CGRP, a 37-amino acid neuropeptide, was initially discovered

in human medullary carcinoma (81, 136). It belongs to the

calcitonin superfamily and adopts an a-helix structure (83).

There are two primary forms of CGRP: a-CGRP and b-CGRP.
Compared with b-CGRP, a-CGRP is prevalent in both central and

peripheral neurons and elicits a stronger immunogenic response

(83). CGRP is primarily released from trigeminal ganglia cells and is

widely expressed in immune cells, including dendritic cells, T cells,

and macrophages (137). It exerts anti-inflammatory effects by

modulating innate immune responses (82).

CGRP also has significant antimicrobial effects on various

microorganisms found in the skin, respiratory tract, and other

anatomical regions (55, 138). CGRP exerts its antimicrobial effect

through membrane damage and antibiofilm mechanisms (139,

140), It exhibits considerable efficacy against gram-negative E. coli

(MIC: 2.1 µg/ml), P. aeruginosa (MIC: 5.9 µg/ml), and the fungus C.

albicans (MIC: 63.1 µg/ml), whereas its bactericidal effects on gram-

positive bacteria are minimal (55, 115).
3.9 Urocortin-II (UCN II)

Urocortins (UCNs), including UCN I, UCN II, UCN III,

Urotensin 1 (found only in fishes), and Sauvagine (found only in

amphibians) (141), were initially discovered by Reyes et al. (142) in

2001. UCN II, composed of 38 amino acid residues, has an a-helix
structure and possesses amphiphilic properties (89). It belongs to

the corticotropin-releasing factor (CRF) family (143). The UCN II

can be detected in various types of immune cells, including

macrophages/monocytes, T cells, and mast cells, and plays a

remarkable anti-inflammatory role in immune responses (144).

UCN II exhibits a broad spectrum of antimicrobial properties

(145). Its bactericidal activity is primarily exerted through

membrane damage (88, 145). It has good bactericidal effects

against gram-negative E. coli (median effective concentration,

EC50: 2.81 µM) and gram-positive bacteria such as S. mutans

(EC50 > 20 µM) and Micrococcus luteus (EC50: 4.92 µM) (145). In

parasites, UCN II destroys promastigotes by forming pores in their

membranes, similar to a membrane damage mechanism. The
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application of UCN II in L. major-infected BALB/c mice

significantly controls infection (145).
3.10 Neuropeptide Y (NPY)

In 1982, NPY was initially isolated from pig brain tissue by

Tatemoto et al. (146). It is one of the most abundant neuropeptides

in the brain, even more so than VIP (147). NPY belongs to the NPY

family and consists of 36 amino acids (148, 149). Its secondary

structure is the PP-fold, a generalized a-helix, which comprises a

long N-terminal polyproline helix, a type II b-helix, and a long

amphiphilic a-helix (150). NPY is ubiquitously present in both the

central and peripheral nervous systems, as well as in immune cells

such as macrophages, lymphocytes, and neutrophils (151). It acts as

an important immunomodulator and plays a significant anti-

inflammatory role (92).

NPY also exhibits broad-spectrum antimicrobial effects (152).

Its antimicrobial mechanism involves disintegrating the bacterial

membrane, leading to lysis and death of pathogenic

microorganisms (151, 153). Notably, NPY shows particularly

strong antibacterial activity against gram-negative E. coli (MIC:

4.2-11 µM), Aeromonas caviae (MIC: 14 µM), gram-positive

Nocarida brasiliensis (MIC: 7 µM), and the fungus C. albicans

(MIC: 1-2 µM) (115, 152). Furthermore, NPY at a concentration of

10-9 M has been shown to exhibit a significant chemoavoidance

effect on L. brasiliensis parasites (74). Although the protective effects

of NPY during retroviral pathogenesis in the central nervous system

(CNS), such as in HIV and Ebola, are evident, the complete

underlying mechanisms remain unclear (91, 115).
3.11 Hydra NDA-1

NDA-1, a neuropeptide specific to Hydra, was discovered by

Augustin et al. (95) in 2017. It consists of 38 amino acids and has a

b-sheet secondary structure. NDA-1 is secreted in sensory and

ganglion neurons in the ectodermal epithelium, with high

expression in the head (hypostome) and foot of Hydra (95).

NDA-1 exhibits a broad spectrum of antibacterial activity in vitro

and can influence the Hydra microbiome, resulting in a lower

abundance of Curvibacter sp. microbiota in the body column and

foot tissue than in the tentacles. The antimicrobial mechanism of

NDA-1 may involve interactions between its hydrophobic bag and the

bacterial membrane, similar to the membrane damage mechanism

(95). It demonstrates high toxicity against the gram-negative bacteria

Curvibacter sp. (MIC: 0.4 µM), Acinetobacter sp. (MIC: 7 µM), and E.

coli (MIC > 14 µM), as well as the gram-positive bacteria Bacillus

megaterium (MIC: 0.4 µM), Trichococcus pasteurii (MIC: 0.9 µM), and

Trichococcus collinsii (MIC: 0.4 µM) (95).
3.12 Catestatin (CST)

In 1997, Mahata et al. (96) first discovered and identified CST as

a catecholamine release inhibitory peptide consisting of 21 amino
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acids. CST has a highly alkaline nature with an amphiphilic

conformation (97) and adopts a b-sheet secondary structure

(154). Furthermore, CST is primarily expressed in peripheral

mononuclear cells, mast cells, and macrophages and exerts its

anti-inflammatory effect on immune regulation (98, 155).

The antimicrobial activity of CST was initially demonstrated by

Briolat et al. (156) in 2005. The antimicrobial mechanism of CST is

similar to that of typical AMPs, as CST has been shown to cause

membrane damage (99). Notably, CST exhibits significant

antimicrobial efficacy against various pathogens, including the

gram-negative bacteria E. coli (MIC: 15 µM) and P. aeruginosa

(MIC: 50 µM), the gram-positive bacterium M. luteus (MIC: 5 µM)

and Group A Streptococcus (MIC: 75 µM), and the filamentous

fungus Aspergillus fumigatus (MIC: 80 µM) (156, 157).
4 Therapeutic potential in brain
infectious disease

4.1 Macrophages act as bacterial carriers to
break through the BBB

The BBB serves as a highly regulated interface between the

bloodstream and the brain, playing a crucial role in the CNS by

facilitating infection signaling to the brain (158). During infections

and autoimmune diseases, macrophages can infiltrate the brain to

eliminate pathogens, such as Group B Streptococcus (GBS) infection

of the CNS, which triggers the recruitment of macrophages through

immune deficiency (Imd) (159). In recent years, it has been

discovered that macrophages serve as replicative niches for

various bacteria, such as P. aeruginosa, E. coli, Yersinia pestis,

Group A Streptococcus, and GBS (160). These macrophages can

act as splenic reservoirs of sepsis and facilitate the survival and

replication of Streptococcus pneumoniae within the intracellular

environment. In other words, macrophages function as bacterial

carriers, akin to “Trojan horses,” enabling successful traversal of the

BBB and subsequent brain infection (160).

Bacteria must overcome diverse antimicrobial stimuli to survive

within macrophages (160). Metal toxicity represents a prominent

mechanism employed by macrophages for bacterial eradication

(161). Korir et al. (160) demonstrated that GBS strains possess

virulence mechanisms that enable prolonged survival within

macrophages. GBS cells express cadD, which encodes a crucial

metal efflux transporter that helps remove excess metal ions from

the cell, thereby conferring resistance to metal toxicity (160). Apart

from the cadD locus, sczA and czcD have also been identified as

being involved in metal efflux (162). Moreover, cadD orthologues

have been detected in other pathogens, such as S. aureus (160). In

general, when pathogens enter macrophages, they evade

intracellular metal toxicity through metal efflux, thereby enabling

prolonged survival (160). Additionally, studies have also revealed

that alterations in macrophage polarization are partially attributed

to variations in macrophage stimulation during different S. aureus

infection scenarios (163). M1 (pro-inflammatory) or M2 (anti-

inflammatory) polarization leads to different responses of
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macrophages to S. aureus. M1 polarization resulted in bacterial

death through reactive oxygen species (ROS), acidic pH, enzyme

nutrient restriction and AMPs (164, 165). However, under certain

circumstances, S. aureus can manipulate macrophage autophagy to

induce M2 polarized, and effectively evade and manipulate

macrophages, ultimately hindering macrophage recruitment,

phagocytosis and degrative abilities (163).
4.2 Antimicrobial neuropeptides are
upregulated during pathogen infection

Numerous neuropeptides share similarities with AMPs in terms

of their size, hydrophobicity, charge, and amino acid composition

(55). These neuropeptides, which are involved in neurological or

neuroendocrine signaling processes, have shown a wide range of

antimicrobial effects against various microorganisms (55).

Generally, the upregulation of neuropeptide expression is often

observed in response to bacterial-induced inflammatory conditions,

such as pulpitis, periodontal disease, and in vivo bacteremia (55,

166). Lundy’s research team (166–168) discovered that in the

odontoblastic and subodontoplastic layers of the dental pulp close

to caries lesions, the sprouting of peptidergic nerves leads to

increased levels of neuropeptides (such as VIP, NPY, and SP) at

the site of local inflammation, thereby facilitating their direct

antimicrobial actions. Furthermore, Lee et al. (1) reported a

significant upregulation of PACAP expression—up to a 50-fold

increase—in response to infection with S. aureus or C. albicans,

suggesting that PACAP is involved in the antimicrobial defense of

the CNS by preventing the infiltration of inflammatory cells.
4.3 Anti-inflammatory activity of AMPs

For a substantial period, the neuroendocrine and immune

systems are considered two separate networks that regulate the

balance between the host and its surroundings (169). The

neuroendocrine system responds when stimulated by external

environmental factors, whereas the immune system assumes its

role in fighting invading bacteria, viruses, and other pathogens

(169). However, in the past three decades, significant progress in

research on the immune system and neuroendocrine system has

established a complex and profound interplay between these two

systems (170). On the one hand, the neuroendocrine system

modulates immune responses through the release of

hypothalamic and pituitary hormones, as well as the activation of

the autonomic nervous system (171). On the other hand, the

immune system detects stimuli that go unnoticed by the

neuroendocrine system, such as bacteria, viruses, and tumors, and

converts them into signals that prompt a response from the

neuroendocrine system, helping to regulate fever and sleep

problems (169). This bidirectional communication mechanism

between these two entities plays a critical role in perceiving

external stimuli, maintaining homeostasis, orchestrating immune

responses, and governing growth and development (172). The
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underlying mechanism can be attributed to a shared biochemical

language among them, including common neurotransmitters (such

as neuropeptides and hormones), immune cytokines, and other

ligands, along with their respective receptors (173). The complex

interplay between the neuroendocrine system and the immune

system plays a pivotal role in eradicating pathogens and restoring

immune homeostasis (13). However, when this delicate equilibrium

is disrupted, it can trigger a cascade of detrimental effects on

infectious and autoimmune diseases, exerting a profound impact

on pathological processes (174).

The induction of immune tolerance is crucial for maintaining

immune homeostasis, regulating autologous reactive T cells,

preventing the development of autoimmune diseases, and

achieving transplantation tolerance (175). Inflammation is an

essential process for pathogen eradication; however, uncontrolled

inflammation, especially in the brain, can lead to severe adverse

effects on the host. Therefore, the investigation of endogenous

factors that regulate immune tolerance and inflammation

represents a crucial research topic within the field of immunology.

Between 2000 and 2008, Delgado ’s team made the

groundbreaking discovery that neuropeptides secreted by immune

cells exert inhibitory effects on inflammation while maintaining

immune homeostasis. These neuropeptides mainly include VIP, a-
MSH, UCN I, AM, and cortistatin (11, 13, 169). Among the

antibacterial neuropeptides mentioned in this paper, the main

ones with anti-inflammatory activity include PACAP (176), VIP

(11), a-MSH (11), Ghrelin (177), AM (11), NPY (178), UCN II

(179), CGRP (180), and CST (98). The mechanism of action can be

summarized as follows: antimicrobial neuropeptides exert their

effects on macrophages, monocytes, and microglia through

regulatory T cells, leading to the inhibition of the production and

release of inflammatory factors (TNF-a, IL-6, and IL-1b),
chemokines (CCL5, IL-8, and IP-10), and NO. Additionally, they

promote the production of anti-inflammatory cytokines such as

TGFb, which exerts their anti-inflammatory effects (181).

Moreover, antibacterial neuropeptides play a pivotal role in

maintaining the equilibrium between TH2 and regulatory

T cells as well as between TH1 cells within the body, thereby

ensuring a state of homeostasis between anti-inflammatory and

proinflammatory factors to prevent the onset of autoimmune

diseases (11).
4.4 Is the antimicrobial and anti-
inflammatory activity of antimicrobial
neuropeptides a defense mechanism of
the brain?

The mechanism by which the vertebrate brain defends against

pathogen infection is currently a key research area. Inflammatory

attacks, facilitated by immune cells, can cause damage, and whereas

the brain has limited ability to repair itself, so pathogenic

microorganisms must be eliminated with minimal collateral

damage to the organ itself (1, 2). Thus, it is likely that the brain
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possesses an immune defense mechanism that has yet to be fully

understood. Through an extensive review of the literature, it has been

observed that certain neuropeptides synthesized by nerve cells or

immune cells share significant similarities with AMPs in terms of

their physicochemical properties. These neuropeptides have

demonstrated a wide range of antimicrobial activity in vitro,

effectively guarding nerve tissue against microbial invasion (1).

Furthermore, these antimicrobial neuropeptides have also been

demonstrated potent anti-inflammatory properties and can

contribute to the regulation of immune tolerance in various

immune disorders (11). Notably, the connection between this anti-

inflammatory activity and the brain’s defense against pathogen

infection remains poorly explored. Therefore, we proposed a

hypothesis that the antimicrobial activity of neuropeptides can

efficiently eliminate pathogenic microorganisms in the brain,

whereas their anti-inflammatory activity can suppress the

occurrence of off-target inflammation. Further investigations of this

topic will be a primary focus of future research. Additionally,

neuropeptides possessing both antimicrobial and anti-inflammatory

properties may hold great potential as a novel class of antimicrobial

drugs. Extensive pharmaceutical research and clinical testing may

prove valuable in the treatment of bacterial meningoencephalitis. If

successfully developed into a pharmaceutical agent, this approach

could offer a significant breakthrough in the treatment of brain

infectious diseases, particularly in light of concerns regarding the

misuse of antibiotics.
5 Conclusion

Antimicrobial neuropeptides protecting vertebrate brains

against infection is a newly discovered brain defense mechanism

in 2021 (1). However, given the limited regenerative capacity of the

brain in response to immune cell-mediated inflammatory attacks,

the presence of an unexplored layer of immune defense

mechanisms has become increasingly significant.

In this review, we have provided a concise summary of the

physicochemical characteristics and potential antimicrobial

mechanisms of AMPs. Several neuropeptides, which are produced

by nerve cells or immune cells, are remarkably similar to AMPs and

exhibit a broad spectrum of antimicrobial activities. Subsequently,

we have undertaken an extensive review of 12 previously

documented neuropeptides that possess antimicrobial properties.

Our comprehensive analysis included an exploration of their origin,

structural attributes, possible antimicrobial mechanisms, and

observed efficacy against microbial agents. Furthermore, it has

been noted that a majority of these antimicrobial neuropeptides

(9 out of 12) also exhibit potent anti-inflammatory activity,

indicating their potential involvement in regulating immune

disorders. Consequently, the combined antimicrobial and anti-

inflammatory activities of neuropeptides could play a pivotal role

in fortifying the defense mechanisms of the brain against

pathogenic invaders. Moving forward, we anticipate the validation

of this hypothesis in future research endeavors.
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