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Background: Sepsis is a life-threatening condition that causes millions of deaths

globally each year. The need for biomarkers to predict the progression of sepsis

to septic shock remains critical, with rapid, reliable methods still lacking.

Transcriptomics data has recently emerged as a valuable resource for disease

phenotyping and endotyping, making it a promising tool for predicting disease

stages. Therefore, we aimed to establish an advanced machine learning

framework to predict sepsis and septic shock using transcriptomics datasets

with rapid turnaround methods.

Methods: We retrieved four NCBI GEO transcriptomics datasets previously

generated from peripheral blood samples of healthy individuals and patients

with sepsis and septic shock. The datasets were processed for bioinformatic

analysis and supplemented with a series of bench experiments, leading to the

identification of a hub gene panel relevant to sepsis and septic shock. The hub

gene panel was used to establish a novel prediction model to distinguish sepsis

from septic shock through a multistage machine learning pipeline, incorporating

linear discriminant analysis, risk score analysis, and ensemble method combined

with Least Absolute Shrinkage and Selection Operator analysis. Finally, we

validated the prediction model with the hub gene dataset generated by RT-

qPCR using peripheral blood samples from newly recruited patients.

Results: Our analysis led to identify six hub genes (GZMB, PRF1, KLRD1, SH2D1A,

LCK, and CD247) which are related to NK cell cytotoxicity and septic shock,
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collectively termed 6-HubGss. Using this panel, we created SepxFindeR, a

machine learning model that demonstrated high accuracy in predicting sepsis

and septic shock and distinguishing septic shock from sepsis in a cross-database

context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR

datasets based on the 6-HubGss panel, facilitating the identification of newly

recruited patients with sepsis and septic shock.

Conclusions: Our bioinformatic approach led to the discovery of the 6-HubGss

biomarker panel and the development of the SepxFindeR machine learning

model, enabling accurate prediction of septic shock and distinction from

sepsis with rapid processing capabilities.
KEYWORDS

sepsis, septic shock, biomarkers, machine learning for disease diagnosis, translational
medicine, SepxFindeR model
Introduction

Sepsis remains the primary cause of in-hospital fatalities

globally (1). The COVID-19 pandemic has underscored the

urgency for diagnosis and treatment of sepsis. Timely and

accurate identification of patients with sepsis is paramount for

initiating early interventions, aligning with international

consensus to enhance patient outcomes and lower mortality

rates (2). Septic shock is the most severe manifestation of sepsis.

Foreseeing this clinical condition has long been a focal point.

Clinical studies show that each hour of delayed treatment in septic

shock escalates the risk of death by approximately 8% (3).

Consequently, discovering novel biomarkers and establishing

effective predictive models for early septic shock detection is

imperative, extending the window for prompt intervention.

Transcriptomics data have become advanced resources for

identifying associations between gene expression levels and

disease phenotypes and endotypes (4–8). However, due to its

high-dimensional and complex features, analyzing such data can

be challenging. The NCBI Gene Expression Omnibus (GEO) is an

excellent resource for retrieving gene expression data, including

data related to disease diagnosis and prognosis (9). Through the

analysis of large-scale GEO datasets, insights into differentially

expressed genes and pathways associated with specific diseases
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can be gained, allowing for the development of biomarkers for

diagnosis and treatment based on this information. Recently, an

increasing number of studies have used numerous one-step

machine learning approaches to leverage existing large-scale gene

expression datasets to establish biomarker prediction models for

disease diagnosis and endotyping (10, 11). However, these models

are currently awaiting validation through essential strategies to

assess their accuracy and robustness across diverse datasets and

patient demographics.

In this study, our objective is to establish a novel machine

learning framework, called SepxFindeR (i.e. finding of patients with

sepsis and septic shock) for prediction of sepsis and septic shock

with rapid turnaround methods (RT-qPCR). To accomplish this

goal, we executed a multistep workflow including (i) to develop an

advanced approach for discovering a biomarker panel for septic

shock using public transcriptome datasets, (ii) to establish the

SepxFindeR model using a multistage machine learning algorithm

to distinguish sepsis from septic shock with the identified biomarker

panel, and (iii) to validate the SepxFindeR model using a dataset

derived from the RT-qPCR test (Figure 1). This advanced workflow

holds the potential to revolutionize the field of medicine by

facilitating rapid disease diagnosis, paving the way for

personalized treatment plans, and enhancing patient outcomes.
Methods

Study design

The NCBI GEO is a publicly available database containing vast

amounts of human gene expression metadata that can be re-

analyzed for translational research in advancing the prevention,

diagnosis, or treatment of diseases (12). Our goal was to identify a

biomarker panel related to sepsis and septic shock through analysis
frontiersin.org
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of the metadata in GEO. We then used a bioinformatics and

machine learning approach to establish a highly predictive model

to distinguish between septic shock, sepsis, and healthy individuals.

To achieve this, we executed a pipeline consisting of six experiments

outlined in Figure 1.
Search and retrieval of gene
expression metadata

We searched GEO of human datasets related to adult and

pediatric populations. For adult datasets, a manual search of

GEO repository (http://www.ncbi.nlm.nih.gov/geo/) was

conducted with the following string: (((“shock, septic”[(MeSH

Terms]) OR septic shock[(All Fields])) OR (“sepsis”[(MeSH

Terms]) OR sepsis[(All Fields]))) AND (whole[(All Fields]) AND

(“blood”[(Subheading]) OR “blood”[(MeSH Terms]) OR blood
Frontiers in Immunology 03
[(All Fields])))) AND “Homo sapiens”[(porgn])) AND

“gse”[(Filter]) AND “Expression profiling by array”[(Filter]))

AND “gse”[(Filter]). Next, all identified metadata in GEO

repository were further assessed to determine if they consisted of

(a) studies involved the use of adult whole blood specimens, (b)

studies contained septic shock or sepsis patients with healthy

controls, and (c) studies had blood samples collected within 24h

of admission. Using these criteria, three transcriptional microarray

datasets [GSE95233 (13), GSE57065 (14) and GSE54514 (15)] and

one RNAseq dataset [GSE154918 (16)] were retrieved from the

GEO. The features of these microarray and bulk RNAseq datasets

are summarized in Table 1.

The gene expression level in microarray and RNAseq datasets is

represented as fold change vs. RMA (Robust Multi-array Average)

and TPM (Transcript per million) respectively, which are already

normalized and can be comparable across samples within the same

dataset in subsequent analysis.
FIGURE 1

Workflow of model generation and validation. LDA, linear discriminant analysis. RSA, risk score analysis.
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Evaluation of cell type abundance in
retrieved gene expression datasets by
CIBERSORTx algorithm

We used the CIBERSORTx algorithm, an established machine-

learning RNA deconvolution method that infers cell-type-specific

gene expression profiles (17), to estimate the proportions of

leukocytes in each retrieved gene expression dataset. The

retrieved transcriptome datasets were uploaded as mixture files to

the CIBERSORTx web portal (https://cibersortx.stanford.edu/)

(17), and the LM22 signature matrix was used to define the cell

populations during the deconvolution analysis (17, 18). The

algorithm was run with default parameters and 100 permutations

in relative quantification. Deconvoluted samples were considered

significant if the CIBERSORTx p-value was < 0.05, indicating a

good fit across all cell subsets. The data output from CIBERSORTx

was downloaded and analyzed using R programming language.

Differences between lesion types were analyzed using independent

Student’s t-test or one-way ANOVA followed by Tukey’s HSD post-

hoc test. Results were presented as mean ± standard error of mean

(s.e.m.), and a p-value < 0.05 was considered significant. Overall, the

CIBERSORTx algorithm enabled us to estimate the relative

proportions of leukocyte cell types in the blood samples of each

individual in the retrieved dataset.
Differentially expressed gene analysis and
biological interpretation

The retrieved gene expression data were processed using the

limma package in R software (Version 4.1.0 https://cran.r-

project.org/web/packages/glmnet/index.html), and adjusted p-

value<0.05 and |logFC| >0.6 were used to identify differentially
Frontiers in Immunology 04
expressed genes (DEGs) between defined conditions. To gain

insights into the biological functions of the identified DEGs in the

context of biological pathways and processes they are involved in, the

septic shock-associated 1639 common DEGs in GSE95233 and

GSE57065 were subjected to Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis using the Fast Gene

Set Enrichment Analysis (fGSEA) package, which ranked genes based

on the fold-change of their differential expression and visualized

leading edge gene sets in the identified pathways. The identified top

leading-edge genes were defined as hub-gene panel which was used for

establishing predictive models through machine learning analysis.
Establishment and assessment of hub gene
panel using machine learning analysis

The following two machine learning analysis methods were

executed to assess hub-gene panel in this study.

Linear discriminant analysis (LDA)
The identified hub-gene panel was used to build a prediction

model by incorporating the LDA machine learning algorithm (10,

19). Briefly, the workflow for LDA analysis includes randomly

splitting data into training set and test set with a ratio of 50/50,

training the LDA model for discriminating sepsis and septic shock

using the training set and evaluating predictive value of the model

using the test set. The performance of the hub-gene guided model is

evaluated using confusion matrix and receiver operating

characteristic (ROC) curve.

Risk score analysis (RSA)
The risk score-related predictive model is a scoring system that

represents a linear combination of the relative expression values of
TABLE 1 Demographics of retrieved datasets.

GEO Accession ID GSE95233 GSE57065 GSE54514 GSE154918

Cohorts
Septic

Shock **
Healthy
Control

Septic
Shock **

Healthy
Control

Sepsis **
Healthy
Control

Septic
Shock ***

Sepsis *** Healthy
Control

Time of sample
collection* (n)

Day 1 (51) Day 1 (22) Day 1 (28) Day 1 (25) Day 1 (35) Day 1 (18) Day 1 (19) Day 1 (20) Day 1 (40)

Number of females 18 11 9 20 21 12 8 12 23

Number of males 33 11 19 5 14 6 11 8 17

Sample type Whole blood cells Whole blood cells Whole blood cells Whole blood cells

Analysis platform
(HG-U133_Plus_2)

Affymetrix Human Genome
U133 Plus 2.0 Array

(HG-U133_Plus_2)
Affymetrix Human Genome

U133 Plus 2.0 Array

Illumina HumanHT-12
V3.0 expression beadchip RNAseq

Platform spot No. GPL570 GPL570 GPL6947

Comparison
Septic shock vs.
Healthy Control

Septic shock vs.
Healthy Control

Sepsis vs. Healthy Control
Septic shock vs. Sepsis, Septic shock vs.

Healthy Control, Sepsis vs. Healthy Control

References (13) (14) (15) (16)
fr
*The day or minutes after first onset of the disorder or visited clinics.
**Diagnosed using the diagnostic criteria of the American College of Chest Physicians/Society of Critical Care Medicine (1992).
***Diagnosed using the diagnostic criteria of The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) (2016).
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genes, with a weight value for unsupervised classification (10). To

execute the analysis, the microarray datasets were processed using

unsupervised machine learning, and a septic shock risk score was

assigned to each individual based on the expression levels of the 6

HubGss. The formula corresponding to the expression and risk

score is as follows:

Risk Score =o
n

i=1
wi(

ei − ui
si

)

(n: count of 6-HubGss; w: weight value of the i
th gene; ei: expression

level of the ith gene; ui: mean value for the ith gene among whole

samples; si: standard deviation value for the ith gene among whole

samples.) The results of RSA were interpreted by evaluating the

performance of the hub-gene guided risk score model. A density plot

was used to determine the cutoff value, and an ROC curve was

employed to estimate the specificity and sensitivity.
The Least Absolute Shrinkage and
Selection Operator analysis and
establishment of SepxFindeR
prediction model

The Least Absolute Shrinkage and Selection Operator (LASSO)

regression analysis is one of the popular techniques used to improve

machine learning model performance on small sample size and

high-dimensional data (20). LASSO algorithm performs linear

regression analysis on a complex dataset with multiple variables.

It uses regularization to prevent overfitting by shrinking small

coefficients of the predictor variables towards zero. In this study,

the package “glmnet” in the R Programming Language (version 4.1)

was used to carry out LASSO regression analysis to assess the

relationship between disease categories and DEG expression levels

of 6 hub genes. The workflow of LASSO analysis includes the

following four steps. First, we established dataset, namely,

DatasetLD1+RS, by treating the LD1 values from LDA analysis and

risk scores from RSA analysis as two predictive variables while

keeping disease categories as the response variable. The purpose is

to borrow strength from both LDA and RSA by integrating the two

informative features. This DatasetLD1+RS was split into training and

test sets. Second, we process the training dataset to train a LASSO

regression model, namely, SepxFindeR using the glmnet package in

R with parameters: family = “binomial”, type.measure = “deviance”,

nfold = 20 (20-fold cross-validation). Specify the alpha parameter

for L1/L2 regularization, with a=1 representing LASSO and a=0

representing ridge regression. Use the cv.glmnet function in R to

perform cross-validation and select the optimal value for turning

parameter l using “deviance”(-2 log partial likelihood). The l was

chosen so that the partial likelihood deviance reached its the lowest

level. A suitable model was chosen based on the 20-fold cross-

validation of the function cv.glmnet. Third, we evaluated the

performance of the SepxFindeR model using the test dataset in

terms of classification of accuracy. Lastly, we used the SepxFindeR

model to make predictions on new datasets and compared the
Frontiers in Immunology 05
performance of the SepxFindeR model to that of the LDA and

RSA models.
Animal experiments and cecal ligation and
puncture (CLP)-induced sepsis in mice

The protocol for animal experiments was approved by the

Institutional Animal Care and Use Committee at Northwestern

University. Specific pathogen free C57BL/6 wild-type mice (male, 8

weeks old) were purchased from Jackson Laboratory (Bar Harbor,

ME). All mice were housed under a 12-h light-dark cycle with

unlimited water and standard rodent chow in a specific pathogen-

free environment. Mice were subjected to model of CLP-induced

sepsis using our standard protocol (21, 22). Sham-control group

received sham operation. The total number of mice used was 34. We

used at least 7 mice in each group based on Power analysis. Mice

were randomized into each experimental group and processed for

treatments using a memory-free and pseudo-random selection

process. They were monitored to determine body weights and the

disease activity index (DAI) daily. The criteria of DAI for sepsis are

detailed in Supplementary Table S1. The score of body weight was

scaled as follows: weight loss (%): 0, normal; 1, <10%; 2, 10-15%; 3,

15-20%; 4, >20%, while the sepsis score was scaled based on murine

sepsis score (MSS) as described previously (23): 0, MSS=0; 1,

MSS<7; 2, MSS≥7 but <14; 3, MSS≥14 but <21; 4, MSS≥21. Then

DAI was calculated as the sum of body weight score and sepsis

score. At the end of experiments, mice were euthanized using CO2

inhalation followed by bilateral pneumothorax or cervical

dislocation, and the blood samples were collected. No mice,

samples, or data points were excluded from analyses. All

evaluators were blinded to mouse treatment groups.
Flow cytometry

We used flow cytometry to characterize the immune cells in

mouse peripheral blood using our previously established protocol

(24). The antibodies listed in Supplementary Table S2 was used for

immunostaining. The data were obtained using a BD

FACSymphony A5 Cell Analyzer (Indianapolis, IN). Cells were

first gated for FSC-A vs. SSC-A based on size and granularity to

eliminate debris and clumped cells. Next, single cells were obtained

using FSC-A vs. FSC-H and SSC-A vs. SSC-H gating strategy. These

single cells were further sub-gated using the fixable live-dead

viability dye for gaining live cells. Live cells were further gated for

leukocyte cells based on the pan-hematopoietic marker CD45. Live

CD45+ cells were used for the characterization of further immune

cell subtypes. CD45+ cells were subjected to CD11b gating. The

CD11b+ and CD11b- cell populations were further gated to separate

neutrophils (CD45+CD3-CD11b+Ly6g+), monocytes (CD45+CD3-

CD11b+Ly6c+), NK cells (CD45+CD3-CD11b+NK1.1+) and T cells

(CD45+CD11b-CD3+). Antibodies were titrated by performing

fluorescence minus one (FMO). The flow cytometry data was
frontiersin.org
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then analyzed using FlowJo version 10.7.1 (FlowJo LLC,

Ashland, OR).
Human subjects and samples collection

In our study, we recruited a total of 18 healthy individuals and 28

patients diagnosed with septic shock (n=13) and sepsis (n=15).

Ethical and research governance approval was provided by the

Human Research Ethics Committee in Linyi People’s Hospital

(Linyi, Shandong Province, China). Full study protocol can be

accessed upon request. Patients with sepsis or septic shock were

enrolled from intensive care unit (ICU) in Linyi People’s Hospital

from November 1, 2021 to November 31, 2022. Patients were eligible

if they were enrolled to ICU within 24 h and aged 18 years older and

less than 85 years old. None of recruited patients were found to be

suffered from COVID19 in this study. The subjects were assigned to

sepsis group based on their Sequential Organ Failure Assessment

(SOFA) score on admission (≥2) in accordance with the Third

International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3) (2). Recruited patients with septic shock had to fulfill the

above sepsis criteria with a vasopressor requirement to maintain

the blood pressure and having a serum lactate level > 2 mmol/L in the

absence of hypovolemia. Healthy controls (n = 18) were enrolled at

Linyi People’s Hospital. Exclusion criteria: (1) subjects below the age

of 18 years old and over 85 years old; (2) subjects with malignant

tumors; (3) subjects with primary immunodeficiency, HIV and

subjects under immunosuppressive drugs; and (4) inability to

consent the subjects. The whole blood was collected to an

anticoagulated tube on admission within 24 hours and stored at

-80°C. Patient information is summarized in Table 2.
Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted from the blood samples using TRIzol

reagent (Invitrogen) according to the manufacturer’s instructions.
Frontiers in Immunology 06
Reverse transcription was performed using the SuperScript™ First-

Strand Synthesis (GeneCopoei). RT-qPCR was performed using

BlazeTaq™ SYBR Green qPCR Mix 2.0 (GeneCopoei) according to

the manufacturer’s manual. Primers were listed in Supplementary

Table S3. The relative mRNA expression level of the 6-HubGss was

calculated and normalized to the expression of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) gene. The fold change of gene

expression levels between samples was calculated using the

2–DDCT method.
Validation of SepxFindeR model in
RT-qPCR data

To validate the peripheral blood 6-HubGss-based SepxFindeR

prediction model, we first performed LDA model and risk score

model based on the RT-qPCR data. LD1 values and risk scores were

profiled to evaluate the predictive efficiency of the SepxFindeR

model in separating septic shock or sepsis patients from healthy

controls, as well as separating patients with septic shock from sepsis.
Statistical analysis

All data are shown as mean ± s.e.m. Statistical analysis was

performed with R software (version 4.1.0) or GraphPad Prism 8.

The independent Student’s t-test, the nonparametric Mann–

Whitney test, and one-way ANOVA followed by Tukey’s HSD

post-hoc test were used to analyze the statistical significance of the

group differences. The significance level was set at *p<0.05.

**p < 0.01, ***p < 0.001, ****p < 0.0001.

No samples or data points were excluded from analyses.
Results

Overview of retrieved gene
expression datasets

To conduct this study, an extensive search was carried out using

specific keywords in the GEO database. The aim was to identify

microarray and RNAseq gene expression data encompassing

transcription profiles of whole peripheral blood cells in adult

healthy individuals and patients diagnosed with sepsis (refer to

the detailed Methods section). By July 2021, a total of 88 datasets

were found in GEO, and upon careful evaluation, three microarray

datasets and one RNAseq dataset were identified to meet the criteria

outlined in the method section. These datasets were subsequently

chosen for inclusion in this study. Notably, two datasets including

GSE95233 (13) and GSE57065 (14) are cohorts with healthy

individuals (HC) and patients with septic shock (SS), while

GSE54514 dataset (15) contains healthy individuals (HC) and

patients with sepsis (Sep). Additionally, GSE154918 provided an

RNAseq dataset that includes individuals with SS, Sep, and HC (16).

A comprehensive summary of the key information from these

retrieved datasets is presented in Table 1.
TABLE 2 Clinical characteristics.

Healthy
control

Sepsis1
Septic
shock1

P value3

(vs. Ctr)

Age2 (Years) 60.85 ± 2.3 68.41 ± 4.26 66.77 ± 3.07 –

Gender (F/M) 7/12 5/10 8/5

APACHE
II Score

– 17.13 ± 5.5 21.92 ± 6.02 P<0.05

SOFA score – 5.07 ± 2.08 6.15 ± 2.44 –

Glasgow score – 13.73 ± 2.72 13.46 ± 1.6 –

Creatinine
umol/L

–
144.33
± 124.99

152.08
± 122.79

–

Lactate
mmol/L

– 1.34 ± 0.74 3.67 ± 1.49 P<0.001
1Diagnosed using the diagnostic criteria of The Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) (2016).
2mean ± s.e.m.
3Student's t test or one-way ANOVA followed by Tukey’s HSD post-hoc test.
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Reduction in peripheral blood NK cells is a
notable feature for both humans and mice
with septic disorder

In order to utilize the retrieved datasets for this study, we thought

to identify a specific peripheral blood cell population that is

significantly affected by sepsis and septic shock. This would enable

us to further investigate potential biomarkers associated with these

conditions. To accomplish this, we employed the CIBERSORTx

machine learning platform, a bioinformatic tool capable of

retrospectively predicting the relative proportions of different cell

types in a mixed cell population in peripheral blood using bulk RNA

sequencing data (17).We applied this approach to estimate changes in

the proportions of various types of peripheral leukocytes in human

sepsis and septic shock datasets including GSE95233, GSE57065,

GSE54514, and GSE154918. Our analysis revealed markedly

reduction of NK cells and T cells in patients with septic shock

(Figures 2A–C). In septic patients, RNAseq dataset GSE154918

showed a significant reduction in NK cells and T cells (Figure 2C),

while microarray dataset GSE54514 displayed no significant changes

in these two leukocyte subsets (Figure 2D). Thus, it appears patients

with sepsis have database-dependent changes in NK cells and T cells.

In addition, we found that the human sepsis and septic shock are

associated with alteration of other leukocytes in a dataset dependent

manner (Supplementary Figure S1). Similarly, we observed that male
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mice with CLP-induced septic disorder (Figure 2E) exhibited a

persistent decrease in peripheral blood NK cells, but not other

leukocytes during both the early sepsis stage (24 hours after CLP)

and the severe sepsis stage (48 hours after CLP) (Figures 2F, G;

Supplementary Figure S1B). As the goal of this study is not to

characterize biomarkers for diagnosis of septic disorder for mice, we

did not further confirm this finding using female mice. Collectively,

our analysis suggests that both humans and mice exhibit a decrease in

peripheral blood NK cells during the septic disorder.
Patients with septic shock exhibit a
significant decrease in the expression of
hub genes related to NK cell cytotoxicity in
peripheral blood cells

Given the conserved changes observed in peripheral NK cell

profiles in both mice and humans during the septic disorder, we

hypothesized that NK cell-associated genes serve as candidate

biomarkers for predicting sepsis-associated clinical conditions in

humans. To test this hypothesis, we performed differential

expression gene (DEG) and KEGG pathway analyses on retrieved

microarray datasets, including GSE95233, GSE57065, and

GSE54514, to investigate the association between changes in NK

cell-related gene expression and sepsis/septic shock. Using R
FIGURE 2

Reduction of peripheral blood NK cells is a distinctive feature of septic shock in mice and humans. (A–D) Comparison of NK cell and T cell proportions
between individuals with sepsis and those who are healthy controls, septic shock vs. healthy controls, and septic shock vs. sepsis in datasets of GSE95233 (A),
GSE57065 (B), GSE154918 (C), and GSE54514 (D). Relative proportion of NK cells and T cells in peripheral blood was estimated using CIBERSORTx machine
learning platform. HC, healthy control; Sep, Sepsis; SS, septic shock. (E) Assessment of sepsis severity in indicated time periods after CLP based on survival
rate, body weight, and disease activity (DIA). n = 17 in CLP 24 h group. n = 15 in Sham 24 h group. n = 7 in CLP 48 h group. n = 8 in Sham 48 h group. (F,
G) Changes of NK cells and T cells in mouse peripheral blood at 24 h (F) and 48 h (G) after CLP. n = 7 in CLP 24 h group. n = 7 in Sham 24 h group. n = 7
in CLP 48 h group. n = 8 in Sham 48 h group. The proportions of indicated leukocytes in peripheral blood CD45+ cells were estimated by multicolor flow
cytometry analysis. Data represents two independent experiments and show as mean ± s.e.m. *P<0.05, **P<0.01, ***P<0.001. Student's t test or one-way
ANOVA followed by Tukey’s HSD post-hoc test.
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analytics, we analyzed each dataset to identify DEGs between septic

shock patients and healthy controls, as well as between sepsis

patients and healthy controls, using adjusted P<0.05 and |logFC|

>0.6 as cutoff criteria. Notably, we found a higher number of DEGs

between septic shock and healthy controls as compared to between

sepsis and healthy controls (Supplementary Table S1). By

employing Venn diagram analysis, we identified 1639 DEGs that

were common in the GSE95233 and GSE57065 datasets when

comparing septic shock patients to healthy controls, but these

DEGs were not overrepresented in the GSE54514 dataset for

sepsis patients (Figure 3A, top panel). Among these genes, 894

were upregulated and 745 were downregulated in both GSE95233

and GSE57065 (Supplementary Table S2).

To further explore the enriched pathways in septic shock patients

compared to healthy controls, we conducted Gene Set Enrichment

Analysis (GSEA) using the fGSEA R package and KEGG pathways in

the GSE95233 and GSE57065 datasets. Our analysis revealed a

significant enrichment of genes associated with cellular and humoral

immune responses, as well as pre-existing health conditions, in septic

shock patients (Supplementary Table S3). Notably, among the

enriched cellular pathways, we observed a marked downregulation

of signals associated with the T cell signaling pathway and NK cell

cytotoxicity (Figure 3A, bottom panel). Based on these findings, we

further processed bioinformatic analysis and identified potential hub

genes for septic shock within the downregulated leading-edge genes

from the NK cell-mediated cytotoxicity pathway (Figures 3B, C). By

DEG analysis of the top leading-edge genes between the GSE95233

and GSE57065 datasets, we identified 12 overlapping candidate genes

(Figure 3D). Utilizing a cutoff of LogFC<-1.5, we identified a group of

six genes, which we designated as the six hub genes for septic shock (6-

HubGss) in peripheral blood cells (Figure 3D). Furthermore, we

examined how the expression of the 6-HubGss is altered in samples

from GSE154918 RNAseq dataset, an independent validation cohort.

The heatmap shows that the six hub genes were significantly

downregulated in septic shock patients as compared to heathy

controls (Figure 3E). PCA analysis revealed that the 6-HubGss

biomarker panel effectively segregates patients with sepsis and septic

shock from the healthy control cohort (Figure 3F). However, the

predictive efficiency of 6-HubGss panel-based PCA analysis is lacking

in its ability to differentiate between septic shock and sepsis

(Figure 3F). This suggests that 6-HubGss panel-based PCA analysis

is not suitable to distinguish septic shock from sepsis.
Evaluating the reliability of HubGss panel
with LDA and RSA analyses

Here, we employed a dual machine learning approach in R

(v.4.1.0) to evaluate the potential of the 6-HubGss panel as a

reliable biomarker for predicting septic shock and sepsis using a

workflow illustrated in Supplementary Figure S2A. First, the retrieved

microarray datasets (GSE95233, GSE57065, and GSE54514) were

assigned as the discovery-cohort. Utilizing 6-HubGss panel-guided

LDA and RSA analyses, we constructed two biomarker models,

namely the LDA6-HubGss and RSA6-HubGss models for analysis the

discovery-cohort. Evaluation of performance metrics under a train-
Frontiers in Immunology 08
test split setting demonstrated that the LDA6-HubGss model exhibited

excellent predictive values in identifying patients with septic shock in

the training and test groups in the GSE95233 and GSE57065 datasets

(Supplementary Figure S2B, performance metrics in top panel). The

measurement of the area under the ROC curve of LD1 value further

revealed a perfect ROC score for the specificity/sensitivity pair of the

LDA6-HubGss model (Supplementary Figure S2B, ROC curves in top

panel). However, the LDA6-HubGss model showed insufficient

accuracy in determining patients with sepsis in both training and

test sets of the GSE54514 dataset (Supplementary Figure S2C,

performance metrics in top left panel), with a poor/failed ROC

score (Supplementary Figure S2C, top right panel). Similarly, the

RSA6-HubGss model enables to separate patients with septic shock

from healthy control in each dataset based on the expression levels of

the 6-HubGss (Supplementary Figure S2B, density plot in bottom

panel). The specificity and sensitivity of the RSA6-HubGss model were

verified using ROC curve analysis, demonstrating unbiased

prediction of septic shock patients in the microarray datasets using

the 6-HubGss-guided machine learning bioinformatic approach

(Supplementary Figure S2B, ROC curves in bottom panel).

However, the RSA6-HubGss model was observed to be incapable of

distinguishing between sepsis patients and healthy individuals in the

GSE54514 dataset (Supplementary Figure S2C, bottom panel).

Next, we conducted a series of cross-validation analyses to verify

the accuracy of LDA6-HubGss and RSA6-HubGss models in analyzing an

independent validation cohort of the GSE154918 RNAseq dataset,

which consisted of individuals with septic shock, sepsis, and healthy

controls. In the LDA-based cross-validation analysis, we observed

excellent prediction accuracy of the LDA6-HubGss model for

distinguishing septic shock from healthy controls (Supplementary

Figure S2D, performance metrics in top panel) and sepsis from

healthy controls (Supplementary Figure S2E, performance metrics in

top panel) in both the training and test groups of the GSE154918

dataset. However, when assessing the confusion matrix for septic

shock versus sepsis, we found that the LDA6-HubGss model excelled

on the training data but did not generalize effectively to the test data

(Supplementary Figure S2F, performance metrics in top panel).

Additionally, we repeated the evaluation analysis using all subjects

in both the training and test sets. The ROC curves demonstrated that

the LD1 value derived from the LDA6-HubGss model showed excellent

discriminatory performance for sepsis and septic shock compared to

healthy controls, with AUC (Area Under the Curve) values of 0.959

and 1, respectively (Supplementary Figures S2D, S2E, ROC curves in

top panel). In contrast, the AUC value for sepsis versus septic shock

was 0.832 (Supplementary Figure S2F, ROC curves in top panel),

suggesting that the LDA6-HubGss model is ineffective in

discriminating between sepsis and septic shock.

Furthermore, the GSE154918 dataset was applied on RSA6-HubGss

model to distinguish sepsis and septic shock. Risk score distribution

plot shows separation of patients with septic shock (Supplementary

Figure S2D, histogram in bottom panel) and sepsis (Supplementary

Figure S2E, histogram in bottom panel) from healthy individuals in

the GSE154918 dataset by RSA6-HubGss model. Similarly, ROC curve

analysis of the risk scores demonstrated that the RSA6-HubGss model

exhibited excellent predictive accuracy in identifying patients with

septic shock (Supplementary Figure S2D, ROC curves in bottom
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FIGURE 3

Discovery and validation of six hub genes for septic shock (6-HubGss) through bioinformatic analysis of DEGs and KEGG related to NK cell mediated
cytotoxicity. (A) DEG and KEGG analysis revealed septic shock-associated genes and pathways in datasets GSE95233 and GSE57065. GSE54514
dataset was used to exclude sepsis specific DEGs. (B, C) Identification of septic shock-associated hub genes through analysis of leading-edge genes
in fGSEA profile of NK cell-mediated cytotoxicity pathway in GSE95233 (B) and GSE57065 (C). (D) Unveiling a group of 6 top genes for septic shock
(6-HubGss) through top module analysis with leading edge genes in GSE95233 and GSE57065 datasets. (E) Validation of 6-HubGss in GSE154918
RNAseq dataset using heatmap analysis. (F) Assessment of performance of 6-HubGss-guided PCA analysis on identification of patients with sepsis
and septic shock in GSE154918 dataset. HC, healthy control; Sep, Sepsis; SS, septic shock.
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panel) as well as sepsis (Supplementary Figure S2E, ROC curves in

bottom panel) from healthy controls in the GSE154918 RNAseq

dataset. However, both histogram plot of risk score distribution and

ROC curve show that the RSA6-HubGss model was unable to

differentiate patients with septic shock from those with sepsis in

the dataset (Supplementary Figure S2F, bottom panel). Together, it

appears that 6-HubGss biomarker panel-based models of LDA and

RSA exhibit limitations on segregating patients with septic shock

from sepsis in gene expression omics data.
Advancing models of LDA6-HubGss and
RSA6-HubGss to SepxFindeR model using
ensemble method combined with Least
Absolute Shrinkage and Selection Operator
regression analysis

Ensemble method is a machine learning technique that combines

several base models in order to produce one optimal predictive model
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(25). Here, we sought to examine whether this approach enables to

improve LDA6-HubGss and RSA6-HubGss frameworks, leading to an

advanced 6-HubGss panel-guided machine learning model which

exhibits robust and reliable performance not only within individual

datasets but also across multiple datasets. Thus, we employed an

ensemble approach and performed LASSO regression analysis-based

machine learning algorithm to improve LDA6-HubGss and RSA6-HubGss

frameworks for predicting patients with sepsis and septic shock. To

achieve this, we constructed a two-dimensional dataset called the 6-

HubGss panel-associated DatasetLD1+RS by merging the 6-HubGss

panel-based LD1 values and risk scores for all individuals in the

microarray datasets of GSE95233 and GSE57065 as well as for

individuals of healthy controls and patients with septic shock in

RNAseq dataset of GSE154918 (Figure 4A). Through the train-test

split machine learning approach using LASSO regression analysis on

the DatasetLD1+RS dataset, we established a new machine learning

prediction model, namely, SepxFindeR for predicting septic shock

(Figure 4A). We found that the SepxFindeR model effectively

distinguished patients with septic shock from healthy individuals in
FIGURE 4

Establishment of SepxFindeR model using Least Absolute Shrinkage and Selection Operator (LASSO) analysis to improve the performance of 6-HubGss

panel-guided prediction on septic shock and sepsis. (A) Workflow for building and verifying SepxFindeR model. (B) Assessment of SepxFindeR model in
distinguishing patients with septic shock from healthy control in the testing set (left panel), merged data (right panel). (C) Assessment of SepxFindeR model in
distinguishing patients with septic shock from healthy control (left panel) and sepsis (right panel) in GSE154918 dataset. (D–F) SepxFindeR model vs. LDA and
RSA models. Comparison of the overall performance of SepxFindeR model with that of thresholds of LD1 values or cutoffs of risk scores from each dataset
on distinguishing sepsis from healthy control (D), septic shock from healthy control (E), and septic shock from sepsis (F) in indicated datasets. HC, healthy
control; Sep, Sepsis; SS, septic shock. *P<0.05, ***P<0.001. Student’s t-test or one-way ANOVA followed by Tukey’s HSD post-hoc test.
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the test set and the full 6-HubGss panel-associated DatasetLD1+RS

(Figure 4B, violin plot for probability distribution). Confusion matrix

analysis shows that SepxFindeR model exhibits an excellent

performance in prediction of patients with septic shock in both test

andmerged dataset respectively (Figure 4B). Furthermore, we evaluated

the SepxFindeR model using GSE154918 dataset that contains sepsis,

septic shock, and healthy controls. We noticed SepxFindeR model

exhibited an excellent performance on prediction of patients with septic

shock vs. healthy controls (Figure 4C, left panel) and significantly

separated patients with septic shock from sepsis in GSE154918 dataset

(Figure 4C, right panel). The confusion matrix evaluation further

demonstrated that the SepxFindeR model achieved an accuracy of

100% in predicting septic shock and 80% in differentiating septic shock

from sepsis in GSE154918 dataset (Figure 4C).

Analysis of performance metrics demonstrated that predictive

accuracy of SepxFindeR model is similar to that of the LDA and risk

score models in terms of predicting septic shock in microarray

datasets of GSE95233 (Figure 4D, left panel) and GSE57065

(Figure 4D, middle panel). In the GSE154918 RNAseq dataset, the

SepxFindeR model exhibited much better performance in
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distinguishing septic shock compared to the LDA and RSA models

in all analyzed datasets (Figure 4D, right panel). Compared to the LDA

and RSA models, the SepxFindeR model demonstrated significantly

better accuracy in predicting patients with sepsis in both microarray

dataset (Figure 4E, left panel) and RNAseq dataset (Figure 4E, right

panel). Among the three models, the SepxFindeR model exhibited the

highest performance accuracy value for segregating septic shock from

sepsis in the GSE154918 RNAseq dataset (Figure 4F). Together, these

results suggest that the SepxFindeR model is an advanced machine

learning model for predicting patients with sepsis and septic shock.

SepxFindeR model effectively not only
predicts sepsis and septic shock but also
distinguishes them in 6-HubGss biomarker
panel-based RT-qPCR dataset

In this study, we examined whether models of LDA, RSA, and

SepxFindeR can be applied on prediction of patients with sepsis and

septic shock in 6-HubGss biomarker panel-based RT-qPCR dataset

through executing a workflow outlined in Figure 5A. For this
FIGURE 5

Application of LDA, RSA, and SepxFindeR models on prediction of patients with sepsis and septic shock in new 6 HubGss panel-based RT-qPCR
dataset. (A) The workflow for analyzing RT-qPCR data using LDA, RSA, and SepxFindeR models. (B) Assessment of expression levels of 6 HubGss

markers in peripheral blood cells of indicated individuals using RT-qPCR. n = 13-19/group. Data show as mean ± s.e.m. *P < 0.05, **P < 0.01,
***P < 0.001. (Sep vs. HC, SS vs. HC, SS vs. Sep: nonparametric Mann–Whitney test). (C, D) Distinguishing patients with sepsis and septic shock in 6
HubGss panel-based RT-qPCR dataset using LDA model (C) and RSA model (D). **P<0.01. NS, no significance. (E) Overview about how to predict
sepsis and septic shock in 6 the 6-HubGss-dataset

PCR dataset using SepxFindeR model. (F) Application of SepxFindeR model to 6-HubGss-dataset
PCR

dataset. HC, healthy control; Sep, Sepsis; SS, septic shock.
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purpose, we prospectively recruited 15 patients with sepsis and 13

patients with septic shock. Additionally, we enrolled 18 healthy

individuals as a control cohort for this study. Upon enrollment, we

collected peripheral blood cells for the purpose of this validation

study. The patients were conventionally managed using a step-up

strategy by clinicians who were blinded to the results of this

validation study (Table 2). The peripheral blood cells were

processed to extract total RNA, followed by measuring the

expression of the 6-HubGss using RT-qPCR. Initially, we

compared the expression of the 6-HubGss in patients with sepsis

and septic shock to that in the healthy controls. In both septic

conditions, the mRNA levels of the 6-HubGss were significantly

lower than in the healthy controls (Figure 5B). However, no

significant difference in the expression of the 6-HubGss was

observed between patients with sepsis and septic shock. This

suggests that the qPCR-based analysis of the 6-HubGss expression

is unable to differentiate septic shock from sepsis.

Next, we processed the RT-qPCR-measured levels of the 6-

HubGss in the cohort to construct a dataset called the 6-HubGss-

datasetPCR. We then executed LDA and RSA machine learning

analyses using a train-test split routine to discriminate between

sepsis and healthy individuals, septic shock and healthy individuals,

and sepsis and septic shock in the 6-HubGss-dataset
PCR. The

confusion matrices and kernel density plot reveal that both

models effectively differentiated septic shock and sepsis from

healthy individuals in the 6-HubGss-dataset
PCR (Figures 5C, D,

left and middle panels). However, neither the LDA model nor the

RSA model can distinguish septic shock patients from those with

sepsis (Figures 5C, D, right panel). This indicates that LDA model

and the RSA model have limitations in differentiating septic shock

from sepsis in 6-HubGss-dataset
PCR.

Finally, we processed the 6-HubGss-dataset
PCR using

SepxFindeR model to predict sepsis and septic shock (Figure 5E).

Through confusion matrices analysis, we found that SepxFindeR

model effectively identified all patients with sepsis and septic shock

in the 6-HubGss-dataset
PCR (Figure 5F) Remarkably, SepxFindeR

machine learning segregated patients with septic shock from sepsis

in 6-HubGss-dataset
PCR with 92.9% accuracy (Figure 5F),

suggesting SepxFindeR model possesses promise in predicting

patients with sepsis and septic shock in comparison to healthy

controls, as well as discriminating septic shock from sepsis in a

dataset generated through a rapid turnaround RT-qPCR assay.
Discussion

In this study, we developed SepxFindeR model, a novel machine

learning framework tailored to distinguish between sepsis and

septic shock patients by analyzing a specific set of NK cell-

associated hub gene expressions in whole-blood samples. The

methodology for creating SepxFindeR involves the meticulous

execution of a comprehensive multi-step bioinformatic analysis

(Figure 1). The SepxFindeR relies on the utilization of profiling

these hub gene expressions in peripheral blood cells through RT-

qPCR, a rapid quantitative method with a swift turnaround. This

feature makes it an ideal candidate for RT-qPCR-based point-of-
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care test of whole blood samples, enhancing its clinical utility.

Through the utilization of SepxFindeR, we have successfully

showcased our ability to predict, with high accuracy, critically ill

patients who face an elevated risk of progressing to sepsis and septic

shock. Notably, the SepxFindeR machine learning framework not

only enables precise identification of patients with sepsis and septic

shock but also facilitates the differentiation between septic shock

and sepsis cases. Together, the SepxFindeR machine learning

framework holds the potential to significantly enhance the

accuracy of differential diagnoses for sepsis and septic shock.

Moreover, the procedural workflow used to establish SepxFindeR

has the potential to be adapted for the creation of other machine

learning frameworks designed to differentiate a range of diseases by

analyzing transcriptome datasets.

Sepsis is a life-threatening syndrome of organ dysfunction

induced by infection (2). It can be progressed to septic shock, a

subgroup of sepsis wherein profound circulatory, cellular, and

metabolic abnormalities are particularly pronounced. Septic shock

leads to a higher mortality risk compared to sepsis alone. The

Sequential Organ Failure Assessment (SOFA) scoring system has

been widely employed to identify septic patients in clinical practice

(26). Pinpoint of septic shock patients entails observing a need for

vasopressors to maintain a mean arterial pressure of 65 mm Hg or

higher, coupled with a serum lactate level exceeding 2 mmol/L (>18

mg/dL) in the absence of hypovolemia. However, the early diagnosis

of sepsis and septic shock continues to present challenges. Therefore,

it has become imperative to explore additional biomarkers that can

facilitate recognizing these clinical conditions. The rapid

advancements in high-throughput sequencing technology have

generated extensive datasets, offering a promising avenue for

identifying biomarkers that could significantly enhance early-stage

diagnostics, prognostic assessments, and therapeutic strategies for a

diverse range of medical conditions. Significantly, recent

investigations have shed light on hub genes as pivotal components

in sepsis diagnosis through bioinformatic analysis of sepsis-

associated datasets, drawing insights from various gene expression

profiles obtained from whole blood samples (27–29). A noteworthy

example is the work of Lai et al. (30), in which they unveiled a cluster

of seven hub genes exhibiting a robust correlation with sepsis.

Likewise, Gano-Gamez et al., through a bioinformatic analytical

approach, identified an additional set of hub genes associated with

sepsis, enabling more precise patient stratification (31). However,

these studies have yet to establish the potential of these hub genes in

effectively distinguishing between patients with septic shock and

those with sepsis. Compared to those methods, we demonstrated

that SepxFindeR model enables to effectively discriminate septic

shock from sepsis in not only RNAseq dataset but also RT-

qPCR dataset.

Lymphopenia is a common occurrence in sepsis, and this

particular aspect of pathophysiology has been recognized as a

valuable predictive marker for the diagnosis of sepsis (32–34).

However, there is a notable scarcity of prediction models centered

around lymphopenia for the timely differential diagnosis of septic

shock from sepsis. NK cells represent a specific subset of

lymphocytes found in peripheral blood. In the present study, we

have identified a reduction in the count of NK cells in peripheral
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blood during instances of sepsis and septic shock. This

phenomenon remains consistent both in human subjects and in

mice, suggesting that downregulation of genes associated with NK

cells may hold substantial promise as potential biomarkers for

predicting the occurrence of sepsis and septic shock. Building on

this premise, we gathered extensive cohorts of sequencing data

relevant to sepsis and septic shock from the GEO database.

Subsequently, these datasets underwent bioinformatic analysis to

explore the expression of genes linked to NK cells, to uncover

biomarkers associated with septic shock. Our investigation unveiled

that septic shock is indeed associated with a decrease in a group of 6

NK cell-associated hub genes including GZMB, PRF1, KLRD1,

SH2D1A, LCK, and CD247 (6-HubGss) in peripheral blood

samples. Notably, our data underscore the immediate

translational potential of these 6-HubGss-guided bioinformatic

machine learning in differentiating instances of septic shock from

sepsis, with a specific relevance to peripheral blood samples. This

highlights the prompt translational promise inherent in

this discovery.

The pursuit of biomarker development through machine

learning is a harmonious blend of artistic intuition and scientific

rigor, as the notion of a universally applicable singular solution or

approach remains unequivocally absent. LDA- and RSA-based

machine learning techniques are commonly employed as linear

classifiers, finding extensive utility in confirming disease-associated

signature genes obtained from bioinformatic analyses of omics data.

While these statistical methodologies facilitate the detection of

various disease-related molecular signatures, our investigation has

revealed a limitation: none of these strategies adequately construct a

machine learning prediction model guided by 6-HubGss for

effectively distinguishing between septic shock and sepsis across

different databases. In contrast, using a comprehensive

methodology that involves the application of LDA and RSA, as

well as harnessing the power of ensemble methods in conjunction

with the LASSO machine learning approach, we developed the

SepxFindeR model, leading to differential diagnosis between septic

shock and sepsis. Ensemble-based approaches have demonstrated

their efficacy particularly when dealing with datasets containing both

linear and non-linear data types. Previously, Thrampoulidis et al.

revealed that LASSO with non-linear measurements is equivalent to

one with linear measurements (35). Therefore, we hypothesize that

the relationship between the alteration in 6-HubGss expression and

septic shock manifests in a non-linear fashion. Furthermore, we

speculate that combining ensemble methods with the LASSO

machine learning approach presents a viable alternative for

discovering novel biomarkers from non-linear datasets, especially

when a multi-base model approach proves ineffective.

We are mindful of the limitations inherent in this study. While

we incorporated three microarray datasets and one RNAseq dataset,

the inclusion of additional studies, particularly RNAseq datasets, is

warranted to enhance the diversity of studies and amplify the

sample size. Although we validated the SepxFindeR model using

RT-qPCR dataset, it is important to note that this validation was

based on a single center-associated study. To establish the

robustness of SepxFindeR model, its validation should be

extended to encompass data from multiple centers. Moreover, we
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encountered challenges in predicting septic shock from sepsis

within the dataset derived from pediatric patients using

SepxFindeR. In addition, we only used male mice to induce sepsis

via CLP which may limit the generalizability of the finding in our

study. Further investigation is necessary to address these challenges

and refine the predictive capabilities of the model in this

specific context.

In summary, our study indicates the significance of the 6-

HubGss biomarker panel in relation to sepsis and septic shock.

Through the evaluation of the expression profile of the 6-HubGss

panel in whole-blood genes, employing a combination of LDA and

RSA alongside ensemble methods and the LASSO machine learning

approach, we enable to effectively differentiate septic shock from

sepsis. This effort has led to the creation of SepxFindeR, a novel

machine learning tool that facilitates identification of patients with

septic shock using an RT-qPCR rapid turnaround method. This

advancement takes us a step closer to realizing the potential of

integrating machine learning technology and precision medicine for

the management of patients with critical illness.
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