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Background: Interferon-alpha1b (IFN-a1b) has shown remarkable therapeutic

potential as adjuvant therapy for melanoma. This study aimed to develop five

machine learning models to evaluate the efficacy of postoperative IFN-a1b in

patients with advanced melanoma.

Methods: We retrospectively analyzed 113 patients with the American Joint

Committee on Cancer (AJCC) stage III-IV melanoma who received postoperative

IFN-a1b therapy between July 2009 and February 2024. Recurrence-free survival

(RFS) and overall survival (OS) were assessed using Kaplan-Meier analysis. Five

machine learning models (Decision Tree, Cox Proportional Hazards, Random

Forest, Support Vector Machine, and LASSO regression) were developed and

compared for their capacity to predict the outcomes of patients. Model

performance was evaluated using concordance index (C-index), time-dependent

receiver operating characteristic (ROC) curves, and decision curve analysis.

Results: The 1-year, 2-year, and 3-year RFS rates were 71.10%, 43.10%, and

31.10%, respectively. For OS, the 1-year, 2-year, and 3-year OS rates were

99.10%, 82.30%, and 75.00%, respectively. The Decision Tree (DT) model

demonstrated superior predictive performance with the highest C-index of

0.792. Time-dependent ROC analysis for predicting 1-, 2-, and 3-year RFS

based on the DT model is 0.77, 0.79 and 0.76, respectively. Serum albumin

emerged as the important predictor of RFS.

Conclusions: Our study demonstrates the considerable efficacy DT model for

predicting the efficacy of adjuvant IFN-a1b in patients with advanced melanoma.

Serum albumin was identified as a key predictive factor of the treatment efficacy.
KEYWORDS

immunotherapy, machine learning, melanoma, interferon-alpha, adjuvant therapy,
prognostic factors
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Introduction

The global incidence of melanoma has been increasing

gradually, presenting a considerable public health challenge (1, 2).

The incidence rate of melanoma vary geographically, with the

highest rates observed in Australia and New Zealand, followed by

North America and Europe (3). Notably, in Asian populations,

although the overall incidence remains lower, melanoma frequently

manifests as acral or mucosal subtypes, which are associated with

poorer prognosis (4).

Surgical excision is the most prevalent treatment modality for

melanoma. However, postoperative recurrence rates remain

substantial (5). This high recurrence risk necessitates the

exploration of effective adjuvant therapies to improve long-term

outcomes. The challenge is particularly pronounced in Chinese

populations, where acral and mucosal melanoma subtypes are more

prevalent (6, 7). These subtypes exhibit lower response rates to

immune checkpoint inhibitors like anti-PD-1 and anti-CTLA4

antibodies (7, 8), resulting in inferior clinical prognosis for

patients with advanced melanoma. Consequently, there is a

pressing need to develop alternative therapeutic method that can

improve clinical outcomes, particularly for melanoma in

Chinese populations.

Among the adjuvant therapeutic strategies, the interferon-a1b
(IFN-a1b) has revealed promising treatment effect. As a member of

the interferon a family, IFN-a1b exhibits relatively favorable

tolerability, eliciting anti-tumor responses and potentially playing

a central role in innate immunity, thereby providing a rationale for

its clinical application in oncology (9–12). Recently, our team has

demonstrated the promising potential of human IFN-a1b in

melanoma treatment. A retrospective study by Shi et al. showed

that IFN-a1b monotherapy exhibited favorable outcomes in

unresectable stage IV melanoma patients, resulting in a median

overall survival (mOS) of 14.1 months (13). Subsequently, Gao et al.

reported the efficacy of adjuvant IFN-a1b in resected stage IIIB or

IIIC melanoma. This study revealed promising recurrence-free

survival rates of 75.4%, 47.4%, and 37.2% at 12, 24, and 36

months, respectively. Moreover, the overall survival rates were

impressive, with 100%, 81.9%, and 71.5% at the same time points

(14). Despite these encouraging results, several important questions

remain. The optimal criteria for patient selection and the long-term

efficacy of IFN-a1b as an adjuvant therapy remain to be fully

elucidated. Furthermore, given the heterogeneity of melanoma and

the variability of treatment responses, there is a pressing need for

more sophisticated prognostic tools to guide treatment decisions

and predict outcomes in patients receiving adjuvant IFN-

a1b therapy.

In recent years, machine learning has emerged as a promising

tool in oncology, providing novel opportunities for predicting

treatment outcomes and personalizing patient care (15). By

analyzing intricate patterns within large datasets, machine

learning algorithms have the potential to identify subtle

prognostic factors and treatment response indicators that may not

be discernible through traditional statistical methods (16). This

approach is particularly promising in the context of melanoma,

where the heterogeneity of the disease and the variability in
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treatment responses present substantial challenges to clinical

decision-making (17). Based on these considerations, our study

aims to evaluate the efficacy of postoperative IFN-a1b in melanoma

patients. More importantly, we want to develop and validate

machine learning models for assessing prognosis of these patients,

by integrating clinical data with advanced machine learning

methodologies, so as to optimize melanoma management and

improve the outcome of patients with melanoma, especially in

Chinese populations.
Materials and methods

Study design and patient population

Profiles of patients diagnosed with melanoma (the American

Joint Committee on Cancer (AJCC) 8th Edition) based on clinical

and histological confirmation from July 1st, 2009 to February 29th,

2024 in the Department of Dermatology, Xijing Hospital were

reviewed. This study was conducted in accordance with the

Declaration of Helsinki and was approved by the Internal Review

Board of Air Force Military Medical University (KY20242167-C-1).

Inclusion criteria were: (1) underwent surgical treatment; (2)

stages III-IV; (3) treatment with postoperative IFN-a1b therapy for
a minimum duration of one month; and (4) complete clinical,

pathological, and follow-up data. Exclusion criteria included: (1)

patients with unknown primary sites; (2) age <18 years; (3) prior

systemic therapy for melanoma; (4) concurrent malignancy; and (5)

incomplete medical records.
Data collection and outcome measures

Patient data were extracted from electronic medical records and

pathology reports. Collected variables included demographic

information (age, sex), clinical characteristics (TNM stage,

Eastern Cooperative Oncology Group (ECOG) performance

status at last follow-up), and pathological features. Laboratory

data encompassed complete blood count parameters (white blood

cell count, neutrophil count, lymphocyte count, hemoglobin level,

platelet count) and liver function tests (ALT, AST, albumin, alkaline

phosphatase). Hepatitis B virus (HBV) status was also recorded.

Treatment details included surgical information (type of surgery,

whether the primary lesion was resected), and the details of IFN-

a1b adjuvant therapy. Outcome measures comprised recurrence-

free survival (RFS), overall survival (OS), recurrence information,

and survival status.

Follow-up assessments, including physical examination,

complete blood count, and serum biochemical tests, were

performed prior to therapy initiation and at 3-month intervals

thereafter. Imaging studies, including ultrasound evaluation of all

lymph nodes and CT scans of the chest, abdomen, and pelvis, were

conducted at baseline and every 3 months to assess the status of

recurrence and distant metastases. Besides, recurrence or metastatic

lesions were confirmed through histopathological examination

when possible.
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The primary endpoint was RFS, defined as the time from

diagnosis to the date of initial recurrence (local, regional, or

distant metastasis) or death from any cause. The secondary

endpoint was OS, defined as the time from diagnosis to death

from any cause. Patients without events were censored at the date of

last follow-up or September 6th, 2024, whichever came first.
Machine learning algorithms

The dataset was then randomly split into training and

validation cohorts at 6:4 ratio. Five machine learning models

(Decision Tree (DT), Cox proportional-hazards model, Least

Absolute Shrinkage and Selection Operator (LASSO), Random

Forest (RF), and Support Vector Machine (SVM)) were developed

to assess the survival outcomes.

Hyperparameter tuning was conducted using grid search with

5-fold cross-validation on the training set. Model performance was

evaluated using the concordance index (C-index) and time-

dependent receiver operating characteristic (ROC) curves. The

area under the ROC curve (AUC) at 1, 2, and 3 years was

calculated to assess the models’ discriminative ability over time.

Additionally, decision curve analysis (DCA) was employed to

evaluate the clinical utility of the best-performing model across a

range of threshold probabilities.

To interpret the model, we employed SurvSHAP, which

calculates the average SHAP (SHapley Additive exPlanations)

value for each feature across all samples. Time-dependent variable

importance bar plots were utilized to determine significant features

for 1-, 2-, and 3-year survival. Furthermore, partial dependence

plots (PDPs) were employed to show how variations in feature

values affect the predicted outcomes.
Statistical analysis

Categorical variables were presented as frequencies and

percentages, while continuous variables were expressed as median

and interquartile range (IQR) or mean ± standard deviation (SD) as

appropriate. Comparisons between groups were performed using the

chi-square test or Fisher’s exact test for categorical variables and the

Mann-Whitney U test or t-test for continuous variables, as appropriate.

RFS and OS were evaluated and depicted using the Kaplan-Meier

method with the log-rank test. All statistical analyses and machine

learning model development were performed using R software version

4.1.0 (R Foundation for Statistical Computing, Vienna, Austria). A

two-sided P < 0.05 was considered statistically significant.
Results

Patient characteristics

We retrospectively analyzed 113 melanoma patients who

received IFN-a1b adjuvant therapy. The baseline characteristics are

summarized in Table 1. These patients were with mean age of 57.7 ±
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12.7 years, and the majority (85.0%, n=96) at AJCC stage III. Among

all these cases, acral melanoma was the predominant subtype (64.6%,

n=73), followed by cutaneous (25.7%, n=29) and mucosal (9.73%,
TABLE 1 Baseline characteristics of patients.

Variable Overall, N=113

Stage

III 96 (85.0%)

IV 17 (15.0%)

Age, years, mean ± SD 57.7 ± 12.7

< 60 54 (47.8%)

≥ 60 59 (52.2%)

Sex

Female 60 (53.1%)

Male 53 (46.9%)

Primary site

Acral 73 (64.6%)

Cutaneous 29 (25.7%)

Mucosal 11 (9.73%)

Diabetes mellitus

No 100 (88.5%)

Yes 13 (11.5%)

Hypertension

No 81 (71.7%)

Yes 32 (28.3%)

Ki-67

< 20% 27 (23.9%)

≥ 20% 63 (55.8%)

Uknow 23 (20.4%)

Interferon dose, mg

< 600 44 (38.9%)

≥ 600 69 (61.1%)

ECOG

0 98 (86.7%)

≥ 1 15 (13.3%)

HBV

No 92 (81.4%)

Yes 21 (18.6%)

WBC, * 109/L 5.97 ± 1.91

NEU, * 109/L 3.75 ± 1.69

LYM, * 109/L 2.26 ± 1.76

(Continued)
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n=11) melanoma. High-dose IFN-a1b (≥600 mg) was administered

to 61.1% (n=69) of patients. Comorbidities were present in a subset,

with diabetes mellitus and hypertension observed in 11.5% (n=13)

and 28.3% (n=32) of patients, respectively.
Survival analysis

We conducted Kaplan-Meier analyses to evaluate recurrence-

free survival (RFS) and overall survival (OS) in our cohort

(Figure 1). The median RFS was 20 months (95% CI: [17, 26]),

with 1-year, 2-year, and 3-year RFS rates of 71.10%, 43.10%, and

31.10%, respectively (Figure 1A). For OS, the median was 81

months (95% CI: [56.9, NA]), with 1-year, 2-year, and 3-year OS

rates of 99.10%, 82.30%, and 75.00%, respectively (Figure 1B).
TABLE 1 Continued

Variable Overall, N=113

HBV

Hb, g/L 153 ± 47.4

PLT, 100 * 109/L 207 ± 64.2

ALT, U/L 22.3 ± 12.2

AST, U/L 21.7 ± 10.4

ALB, g/L 44.1 ± 4.20

ALP, U/L 84.4 ± 30.3
ALB, Albumin; ALP, Alkaline Phosphatase; ALT, Alanine Aminotransferase; AST, Aspartate
Aminotransferase; ECOG, Eastern Cooperative Oncology Group; Hb, Hemoglobin; HBV,
Hepatitis B Virus; IFN-a1b, Interferon-alpha1b; LYM, Lymphocyte; NEU, Neutrophil; PLT,
Platelet; SD, Standard Deviation; WBC, White Blood Cell.
FIGURE 1

Kaplan-Meier curves for (A) Recurrence-Free Survival (RFS) and (B) Overall Survival (OS) in patients. RFS, Recurrence-Free Survival; OS, Overall
Survival; IFN-a1b, Interferon-alpha1b; CI, Confidence Interval.
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Machine learning model evaluation

In the training set, we developed and compared five machine

learning models to predict melanoma patient outcomes: Decision

Tree (DT), Cox Proportional Hazards (COX), Random Forest (RF),

Support Vector Machine (SVM), and Lasso regression. Model

performance was initially evaluated using the C-index (Figure 2).

In the validation set, the DT model demonstrated superior predictive
Frontiers in Immunology 05
performance with the highest C-index of 0.792, followed by COX

(0.720), RF (0.701), SVM (0.628), and Lasso regression (0.572).

To further assess predictive performance, we conducted time-

dependent ROC analysis for RFS at 1, 2, and 3 years (Figures 3A–E).

The DTmodel consistently outperformed other models across all time

points, with 1-, 2-, and 3-year RFS of 0.77 (95% CI: [0.59, 0.95]), 0.79

(95% CI: [0.65, 0.93]), and 0.76 (95% CI: [0.60, 0.92]), respectively

(Figure 3A). Furthermore, the DCA (Figures 4A–C) and calibration
FIGURE 2

Comparison of C-index values for five different predictive models. COX, Cox Proportional Hazards; DT, Decision Tree; Lasso, Least Absolute
Shrinkage and Selection Operator; RF, Random Forest; SVM, Support Vector Machine.
FIGURE 3

The ROC curves for predicting 1-, 2-, and 3-year RFS using five different models. (A) DT model. (B) Cox Proportional Hazards model. (C) Lasso
model. (D) RF model. (E) SVM model. AUC, Area Under the Curve; Cox, Cox Proportional Hazards; DT, Decision Tree; Lasso, Least Absolute
Shrinkage and Selection Operator; RF, Random Forest; ROC, Receiver Operating Characteristic; RFS, Recurrence-Free Survival; SVM, Support
Vector Machine.
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curves (Figure 4D) for predicting 1-, 2-, and 3-year RFS based on the

DT model all demonstrated good predictive performance.
Feature analysis

To identify key predictors of RFS in melanoma patients

receiving IFN-a1b adjuvant therapy, we performed the time-

dependent feature importance analysis, including tumor

characteristics (site and stage), patient demographics (age and

sex), comorbidities (diabetes mellitus, hypertension and hepatitis

B virus) and various laboratory indices (neutrophil (NEU), alanine

aminotransferase, aspartate aminotransferase, lymphocyte,

hemoglobin (Hb), albumin (ALB), white blood cell, platelet and

alkaline phosphatase) (Supplementary Figure 1). The analysis

revealed that ALB emerged as the most significant predictor of

RFS, maintaining its top ranking across all time points.

To further elucidate the complex relationships between key

laboratory parameters and RFS, we conducted partial dependence

survival analyses (Supplementary Figure 2). These analyses revealed

non-linear associations, with higher values of NEU, ALB, and Hb

consistently linked to improved RFS outcomes.

Complementing these findings, the box plots based on Shapley

values (Supplementary Figures 3, 4) provided granular insights into

the contribution of various laboratory parameters to RFS prediction

at 12-, 24-, and 36-months post-treatment. Consistent with our

previous findings, ALB and NEU emerged as key predictors, with

higher values associated with improved RFS across all time points.
Frontiers in Immunology 06
Discussion

In this retrospective study, we demonstrated the efficacy of

adjuvant IFN-a1b therapy in improving clinical outcomes for

patients with resected stage III-IV melanoma. Our analysis

revealed a median RFS of 20 months and a median OS of 81

months, underscoring the potential of IFN-a1b in the management

of advanced melanoma. To further refine our understanding and

prediction of treatment efficacy, we developed and compared five

machine learning models. Among these, the DT model

demonstrated superior performance in predicting individual

patient responses to IFN-a1b therapy. This innovative approach

not only validated the overall efficacy of the treatment but also

provided a novel tool for personalized treatment decisions in

melanoma management.

The efficacy of IFN-a1b in melanoma treatment can be

attributed to its multifaceted biological effects. Primarily, IFN-a1b
exerts direct antiproliferative effects on tumor cells by inducing cell

cycle arrest and apoptosis (18). Additionally, it enhances the

immune response against melanoma cells through multiple

mechanisms: activating natural killer cells, upregulating the

expression of major histocompatibility complex (MHC) class I

molecules, and promoting the differentiation of dendritic cells

(19–21). Recent studies have also highlighted the role of IFN-a1b
in modulating the tumor microenvironment, including the

inhibition of angiogenesis and the promotion of a more

immunogenic tumor phenotype (18, 19). These mechanisms

contribute to the observed clinical benefits in our study,
FIGURE 4

The DCA and Calibration Curves for the DT model in predicting RFS. (A) 1-year RFS. (B) 2-year RFS. (C) 3-year RFS. (D) Calibration Curve. DCA,
Decision Curve Analysis; DT, Decision Tree; RFS, Recurrence-Free Survival.
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reinforcing the rationale for IFN-a1b as an adjuvant therapy in

advanced melanoma.

Our findings align with and extend previous studies on

interferon therapy in melanom. A meta-analysis by Ives et al.

demonstrated a significant improvement in RFS with interferon

therapy, consistent with our results (22). However, our study

uniquely contributes to the field by employing machine learning

techniques to predict individual patient responses, an approach not

previously applied in this context. While recent research has

focused on alternative immunotherapies like PD-1 inhibitors (23),

our study reaffirms the value of IFN-a1b, particularly in melanoma

patients in Chinese population who may exhibit lower response

rates to immune checkpoint inhibitors. Moreover, our machine

learning approach offers a novel strategy for patient stratification,

potentially optimizing the use of IFN-a1b and may address the

ongoing challenge of treatment selection in advanced melanoma.

The application of machine learning, particularly the DTmodel,

represents a significant methodological advancement in predicting

IFN-a1b treatment efficacy. The DT model offers several

advantages over traditional statistical methods in this context.

Firstly, they can capture non-linear relationships and complex

interactions between variables, which are often present in

biological systems (24). Secondly, the DT model provides easily

interpretable results, allowing clinicians to understand the decision-

making process, a crucial factor in medical applications (25). The

hierarchical structure of the DT model also aligns well with clinical

decision-making processes, making the model’s predictions more

intuitive (26). Furthermore, DTs are robust to outliers and missing

data, common challenges in clinical datasets (27). In our study, the

DT model outperformed traditional logistic regression in both

accuracy and area under the receiver operating characteristic

curve (AUC-ROC), demonstrating its superior predictive

capability in this complex clinical scenario.

Our machine learning model identified serum albumin levels as

the most significant predictor of treatment response and prognosis in

melanoma patients receiving IFN-a1b therapy. This finding aligns

with emerging evidence on the crucial role of albumin in cancer

biology and treatment outcomes. Albumin serves as a key indicator of

nutritional status and overall health, factors known to influence

cancer prognosis (28). A large-scale study by Gupta et al. found

that pretreatment serum albumin levels were independently

associated with overall survival in cancer patients across multiple

tumor types (28). In the study conducted by Xie et al., the overall

survival was significantly higher in the group with elevated albumin

levels than in the lower albumin levels (29). Moreover, recent studies

have elucidated albumin’s direct effects on tumor biology. Serum

albumin has been shown to modulate the tumor microenvironment

by influencing oxidative stress and inflammatory responses (30). It

also plays a role in drug transport and metabolism, potentially

affecting the pharmacokinetics and efficacy of IFN-a1b (31).

Overall, serum albumin levels may serve as a biomarker reflecting

the inflammatory status and nutritional state of patients. Low

albumin levels could indicate a heightened inflammatory response

or malnutrition, both of which are known to adversely affect

melanoma prognosis. These multifaceted functions of albumin

underscore its importance as a predictive biomarker in our model
Frontiers in Immunology 07
and suggest potential avenues for therapeutic interventions aimed at

optimizing treatment outcomes in melanoma patients.

Despite the promising results, our study has several limitations that

warrant consideration. Firstly, the retrospective, single-center design

and non-random selection of patients introduce potential biases and

limit the generalizability of our findings. Selection bias may have

influenced patient inclusion, potentially affecting the observed

treatment outcomes. The completeness and accuracy of clinical

records may introduce errors that could affect the validity of our

findings. What’s more, the single-center nature of the study also raises

questions about the applicability of our machine learning model to

diverse patient populations and clinical settings (32). Additionally,

while our model showed good predictive performance, the relatively

small sample size may have limited its ability to capture rarer

prognostic factors or subgroup effects. The DT model demonstrated

superior performance, likely due to the dataset’s characteristics, which

may be more conducive to simpler models. Complex models, while

potentially more powerful, risk overfitting, particularly in datasets with

limited sample sizes. Future studies should explore the balance between

model complexity and generalizability. Lastly, the evolving landscape of

melanoma treatment, with the introduction of targeted therapies and

novel immunotherapies, may impact the long-term relevance of our

findings focused on IFN-a1b. Future multi-center, prospective studies

with larger cohorts are needed to validate and refine our

predictive model.

In conclusion, our study demonstrates the efficacy of IFN-a1b
adjuvant therapy in melanoma and develops the DT model, which

offers a promising tool for personalized risk assessment. The

identification of serum albumin as a key predictive factor offers new

insights into the biological mechanisms underlying treatment efficacy.
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SUPPLEMENTARY FIGURE 1

The time-dependent feature for predicting recurrence-free survival. ALB,
Albumin; ALT, Alanine Aminotransferase; ALP, Alkaline Phosphatase; AST,

Aspartate Aminotransferase; ECOG, Eastern Cooperative Oncology Group;

Hb, Hemoglobin; HBV, Hepatitis B Virus; IFN-a1b, Interferon-alpha1b; LYM,
Lymphocyte; NEU, Neutrophil; PLT, Platelet; WBC, White Blood Cell.

SUPPLEMENTARY FIGURE 2

The partial dependence survival profiles for NEU, ALB, and Hb in relation to
RFS. ALB, Albumin; Hb, Hemoglobin; IFN-a1b, Interferon-alpha1b; NEU,

Neutrophil; RFS, Recurrence-Free Survival.

SUPPLEMENTARY FIGURE 3

The Shapley values for laboratory parameters at 12, 24, and 36 months

predicting RFS. ALB, Albumin; ALP, Alkaline Phosphatase; ALT, Alanine
Aminotransferase; AST, Aspartate Aminotransferase; Hb, Hemoglobin; LYM,

Lymphocyte; NEU, Neutrophil; PLT, Platelet; RFS, Recurrence-Free Survival;
WBC, White Blood Cell.

SUPPLEMENTARY FIGURE 4

The Shapley values for clinical features predicting RFS at 12, 24, and 36
months. ECOG: Eastern Cooperative Oncology Group performance status;

HBV: Hepatitis B Virus.
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