
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Duoyao Cao,
Cedars Sinai Medical Center, United States

REVIEWED BY

Andy Ruiz,
National Institute of Respiratory Diseases-
Mexico (INER), Mexico

*CORRESPONDENCE

Ayaka Ito

aito@riem.nagoya-u.ac.jp

RECEIVED 13 September 2024

ACCEPTED 30 December 2024
PUBLISHED 22 January 2025

CITATION

Ito A and Suganami T (2025) Lipid metabolism
in myeloid cell function and chronic
inflammatory diseases.
Front. Immunol. 15:1495853.
doi: 10.3389/fimmu.2024.1495853

COPYRIGHT

© 2025 Ito and Suganami. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 22 January 2025

DOI 10.3389/fimmu.2024.1495853
Lipid metabolism in myeloid cell
function and chronic
inflammatory diseases
Ayaka Ito1,2,3* and Takayoshi Suganami1,2,4,5

1Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine,
Nagoya University, Nagoya, Japan, 2Department of Immunometabolism, Nagoya University Graduate
School of Medicine, Nagoya, Japan, 3Institute for Advanced Research, Nagoya University,
Nagoya, Japan, 4Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya
University, Nagoya, Japan, 5Center for One Medicine Innovative Translational Research (COMIT),
Nagoya University, Nagoya, Japan
Immune cells adapt their metabolism in response to their differentiation and

activation status to meet the energy demands for an appropriate immune

response. Recent studies have elucidated that during immune cell metabolic

reprogramming, lipid metabolism, including lipid uptake, de novo lipid synthesis

and fatty acid oxidation, undergoes significant alteration, resulting in dynamic

changes in the quantity and quality of intracellular lipids. Given that lipids serve as

an energy source and structural components of cellular membranes, they have

important implications for physiological function. Myeloid cells, which are

essential in bridging innate and adaptive immunity, are sensitive to these

changes. Dysregulation of lipid metabolism in myeloid cells can result in

immune dysfunction, chronic inflammation and impaired resolution of

inflammation. Understanding the mechanism by which lipids regulate immune

cell function might provide novel therapeutic insights into chronic inflammatory

diseases, including metabolic diseases, autoimmune diseases and cancer.
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1 Introduction

Chronic inflammation has been shown to be the underlying pathogenesis of various

diseases. In addition to autoimmune diseases known to be caused by immune

abnormalities, immune cell infiltration and aberrant cytokine production are observed in

the focal points of metabolic diseases such as obesity and atherosclerosis, as well as in

cancer and neurodegenerative diseases. Immune cell differentiation or activation induce

metabolic reprogramming in cells, which in turn influences cellular function. This strong

link between dysregulation of systemic or intracellular metabolism and immune cell

dysfunction, termed immunometabolism, is an emerging field providing critical insights

into the pathogenesis of chronic inflammatory diseases (1). In particular, myeloid cells
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including macrophages, neutrophils and dendritic cells, serve as

the first line of defense against pathogens, and play a crucial

role in initiating and shaping immune response. They are also

involved in tissue repair. Therefore, their dysfunction triggers

various pathologies.

Activated immune cells predominantly rely on glycolysis and

exhibit downregulated mitochondrial respiration. Although

glycolysis is inefficient in ATP production compared to oxidative

phosphorylation, it has an advantage in supporting rapid and

continuous ATP production because NAD+ is regenerated from

NADH through the conversion of pyruvate to lactate to sustain

further glycolysis. In addition, many of the intermediates of

glycolysis serve as precursors for anabolic pathways, including the

pentose phosphate pathway which generates NADPH and ribose 5-

phosphate for nucleotide synthesis, the hexosamine pathway for

glycosylation, and pathways for amino acid and lipid synthesis.

Despite the downregulated mitochondrial activity under these

conditions, it is not completely lost. Acetyl CoA, which is

generated from pyruvate, enters the tricarboxylic acid (TCA)

cycle and is converted to citric acid, which is essential for

synthesis of fatty acids and triglycerides, as well as cholesterol

biosynthesis. These metabolic products are crucial for cell

proliferation, cytokine production, pathogen engulfment, and the

presentation of antigens to T cells, thereby initiating adaptive

immune responses. On the contrary, cells with low energy

requirements, such as anti-inflammatory M2 macrophages,

regulatory or memory cells, enhances fatty acid oxidation (FAO)

and oxidative phosphorylation. This metabolic shift supports the

resolution of inflammation and promotes tissue repair. In addition

to FAO, glucose utilization remains crucial, as the inhibition of

glycolysis prevent M2macrophage activation (2, 3). This differential

metabolic programming in different activation states underscores

the crucial role of lipid metabolism in determining cell functions.

Lipids are not only an important energy source, but also

fundamental components of cell membranes. In this review, we

summarize how lipid metabolism is differentially regulated in

myeloid cells, contributing to their functions and influencing the

development of various diseases.
2 Regulation of lipid metabolism

Lipid homeostasis is regulated by the balance between

endogenous biosynthesis, dietary intake, metabolism and

elimination from the body. Several nuclear receptors and

transcription factors, including liver X receptors (LXRs),

peroxisome proliferator-activated receptors (PPARs), farnesoid X

receptor (FXR) and sterol-regulatory element-binding proteins

(SREBPs), respond to changes in cellular levels of endogenous

lipid ligands and regulate the expression of genes involving in

lipid metabolism. Both cellular and systemic cholesterol levels are

tightly regulated in a reciprocal fashion by SREBP2 and LXRs.

When cholesterol levels are low, SREBP2 is proteolytically cleaved

and enters the nucleus to activate transcription of genes controlling

cholesterol synthesis, including HMG-CoA reductase, and uptake,

such as low-density lipoprotein (LDL) receptor (LDLR), whereas
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cleavage of SREBP2 is decreased when the cholesterol levels are high

(4). Instead, LXRa and LXRb are activated in response to elevated

cholesterol levels and induce the expression of cholesterol

transporters ATP-binding cassette transporter A1 and G1

(ABCA1 and ABCG1, respectively) to accomplish cholesterol

efflux from peripheral cells such as macrophages. LXRs also

activate the transcription of inducible degrader of LDLR (IDOL),

and E3 ligase that targets LDLR for ubiquitination and lysosomal

degradation, to attenuate LDL uptake by cells (5, 6) (Figure 1).

In addition to cholesterol synthesis and efflux, de novo

lipogenesis is an important component in regulating lipid

homeostasis. SREBP1a and SREBP1c, key transcription activators,

promote de novo lipogenesis by inducing fatty acid synthase

(FASN), acetyl-CoA carboxylase (ACC) and stearoyl-coenzyme A

desaturase 1 (SCD1) (7). LXRs also stimulate lipogenesis through

the direct induction of SREBP1c, FASN and SCD1 (8–11). PPAR

family, composed of PPARa, PPARd and PPARg, also modulate

fatty acid uptake, synthesis and oxidation (12) (Figure 1).
3 Quantity and quality of lipids in
inflammatory responses

It has long been known that macrophages in atherosclerotic

plaques produce a variety of inflammatory cytokines and

chemokines when they uptake excess lipoproteins and become

foam cells (13), suggesting that the quantity of intracellular lipids

is associated with inflammatory responses. Indeed, macrophages

activated by toll-like receptors (TLRs), induce the accumulation of

cholesterol and triglycerides by promoting the uptake of

lipoproteins and free-fatty acids, enhancing lipogenesis (14, 15),

and inhibiting lipolysis and cholesterol efflux (15–17). Enhanced

synthesis of fatty acid and phospholipid is essential for the

development of cellular organelles, including mitochondria,

lysosome, endoplasmic reticulum and Golgi, for cell proliferation

and proper phagocytosis (18). Consistent with this, immune cells

are unable to proliferate when cellular cholesterol is insufficient (19,

20). Also, mice lacking SREBP1a, which is a dominant isoform of

SREBPs in macrophages, exhibit defects in lipogenesis and thereby

decreased phagocytotic ability (21). These mice also show

suppressed inflammasome activation and reduced IL-1b
production in macrophages, making them resistant to endotoxin

shock and systemic inflammatory responses induced by cecal

ligation and puncture (22). TLR3 or TLR4 activation strongly

induces cholesterol 25-hydroxylase (Ch25h), an enzyme that

hydroxylates cholesterol to generate 25-hydroxycholesterol (25-

HC) (23). Notably, 25-HC antagonizes SREBP processing, thereby

suppressing inflammasome activation in LXR-independent

manner, despite being one of the ligands for LXRs (24, 25).

Rather, LXR target gene expression, including ABCA1 and

ABCG1, and cholesterol efflux are downregulated during

inflammatory activation (17, 26). Considering that Ch25h is

induced by type I interferons downstream of TLR3 or TLR4, the

effect of 25-HC may occur in a late phase of TLR activation, in

response to suppressed cholesterol efflux and increased intracellular

cholesterol levels. One possible explanation for the antagonism of
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25-HC against SREBP is the increased activity of the oxysterol-

metabolizing enzyme SULT2B1 and the ABCC transporter, which

leads to the elimination of oxysterol ligands for LXRs, thus reducing

cholesterol efflux and maintain cellular cholesterol amount (27).

LXR-dependent gene expression is also crucial for attenuating

inflammation and survival of macrophages and neutrophil (28,

29). In fact, systemic LXR deficiency results in increased

susceptibility to inflammatory responses in atherosclerosis,

Listeria monocytogenes infection and dermatitis (29–32).

Intriguingly, viral infection decreases cholesterol biosynthesis

while paradoxically increasing cellular cholesterol levels by

upregulating cholesterol import and downregulating cholesterol

efflux, leading the activation of the stimulator of interferon genes

(STING) intracellular DNA sensing pathway (33). A defect in

SREBP cleavage-activation protein (SCAP), a key regulator of

SREBP, or the silencing of SREBP-2 leads increased production of

antiviral cytokines in a STING-dependent manner (33). Given that

STING protein resides in the ER, where SCAP/SREBP sense

cholesterol, it is likely that STING signaling is activated in

response to decreased cholesterol levels in the ER membrane.

While lipids accumulate in inflammatory cells, lipolysis is more

prominent in anti-inflammatory cells. Lysosomal lipolysis and

subsequent FAO, and mitochondrial oxidative phosphorylation is
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critical for M2 macrophage activation (14). Additionally, since M2

macrophages play an important role in anti-parasitic immunity,

inhibiting lipolysis can impair the elimination of the intestinal

helminth parasite H. polygyrus (14). Similarly, enhancing FAO and

thereby reduction of triglyceride content in macrophages—by

overexpressing PPARg coactivator 1b (PGC1b), a key transcriptional

coactivator of oxidative metabolism, or carnitine palmitoyl transferase

1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO—

reduced ER stress and the production of inflammatory cytokines

(34, 35). On the contrary, suppression of FAO by PGC1b
knockdown impairs alternative macrophage activation and rather

enhances the production of inflammatory cytokines (35).

Changes in lipid quality, particularly fatty acid composition of

phospholipids and cholesterol content, have been shown to

determine the biophysical properties, such as fluidity and

curvature, of the membrane, thereby influencing various immune

cell functions, including cell proliferation, cytokine production,

phagocytosis and antigen presentation (36). Wei et al.

demonstrated that the deletion of FASN in macrophages resulted

in impaired inflammatory responses, which is attributed to

decreased membrane cholesterol levels, which in turn disrupts

protein trafficking to lipid rafts (37). Correspondingly, activating

ABCA1-dependent reduction of membrane cholesterol by LXRs has
FIGURE 1

Lipid metabolism in myeloid cells. Lipid homeostasis is regulated by the balance between endogenous biosynthesis, dietary intake, metabolism and
elimination from the body. When cholesterol levels are low, sterol regulatory element-binding protein 2 (SREBP2) is activated to synthesize
cholesterol from acetyl-CoA and to facilitate cholesterol uptake via low-density lipoprotein (LDL) receptor (LDLR). When cholesterol levels are high,
SREBP2 activity is decreased. Instead, activated liver X receptors (LXRs) induce ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1,
respectively) to accomplish cholesterol efflux to apolipoprotein A1 (ApoA1) or pre-b HDL and reverse cholesterol transport from periphery to the
liver. LXRs also induce the expression of inducible degrader of LDLR (IDOL) to degrade LDLR and attenuate cholesterol uptake by the cells. De novo
lipogenesis is regulated by LXRs, SREBP1a and SREBP1c. Activation of LXRs promotes fatty acid biosynthesis by inducing the expression of SREBP1c.
As a key regulator of fatty acid biosynthesis, SREBP1a and SREBP1c induces their targets, including fatty acid synthase (FASN) and stearoyl coenzyme
A desaturase 1 (SCD1). Peroxisome proliferator-activated receptors (PPARs) promotes fatty acid uptake via fatty acid transport protein 2 (FATP2) and
CD36, modulate fatty acid oxidation or fatty acid synthesis by inducing their targets, such as carnitine palmitoyl transferase 1A (CPT1A), and FASN
and SCD1, respectively. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme that incorporates arachidonic acid to lysophospholipids and
is induced by LXR activation, modulates membrane dynamics by altering phospholipid composition.
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been shown to modulate membrane lipid organization and

preventing the localization of TLR4 adaptor molecules to lipid

rafts, thereby impairing downstream MAPK and NFkB signaling

(38, 39). Recent comprehensive lipidomic studies have revealed that

the activation of macrophages with TLR agonists reprograms

cellular lipid composition. In particular, MyD88-dependent TLRs

induce de novo long-chain fatty acid synthesis in SREBP1c- and

SCD1/2-dependent manner, which suppresses prolonged

inflammation (40–42). Consistent with this, Hsieh et al. reported

that mice lacking SREBP1c exhibit accelerated clearance of

Staphylococcus aureus (41). The reprograming of lipid

composition by various TLRs occurs in distinct, albeit partially

overlapping, manners. For instance, TRIF-dependent TLRs

attenuate de novo long-chain fatty acid synthesis through

autocrine type I IFN signaling. Such alterations in lipid quality

occur not only at the plasma membrane but also in the endoplasmic

reticulum (ER). Even a slight increase in ER cholesterol

content reduces the transcriptional activity of SREBP1/2,

inhibiting of fatty acid and cholesterol synthesis, while a decrease

in ER cholesterol enhances SREBP activity, driving lipid synthesis

(43). Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an

enzyme that incorporates arachidonic acid to lysophospholipids

and is induced by LXR activation, has been reported to contribute to

lipid synthesis by altering ER phospholipid composition. This

alteration increases SREBP1c activity, thereby promoting fatty

acid synthesis. Increased LPCAT3 expression and the abundance

of polyunsaturated phospholipids in membranes also ameliorate ER

stress in hepatocytes in the setting of obesity (44–46). These

findings underscore the crucial role of lipid metabolism in

immune cell function.
4 Lipid metabolism in
inflammatory diseases

4.1 Metabolic diseases

As chronic overnutrition progresses to obesity, immune cells,

including macrophages, are infiltrated into adipose tissue (47). In

obese adipose tissue, macrophages are activated by saturated fatty

acids produced by adipocytes, shifting them towards a pro-

inflammatory phenotype. This shift is associated with the

development of metabolic disorders such as diabetes,

dyslipidemia, and fatty liver disease, as well as an increased risk

of atherosclerotic diseases (48–50). PPARg, a sensor of fatty acid,

acts as a master regulator of macrophage polarization. Genetic

deletion of PPARg in macrophages results in decreased FAO and

alternative activation while increasing the production of

inflammatory cytokines, making them more susceptible to obesity

and impairing glucose metabolism (51). Furthermore, Ferrante and

colleagues demonstrated that in obese adipose tissue, macrophages

induce lysosomal biogenesis and consequently accumulate lipids

within the cells, leading to an increase in macrophage number

rather than macrophage activation (52). Recent single-cell

transcriptomics studies demonstrate that adipose tissue

macrophages are highly heterogeneous (53, 54). Among the
Frontiers in Immunology 04
macrophage populations in obese adipose tissue, lipid-associated

macrophages (LAM) form a cluster with a distinct transcriptional

signature related to lipid metabolism and phagocytosis, and their

numbers increase during the progression of obesity. Trem2 null

macrophages lack the majority of the LAM gene signature and mice

lacking Trem2 exhibit adipocyte hypertrophy and metabolic

abnormalities, suggesting that LAMs play a protective role against

adipose inflammation and systemic metabolic dysregulation (53).

On the other hand, scRNA-seq analysis of CD45+ cells from

atherosclerotic aorta revealed that macrophages with high Trem2

expression display osteoclastic gene signature, in addition to genes

related to lipid metabolism and phagocytosis, suggesting that these

macrophages are associated with calcification in atherosclerotic

lesion (55). The scavenging receptor CD36 is one of the genes

commonly expressed in LAM in obesity, atherosclerosis and cancer

(56). Mice lacking CD36 have been reported to show increased

insulin sensitivity, decreased inflammation in adipose tissue and

resistant to the development of atherosclerosis (57–59). Although

these reports do not accurately reflect the role of CD36 in

macrophages due to the use of global knockout mice, subsequent

study by Moore and colleagues demonstrated that the activation of

inflammasomes in macrophages by CD36 is an underlying

mechanism (60). Given that cholesterol crystals are endogenous

activators of inflammasomes, oxidized LDL taken up via CD36

might form crystals rather than be esterified, thereby activating

inflammasomes and exacerbating atherosclerosis (61–63). These

findings highlight that managing metabolic diseases through lipid

regulation may not only correct systemic lipid metabolism but also

improve immune cell functions to mitigate inflammation and

metabolic dysregulation.
4.2 Cancer

While lipogenic pathway is essential in maintaining the

immune cell function, aberrant lipid accumulation can impair

tumor immunity and promotes tumor progression. For instance,

it has been reported that dendritic cells from tumor-bearing mice or

cancer patients have increased lipid accumulation due to enhanced

lipid uptake via the scavenger receptor Msr1, which subsequently

impairs the ability of presentation of tumor-associated antigens to T

cells, partially through triggering ER stress (64, 65). Similarly,

myeloid-derived suppressor cells (MDSCs) that are pathologically

activated neutrophils and monocytes with immunosuppressive

activity and tumor-associated macrophages (TAM) have also been

shown to have increased lipid uptake and accumulation via fatty

acid transport protein 2 (FATP2) and CD36, respectively. This lipid

accumulation supports their proliferation, thereby suppressing

tumor immunity and contributing to tumor progression (66–68).

Mechanistically, the upregulation of FATP2 increases incorporation

of arachidonic acid and leading to the synthesis and secretion of

prostaglandin E2 (PGE2), and PGE2 fuels tumorigenesis by

expanding immunosuppressive cells and inhibiting cytotoxic

immune cells (67, 69, 70). Moreover, these tumor-associated

myeloid cells actively utilize FAO rather than glycolysis to meet

their energy demand. Elevated FAO and mitochondrial oxidative
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phosphorylation result in producing reactive oxygen species and

oxidized lipids, which further disrupt tumor-associated myeloid cell

function and promote tumor progression (65, 71). Notably, FATP2

inhibition suppresses tumor growth and enhances the efficacy of

immune checkpoint inhibitor in tumor-bearing mice (67).

Additionally, lipids in tumor microenvironment serve as energy

source for tumor cells. Goossens et al. reported that tumor cells

promote membrane cholesterol efflux from TAM through ABCA1

and ABCG1, which in turn enhances IL-4 signaling and supports

anti-inflammatory/tumor-promoting macrophage polarization

(72). In agreement with this observation, myeloid-specific genetic

ablation of ABCA1 and/or ABCG1 has been shown to prevent

tumor growth (73, 74).

Targeting lipid metabolism has demonstrated promising anti-

tumor effects in pre-clinical models, highlighting its potential for

clinical applications. For instance, statins, inhibitors of HMG-CoA

reductase and cholesterol synthesis, are widely used for cardiovascular

diseases and are currently undergoing clinical trials for cancer

treatment (75). Additionally, the inhibition of CD36 using

thrombospondin analog VT1021 is being evaluated in a phase I trial

for solid cancer (NCT03364400), although another thrombospondin

analog, ABT-510, failed to achieve positive outcomes in a phase II trial

as a monotherapy. Meanwhile, FASN inhibitor TVB-2640 is under

clinical studies for various tumors, including breast cancer

(NCT03179904), non-small cell lung carcinomas (NCT03808558).

Phase I and II trials have already been completed for oral cancer

(NCT02223247) and astrocytoma brain cancer (NCT03032484) have

already been completed. The anti-tumor effects of targeting lipid

metabolism may extend beyond direct impacts on myeloid cells to

include the modulation of lipid metabolism in lymphocytes. Indeed,

mounting evidence underscores the importance of lipid

reprogramming in lymphocyte function, such as those of T cells

and natural killer cells, in regulating tumor progression. While this

review focuses on lipid metabolism in myeloid cells, the role of

lymphocyte lipid metabolism in tumor progression has been

extensively reviewed elsewhere (75–77).
4.3 Autoimmune diseases

Autoimmune diseases are a diverse group of disorders

characterized by loss of immune tolerance with activation of both

innate and adaptive immune system and development of antibodies

against self-antigens. Impaired clearance of apoptotic or necrotic

cells leads increased exposure of self-antigens, resulting in an

activation of self-reactive lymphocytes and a break of self-

tolerance. This accumulation of apoptotic cell debris also triggers

TLRs and cytosolic nucleic acid sensors, which drives the

production of inflammatory cytokines (78, 79). Several lines of

evidence suggest a link between systemic and cellular dysregulation

of lipid metabolism and the development of autoimmunity.

Systemically, cholesterol efflux capacity of high-density

lipoproteins (HDL) is impaired in patient with systemic lupus

erythematosus (SLE) or rheumatoid arthritis (RA), while serum

HDL levels are comparable to healthy individuals (80–82). This
Frontiers in Immunology 05
impaired HDL function could promote lipid accumulation in

myeloid cells. The phagocytosis of apoptotic cells activates LXRs,

which induces their target gene Mer, a receptor tyrosine kinase that

mediates phagocytosis. This positive feedback loop promotes

efficient apoptotic cell clearance and suppresses autoimmunity

(83). Furthermore, LXR-deficient mice exhibit defective

phagocytosis of apoptotic cells, thereby developing autoantibodies

(83), suggesting the importance of LXRs in autoimmunity. In fact,

polymorphisms in LXR gene are reported to be associated with SLE

in Koreans (84). Subsequent mechanistic analyses revealed that

cholesterol accumulation in CD11c+ antigen-presenting cells and

dendritic cells is a driver of systemic autoimmune disease (85–87).

LXR deficiency leads to cholesterol accumulation in antigen-

presenting cells, enhancing antigen presentation, T cell priming,

and production of B cell activating factor (BAFF), a cytokine that

supports B cell expansion and autoantibody production and plays a

pivotal role in pathogenesis of SLE (86). Increased BAFF production

is likely attributed to enhanced TLR signaling due to cholesterol

accumulation in lipid rafts (38) Similarly, the loss of LXR targets,

ABCA1 and ABCG1, in dendritic cells promotes cellular cholesterol

accumulation and cytokine production through inflammasome

activation and increased cell surface expression of granulocyte-

macrophage colony-stimulating factor (GM-CSF), leading to

autoimmunity (87). Mice lacking Ch25h also exert elevated

inflammasome activity and exacerbate experimental autoimmune

encephalomyelitis (24).

Interestingly, an expression quantitative trait loci analysis in

myeloid cells has revealed that fatty acid desaturase genes are

associated with increased susceptibility to RA (88), highlighting the

significance of fatty acid metabolism in autoimmunity. For instance,

the loss of 12/15-lipoxygenase, an enzyme mediates oxidation of

polyunsaturated fatty acids, results in increased phagocytosis of

apoptotic cells by inflammatory monocytes. This defect leads to the

break of self-tolerance and the development of SLE. Mechanistically,

12/15-lipoxygenase, expressed in resident macrophages, oxidizes

phosphatidylethanolamine, which sequesters a soluble ‘eat-me’

signal from inflammatory monocytes onto the plasma membrane

of resident macrophages. This process inhibits aberrant phagocytosis

of apoptotic cells by inflammatory monocytes (89, 90).

Dyslipidemia is frequently observed in autoimmune disease

patients and is a major cause of mortality due to cardiovascular

diseases. Prolonged glucocorticoid therapy can exacerbate

dyslipidemia, making appropriate lipid management an important

issue. Statins, widely used for lipid management, have been reported

to improve the disease symptoms in RA patients (91). Preclinical

studies further demonstrate that statins attenuate autoimmune

pathology in models of autoimmune diseases, such as RA,

encephalomyelitis, and SLE by reducing antigen presentation,

suppressing cytokine production and inhibiting Th1 differentiation

(92). Omega-3 polyunsaturated fatty acids, known for its triglyceride-

lowering effects, have also shown anti-inflammatory effect on myeloid

cells and direct impacts on B cell differentiation (93, 94).

Improvements in lipid metabolism are expected to positively

influence autoimmune pathology by simultaneously modulating

lipid metabolism and immune cell functions.
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5 Concluding remarks

Over the past two decades, significant progress has been made

in understanding the crosstalk between lipid metabolism and

inflammatory responses, as well as their collective impact on

chronic inflammatory diseases (Table 1). Targeting lipid

metabolism has emerged as a promising therapeutic strategy to

correct immune dysfunction in these conditions. However,
Frontiers in Immunology 06
translating these findings into clinical applications requires a

deeper understanding of lipid metabolism across diverse immune

cell subsets, as the regulatory mechanisms vary depending on cell

type and disease context. Another critical question that remains

unanswered is whether interventions targeting lipid metabolism

directly reprogram lipids within immune cells or if the effects are a

consequence of alterations in systemic lipid metabolism. Future

research, employing lipidomic analyses and imaging technologies,
TABLE 1 Targeting lipid metabolism in inflammation and chronic inflammatory diseases.

Diseases Molecule Function in
lipid metabolism

Intervention Phenotypes Ref.

Inflammation SREBP1c Lipogenesis SREBP1aKO Reduced phagocytic activity (21, 22, 41)

SREBP1cKO Resistant to endotoxin shock, accelerated clearance
of Staphylococcus

LXRa/b Cholesterol efflux LXRa/b double KO Increased inflammatory cytokines, susceptible to
atherosclerosis, Listeria infection and dermatitis

(29–32,
38, 39)

SREBP2 Cholesterol biosynthesis shSREBP2 Increased antiviral cytokines (33)

SCAPKO Protected from hervesvirus infection

CD36 Fatty acid transport CD36KO Less M2 activation (14)

Metabolic
diseases

FASN Fatty acid synthesis Myeloid-FASNKO Decreased inflammation and ameriolated diet-
induced diabetes

(37)

LPCAT3 Phospholipid
modification

shLPCAT3/
Liver-LPCAT3KO

Increased ER stress and hepatic inflammation
in obesity

(44–46)

PPARg Lipogenesis PPARgKO Less M2 activation, increased susceptibility to
obesity and impaired glucose metabolism

(51)

CD36 Fatty acid transport CD36KO Attenuated adipose inflammation and insulin
resistant, and resistant to atherosclerosis

(57–59)

Cancer Msr1 Fatty acid transport Msr1KO Increased dendritic cell capacity to stimulate T cells (64)

ACC Fatty acid synthesis ACC inhibitor Increased anti-tumor effect of cancer vaccine (64)

CPT1 Fatty acid oxidation CPT1 inhibitor Attenuated tumor growth, and increased anti-tumor
effect of chemotherapy or adoptive cellular transfer

(66, 68)

FATP2 Fatty acid transport FATP2KO Attenuated myeloid suppressor function and
tumor growth

(67)

FATP2 inhibitor Attenuated tumor growth, and increased anti-tumor
effect of checkpoint inhibitor

ABCA1/G1 Cholesterol transport Myeloid-ABCA1KO Decreased myeloid suppressor cells, and attenuated
tumor growth

(73, 74)

Myeloid-ABCG1KO Elevated inflammatory effect, and attenuated
tumor growth

Autoimmune
diseases

LXRa/b Cholesterol efflux LXRa/b double KO Impaired apoptotic cell clearance, increased
inflammation, and exhibited systemic autoimmunity

(80, 83)

ApoA1 Cholesterol efflux ApoA1/LDLR
double KO

Increased autoantibody (82)

ABCA1/G1 Cholesterol transport Myeloid-
ABCA1/G1 double KO

Activated inflammasome and exhibited
systemic autoimmunity

(84)

12/15-lipoxygenase Oxidation of
polyunsaturated
fatty acid

12/15-lipoxygenase KO Impaired apoptotic cell clearance by inflammatory
macrophages and developed systemic autoimmunity

(87)
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will enable us to elucidate lipid dynamics across organelles, cells,

and organs. These insights will open new avenues for developing

innovative strategies to address the unmet medical needs in chronic

inflammatory diseases.
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