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Single-cell RNA sequencing
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melanoma: implications for
targeted therapy and
prognostic modeling
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and Xiaofeng Zhang1*

1Department of Ophthalmology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China,
2Shandong University of Traditional Chinese Medicine, Jinan, China, 3China Institute of Sport and
Health Science, Beijing Sport University, Beijing, China
Background: Uveal melanoma (UM), arising from melanocytes in the choroid,

accounts for 3% to 5% of all melanocytic tumors and over 70% of intraocular

malignancies. Despite effective local treatments, metastasis remains a significant

challenge, with more than half of patients developing metastatic disease within

ten years. Conventional therapies often yield poor outcomes, highlighting the

urgent need for novel therapeutic strategies to enhance survival and prognosis

for UM patients.

Methods: We conducted a detailed analysis of the GSE139829 dataset, focusing

on scRNA-seq data from eight primary UM patients and three with metastatic

disease. Through clustering and marker gene expression analyses, we identified

distinct subtypes of UM tumor cells and examined their transcriptional,

metabolic, and intercellular communication profiles. We developed a novel

prognostic model, PCOLCE TCs Risk Score (PTRS), centered on the C5

PCOLCE+ tumor cells, which was validated through in vitro functional assays.

Additionally, we performed immune infiltration and metabolic pathway analyses

to elucidate tumor-immune interactions and their clinical significance.

Results: We identified eight distinct cell types in UM and classified tumor

subpopulations into six subgroups. The C5 PCOLCE+ TCs subpopulation was

highlighted as crucial in UM malignancy, demonstrating high differentiation

potential and a significant role in tumor progression. CellChat analysis revealed

substantial communication between C5 PCOLCE+ TCs and fibroblasts,

suggesting their involvement in tumor growth and extracellular matrix

remodeling. Metabolic pathway analysis indicated enhanced oxidative

phosphorylation and glutathione metabolism in this subpopulation.

Additionally, we developed a PTRS model based on C5 PCOLCE+ TCs,

identifying CITED1 as a high-risk gene that promotes UM cell proliferation,

invasion, and migration in vitro.
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Conclusion: This study provides insights into UM metastasis via single-cell

analysis, identifying C5 PCOLCE+ TCs as key malignancy drivers associated

with oxidative phosphorylation and immune interactions. Our PTRS model

highlights CITED1 as a high-risk gene that promotes UM cell proliferation,

paving the way for new prognostic models and therapeutic targets to enhance

patient outcomes.
KEYWORDS
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Introduction

Uveal melanoma (UM) arises from melanocytes within the eye,

predominantly in the choroid, with lesser involvement of the ciliary

body and iris, representing 3% to 5% of all melanocytic tumors (1–3).

While the incidence of cutaneous melanoma has escalated in recent

years, the overall incidence of UM has remained relatively stable.

Nevertheless, UM constitutes over 70% of intraocular malignant

tumors, significantly jeopardizing patient health and survival (4–8).

Current therapeutic approaches primarily encompass local

interventions such as tumor resection, local radiotherapy, and ocular

extraction, which effectively manage primary tumors (6, 9). Despite

these measures, the risk of metastasis is alarmingly high, with more

than half of patients experiencing metastatic spread within the first

decade of diagnosis (10–12). Moreover, conventional treatments—

including local embolization, radiofrequency ablation, surgical

resection, and systemic chemotherapy—tend to yield poor outcomes

after metastasis, with a median survival of approximately six months

(13, 14). Consequently, identifying effective therapeutic strategies to

inhibit UM metastasis is crucial for enhancing patient survival

and prognosis.

Recent studies have increasingly focused on the immune

microenvironment of UM. For instance, Qi Wan et al. examined

the interplay between tumor stemness and the immune

microenvironment, highlighting its implications for UM prognosis

and the efficacy of immunotherapy (15). Notably, the interaction

between the tumor immune microenvironment and tumor

metabolism—particularly redox processes—plays a crucial role in

regulating tumor growth, metastasis, and therapeutic responses.

Maintaining redox homeostasis is essential for cellular physiological

functions and survival, influencing key metabolic pathways such as

oxidative phosphorylation and glycolysis (16). Compared to normal

cells, UM tumor cells generally exhibit heightened levels of oxidative

stress (17), while metastatic and circulating tumor cells demonstrate

increased oxidative phosphorylation activity (18), suggesting a link

between oxidative phosphorylation and tumor aggressiveness.

However, the role of oxidative stress in UM is complex and

appears to be dualistic. Zhu et al. reported that oxidative stress can

induce apoptosis in UM cells through the downregulation of SIRT1
02
(19), indicating that oxidative stress may exhibit antitumor effects in

certain contexts. Conversely, Slater et al. identified elevated levels of

the oxidative stress marker ATP5B as strongly correlated with poor

prognosis and metastasis in UM (20), suggesting that oxidative

stress might promote tumor progression under specific conditions.

These contradictory findings underscore the need for further

investigation into the distinct mechanisms of oxidative pathways

in UM, as they may function differently across various settings.

Single-cell sequencing analysis has emerged as a pivotal tool in

modern biomedical research, enabling the identification of distinct

gene expression patterns and variants within individual cells of a tissue,

thereby illuminating intercellular heterogeneity. This technique has

gained traction in various disease studies, particularly oncology,

offering critical insights into the tumor microenvironment, tumor

progression, and therapeutic responses. In this investigation, we

conducted a comprehensive analysis of single-cell data from UM,

focusing specifically on tumor cells. Leveraging single-cell sequencing

data, we examined themetabolic profiles, transcription factor networks,

and intercellular communication dynamics among different UM tumor

cell subclusters. Through CytoTRACE and Slingshot analyses, we

identified a key subpopulation of UM tumor cells, designated C5

PCOLCE+ TCs, and developed a prognostic model for UM, referred to

as PTRS. To validate the clinical applicability of this model, we selected

CITED1, a prognostic gene within the PTRS framework, for in vitro

experimentation. Our findings demonstrated that CITED1 significantly

influences the proliferation, migration, and invasion capabilities of UM

cells, reinforcing its potential as a therapeutic target and underscoring

the clinical predictive value of the PTRS model. Moving forward, we

aim to further refine and validate this model to explore personalized

therapeutic strategies targeting CITED1, thereby providing new

avenues for treatment in UM patients.
Methods

Acquisition of UM single-cell data

The single-cell data for UM utilized in this study were sourced

from the NCBI Gene Expression Omnibus (GEO) database (https://
frontiersin.org
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www.ncbi.nlm.nih.gov/geo/), specifically under the registration

number GSE139829 (21), which comprises 11 UM samples

(GSM4147091-GSM4147101). Additionally, relevant clinical data

for UM were obtained from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) for further analysis.
Processing and dimensionality reduction of
UM scRNA-seq data

UM scRNA-seq data were processed and downscaled for

clustering using the “Seurat” package (version 4.3.0) (22). To

e l iminate potent ia l double t ce l l s , we employed the

“DoubletFinder” R package (version 2.0.3) (23–26). Cells were

filtered according to specific criteria to exclude low-quality data:

(1) total gene transcript count (nCount) per cell ranging from 500

to 100,000; (2) number of transcribed genes per cell (nFeature)

between 300 and 6,000; (3) mitochondrial gene ratio less than 25%;

and (4) erythrocyte gene count ratio under 5%.

Using the “NormalizeData” function, we normalized the high-

quality UM single-cell data to identify the top 2,000 highly variable

genes, subsequently applying the “FindVariableFeatures” function

(27–29). We then employed the “ScaleData” function (30, 31).

Additionally, the “CellCycleScoring” function was utilized to

evaluate cell cycle effects. Dimensionality reduction was

conducted using the “RunPCA” function, with the first 30 valid

principal components selected (32, 33). The “Harmony” R package

(version 0.1.0) was employed to mitigate batch effects, followed by

clustering analysis using the “FindNeighbors” and “FindClusters”

functions (34, 35). Clusters were labeled based on existing literature,

and a Uniform Manifold Approximation and Projection (UMAP)

plot was generated for visualization (36, 37). The Ro/e algorithm

was also implemented to assess tissue preferences among different

cell clusters.
Enrichment analysis of UM
tumor subclusters

To effectively characterize the differentially expressed genes

(DEGs) within each UM tumor subcluster, we employed the

“FindAllMarkers” function in Seurat, coupled with the

‘ClusterProfiler’ R package for Gene Ontology Biological Process

exploration (38). Additionally, we conducted Gene Set Enrichment

Analysis (GSEA) for each UM tumor subcluster, focusing on Gene

Ontology Biological Process (GOBP) enrichment entries and

highlighting the pathways with the highest Normalized

Enrichment Scores (NES).
Trajectory analysis of UM
tumor subclusters

We utilized CytoTRACE analysis (39) to evaluate and predict

the relative differentiation status of UM tumor subclusters, with

scores ranging from 0 to 1, reflecting a positive correlation with
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stem cell properties. Furthermore, we applied the “Slingshot” R

package (version 2.6.0) (40) to infer the cellular lineage of the UM

tumor subclusters. By employing the “getLineage” and “getCurves”

functions, we mapped the differentiation trajectories of each

subcluster, assessing the dynamic changes in gene expression over

time. Based on the results of the pseudotemporal analysis, alongside

previous findings, we identified key UM subclusters integral to

tumor development.
Metabolic analysis of UM
tumor subclusters

We conducted a comprehensive analysis of the cellular

metabolic pathway profiles of UM tumor subclusters using the R

package scMetabolism. The top five metabolism-related pathways

were visualized, allowing us to examine their distribution on the

UMAP map as well as their expression across various tissue types.
Identification of transcription factors and
cellular communication analysis

The pySCENIC package (version 0.10.0) in Python (version 3.7)

was employed to investigate the enrichment of transcription factors

(TFs) and their regulatory activity within each UM subcluster.

Initially, we applied the GRNBoost method to compute linkage

weights between each TF and its potential target genes. This was

followed by DNA sequencing analysis to identify possible direct

binding targets. Subsequently, the regulatory activity in each cell

was assessed using AUcell, allowing us to screen for the top five

transcription factors with the highest activity, for which specificity

scores were calculated and visualized.

To evaluate cellular communication among different UM

subclusters, we utilized the “CellChat” R package (version 1.6.1)

(41). This analysis inferred cellular interactions at the level of

signaling pathways and receptor-ligand dynamics, with outgoing

and incoming signaling patterns visualized to depict varying signal

intensities across cell types.
Construction of UM prognostic model
and nomogram

To enhance clinical relevance, we constructed a novel

prognostic model for UM using bulk RNA-seq data from UM

patients. We conducted univariate Cox analysis on the top 100

candidate genes from key subgroups to identify those significantly

associated with UM prognosis (42–44). To mitigate the risk of

overfitting, LASSO regression analysis (45–48) was employed to

determine the optimal l value. And multivariate Cox analysis was

performed to determine the coefficients for each gene according to

the calculated formula: RISK SCORE = on
i Xi� Yi (X: coefficient,

Y: gene expression level). Based on the optimal cut-off value of the

PCOLCE TCs Risk Score, the UM cohort was categorized into high

and low scoring groups, and Kaplan-Meier survival curves were
frontiersin.org
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generated to predict outcomes (49–51). Furthermore, we

incorporated clinical factors such as age, race, tumor stage, and

survival time to construct a nomogram for predicting overall

survival (OS) using the “rms” R package, which was validated

through ROC curve (52–54) and decision curve analyses (DCA).
Immune infiltration and immune
function analysis

We assessed immune infiltration in tumor tissues utilizing

various algorithms, including ESTIMATE, CIBERSORT, EPIC,

and Xcell. To investigate the correlation between immune cell

populations and prognosis-related genes, we employed the

“corrplot” R package (version 0.92) for correlation analysis.

Additionally, immune cell abundance was quantified using the

“CIBERSORT” R package (version 0.1.0) (55). To further

elucidate the mechanisms of immune escape, we calculated

Tumor Immune Dysfunction and Exclusion (TIDE) values across

different groups.
Functional enrichment analysis and
mutational landscape analysis

After identifying differentially expressed genes (DEGs) across

scoring groups, we performed Gene Ontology (GO) enrichment

analysis (56, 57), encompassing Gene Ontology Cellular

Component, Biological Process, and Molecular Function, to

uncover potential differences in biological functions among the

groups. We also utilized the “GSVA” R package to evaluate the

biological properties and molecular distinctions of the groups,

providing insights into their alterations in cellular behavior and

function. Furthermore, we employed the “maftools” R package (58)

to analyze the somatic mutation profiles of UM patients from the

TCGA database, assessing the correlation between risk scores and

tumor mutation burden (TMB) using the Spearman correlation test.
Drug sensitivity analysis

We obtained the relevant drug sensitivity dataset from The

Genomics of Drug Sensitivity in Cancer (GDSC) (https://

www.cancerrxgene.org/). Utilizing the “pRRophetic” package

(version 0.5) (59, 60), we calculated IC50 values to evaluate the

drug sensitivity across different groups.
Cell culture

MP65 and 92-1 cell lines were procured from the American

Type Culture Collection (ATCC). Cells were maintained in RPMI-

1640 medium supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin. Cultures were incubated under standard

conditions of 37°C, 5% CO2, and 95% humidity.
Frontiers in Immunology 04
Cell transfection

CITED1 knockdown was achieved using small interfering

RNA (siRNA) constructs sourced from GenePharma (Suzhou,

Ch ina ) . Trans f e c t i on was conduc t ed fo l l ow ing the

manufacturer’s instructions for Lipofectamine 3000 RNAi Max

(Invitrogen, USA). Cells were seeded in 6-well plates at 50%

confluence and transfected with either a negative control (si-NC)

or CITED1 knockdown constructs (Si-CITED1-1 and Si-

CITED1-2), employing Lipofectamine 3000 RNAiMAX for

each transfection.
Cell viability detection

Cell viability of the transfected MP65 and 92-1 cells was

assessed using the CCK-8 assay. Cells were inoculated at a density

of 5 × 10³ per well in a 96-well plate. Following incubation, 10 mL of

CCK-8 solution (A311-01, Vazyme) was added to each well, and the

plate was incubated in the dark at 37°C for 2 hours. Absorbance was

measured at 450 nm using an enzyme-labeled instrument (A33978,

Thermo) to evaluate cell viability on days 1, 2, 3, and 4. The average

optical density (OD) values were calculated and represented in a

line graph.
Colony formation experiment

Transfected cells were seeded at a density of 1 × 10³ per well in a

6-well plate. Following a wash with PBS, the cells were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet (Solarbio,

China). Colony formation was then quantitatively analyzed.
Transwell detection

Cells were inoculated into a 24-well plate chamber (Corning,

USA), with or without matrix gel (BD Biosciences, USA). The cell

suspension was added to the upper chamber of a Costar Transwell

plate, while medium supplemented with serum was added to the

lower chamber. After a 48-hour incubation in a cell incubator, the

cells were fixed with 4% paraformaldehyde and stained with crystal

violet. Migration and invasion abilities were subsequently assessed

under a microscope.
Wound healing test

Transfected cells were cultured in 6-well plates until they

reached 95% confluence. A sterile 200 mL pipette tip was used to

create linear scratches in the cell monolayer, followed by gentle

washing with PBS. The culture medium was replaced, and images of

the scratches were captured at 0 and 48 hours to measure the

wound width.
frontiersin.org

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://doi.org/10.3389/fimmu.2024.1493752
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2024.1493752
EdU proliferation detection

Transfected MP65 and 92-1 cells were seeded at a density of 3 ×

10³ per well in a 6-well plate and incubated overnight. A 2× EdU

working solution was prepared by adding a 10 mM EdU solution in

serum-free medium, followed by a 2-hour incubation at 37°C. Cells

were fixed with 4% paraformaldehyde for 30 minutes and treated

with glycine (2 mg/mL) and 0.5% Triton X-100 for 15 minutes.

Following fixation, the cells were incubated with 1 mL of 1× Apollo

and 1 mL of 1× Hoechst 33342 for 30 minutes at room temperature.

Cell proliferation was quantified using fluorescence microscopy.
Statistical analysis

All analyses were conducted using R software (version 4.3.0).

The Wilcoxon test and Pearson’s correlation coefficient were

employed to assess significance between groups (*P< 0.05, **P<

0.01, ***P< 0.001).
Results

General overview of UM data

We obtained single-cell sequencing data for UM from the GEO

database (GSE139829), comprising a total of 11 samples

(GSM4147091-GSM4147101). After implementing quality control

measures, we identified 87,529 high-quality cells derived from two

tissue types: eight primary UM patients (T) and three metastatic

UM patients (M) (Supplementary Figure 1A). These high-quality

cells were classified using the Seurat framework, resulting in the

identification of 39 Seurat clusters (Supplementary Figure 1B).

Based on marker gene expression, these clusters were annotated

into eight cell types: T_NK, endothelial cells (ECs), tumor cells,

fibroblasts, photoreceptor cells, retinal pigment epithelial (RPE)

cells, plasma cells, and myeloid cells (Supplementary Figure 1C).

Notably, we focused on the tumor cell cluster, which predominantly

originated from primary UM patients, although a subset was also

derived from metastatic UM patients (Supplementary Figure 1D).

The distribution of cell types across the two tissue sources was

illustrated in Supplementary Figure 1E, revealing that 83.2% of

tumor cells came from tumor tissues, while 67.1% were from

metastatic tissues. Additionally, T_NK cells comprised 9.5% from

tumor tissue and 18.0% from metastatic tissue. The top five genes

expressed in each cell type are displayed in Supplementary Figure

1F, with CD74, C1QA, C1QC, C1QB, and HLA-DRA identified as

the most prominent genes in the tumor cell cluster.
Analysis of UM tumor subclusters

To investigate the heterogeneity of tumor cells in UM, we

conducted an in-depth analysis of the tumor cell clusters. We

classified UM tumor cells into six distinct subclusters based on
Frontiers in Immunology 05
marker gene expression: C0 WSB1+ TCs, C1 EEF1A1+ TCs, C2

HSPB7+ TCs, C3 XIST+ TCs, C4 GNG11+ TCs, and C5 PCOLCE+

TCs. The distribution of these subclusters was illustrated in the

central UMAP plot of Figure 1A. Our analysis of the tumor cell

origins (Groups M and T) and cell cycle phases (G1, G2M, and S)

revealed that the C3 XIST+ TCs and C1 EEF1A1+ TCs subclusters

were predominantly derived from Group T, with very few

originating from Group M. Additionally, we assessed the copy

number variation (CNV) core and Cell Stemness AUC for each

UM subcluster (Figures 1A, E). The results indicated that C3 XIST+

TCs exhibited a higher CNV core, whereas C0 WSB1+ TCs

displayed a greater Cell Stemness AUC. The InferCNV analysis

results for the UM tumor cell subclusters were presented in

Supplementary Figure 2.

The top five genes for each UM subcluster were identified and

are shown in Figure 1B: C0 WSB1+ TCs (FOSB, JUN, FOS, ZFP36,

HLA-B), C1 EEF1A1+ TCs (RPS26, RPS12, RPSA, RPL32,

CHCHD10), C2 HSPB7+ TCs (CHCHD10, NDUA4L2, GAPDH,

RPS4Y1, NDRG1, A2M), C3 XIST+ TCs (MALAT1, NEAT1,

MTRNR2L12, MT-ND6, XIST), C4 GNG11+ TCs (GNG11,

HHATL, RPS2, RPSA.1, SNHG7), and C5 PCOLCE+ TCs

(GDF15, S100A4, CDKN1A, GEM, IGFBP7).

Analysis of tissue type preferences for each UM subcluster

revealed that the C5 subcluster had the highest affinity for tumor

tissue (Figure 1C). The specific proportions of sample sources for

each subcluster were depicted in the scale diagram in Figure 1D,

indicating that the C5 subcluster was primarily derived from T5,

while the C0 subcluster originated from multiple patient samples.

Furthermore, the analysis of the identified genes (WSB1, EEF1A1,

HSPB7, XIST, GNG11, PCOLCE) highlighted that EEF1A1,

associated with the C1 subcluster, was expressed across nearly all

UM subclusters (Figure 1F).
Functional enrichment analysis of
UM subclusters

The top five DEGs for each UM subcluster were illustrated

using volcano plots (Figure 1G), highlighting the most significantly

up- and down-regulated genes in each subcluster. Subsequent

analysis of these DEGs for GOBP enrichment aimed to identify

biological processes that were overrepresented in each subcluster

(Figure 2A). This analysis enhanced our understanding of the

functional roles of DEGs within the various UM subclusters.

Building on the GOBP-enriched entries, we conducted GSEA

for each UM subcluster to evaluate the significance of specific

biological pathways and identify the entries with the highest NES

in each subcluster (Figure 2B). The primary enriched biological

processes were as follows: C0: antigen processing and presentation

of peptide antigen; C1: cytoplasmic translation; C2: response to

hypoxia; C3: developmental growth involved in morphogenesis; C4:

cytoplasmic translation; and C5: positive chemotaxis. These

findings indicate distinct functional specializations among the

UM subclusters, reflecting their unique roles within the

tumor microenvironment.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493752
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2024.1493752
For instance, the enrichment observed in the C0 subcluster suggested

a potential association with immune surveillance or immune evasion

mechanisms, while the prominence of “cytoplasmic translation” in the

C1 and C4 subclusters indicated heightened protein synthesis, likely
Frontiers in Immunology 06
linked to rapid cell proliferation or specific metabolic requirements.

Overall, these results underscored the functional heterogeneity of UM

subclusters, each possessing unique biological roles that might have

influenced tumor behavior and therapeutic response.
FIGURE 1

UM subpopulation analysis. (A) Tumor cells were reclassified into 6 UM cell subclusters based on marker genes, with UMAP plots in the middle
illustrating their distribution. The peripheral UMAP plots displayed Group (M, T), Phase (G1, G2M, S), CNV Score, and Cell Stemness AUC. (B) A bubble
diagram presented the top 5 marker genes of the 6 UM cell subclusters. (C) A heatmap illustrated the tissue preference Ro/e values for each UM cell
subcluster. (D) The scale plots depicted the proportion of the 6 UM cell subclusters across different sample sources. (E) Violin plots demonstrated
the specific expression levels of G2M Score, Cell Stemness AUC, and CNV Score for each UM cell subcluster. (F) UMAP plots displayed the
distribution of named genes for each UM cell subcluster. (G) The volcano plots showed the top 5 DEGs for each UM cell subcluster.
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FIGURE 2

Subcluster enrichment analysis and pseudotime analysis. (A) Results of GOBP enrichment analysis were based on DEGs of each UM cell subcluster.
(B) Results of GSEA enrichment analysis were presented for each UM cell subcluster, showing only the pathway with the highest NES value. (C) A bar
graph depicted the CytoTRACE scores of each UM cell subcluster, with C5 exhibiting the highest score and C1 the lowest. (D) CytoTRACE results
illustrated the degree of differentiation for each UM cell subcluster. In the left figure, dark green indicated greater differentiation (low stemness),
while dark red indicated lesser differentiation (high stemness). The right figure represented different glioma subpopulations using various colors.
(E) Developmental trajectories for each UM cell subcluster were determined using slingshot: C3 XIST+ TCs → C1 EEF1A1+ TCs → C4 GNG11+ TCs
→ C2 HSPB7+ TCs → C0 WSB1+ TCs → C5 PCOLCE+ TCs. (F) The scatter plots illustrated the trend of named genes for each UM subpopulation in
relation to slingshot Lineage1 expression levels.
Frontiers in Immunology frontiersin.org07
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Analysis of proposed temporal trajectories
of UM subclusters

To further investigate the heterogeneity within each tumor

subcluster of UM, we employed various methods to analyze their

developmental trajectories and differentiation potential.

CytoTRACE analysis revealed that the C5 subcluster exhibited the

highest CytoTRACE score, indicating greater developmental

potential, while the C1 subcluster displayed the lowest score,

reflecting a higher degree of differentiation and reduced

developmental capacity (Figure 2C, D). These findings provided

critical insights into the differentiation status and functional

heterogeneity of UM cells.

We also conducted Slingshot analysis to elucidate the

developmental trajectories of the UM subclusters. Lineage1

originated from C3 XIST+ TCs, progressing sequentially through

C1 EEF1A1+ TCs, C4 GNG11+ TCs, C2 HSPB7+ TCs, and C0

WSB1+ TCs, ultimately culminating in C5 PCOLCE+ TCs

(Figure 2E). Integrating these results with the CytoTRACE

analysis, we identified the C5 PCOLCE+ TCs subcluster as a key

player among UM malignant cells, positioned at the terminal stage

of the developmental trajectory and possessing high differentiation

potential. Therefore, we showed great research interest in the C5

PCOLCE+ TCs subcluster.

The naming genes for each UM subcluster within Lineage1 were

displayed in Figure 2F. Notably, EEF1A1, the naming gene for the

C1 subcluster, maintained high expression throughout the

proposed temporal trajectory, whereas PCOLCE, associated with

the C5 subcluster, consistently exhibited low expression levels, with

a notable increase at the terminal stage. This suggested that the C5

PCOLCE+ TCs subcluster may play a critical role in the late stages

of UM tumor progression, with changes in gene expression

indicating its unique functions in tumor differentiation and

potential metastasis. Given the upregulation of PCOLCE at the

terminal stage, we hypothesized that it may contribute to regulating

the tumor microenvironment, facilitating extracellular matrix

remodeling, or interacting with other tumor-promoting factors to

drive the progression of UM malignant cells.
Metabolic analysis

The top five metabolism-related pathways of the UM subclusters

were illustrated in Figure 3A, including oxidative phosphorylation,

glycolysis/gluconeogenesis, and glutathione metabolism. The

distribution and expression levels of these pathways across each UM

subpopulation were presented in Figures 3B and 3C. Notably, C4

GNG11+ TCs and C5 PCOLCE+ TCs exhibited elevated expression

across all five metabolic pathways (Figure 3B). Among these, the C5

subcluster displayed particularly high expression levels in oxidative

phosphorylation, glutathione metabolism, and cysteine and

methionine metabolism when compared to other UM subclusters

(Figure 3C). Additionally, the expression of these metabolic pathways

across different tissue sources (T andM) was depicted in the violin plot

of Figure 3D, revealing significantly higher expression levels in T

tissues, with all results demonstrating statistical significance.
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Transcription factor analysis

To identify the core TFs within the UM subclusters, we

conducted a SCENIC analysis. Utilizing pySCENIC, we inferred

the gene regulatory networks associated with these subclusters. The

top five TFs and their relative expression levels across each UM

subcluster were presented in Figure 4A. The most active TFs

identified were GTF2B in C0 WSB1+ TCs, OTX2 in C1 EEF1A1+

TCs, RELA in C2 HSPB7+ TCs, ELF2 in C3 XIST+ TCs, PPARG in

C4 GNG11+ TCs, and HES6 in C5 PCOLCE+ TCs. Figure 4B ranks

these transcription factors based on their Regulon specificity scores

(RSS). In the C5 PCOLCE+ TCs subcluster, the top five TFs

identified were HES6, E2F3, HLTF, NFYC, and GTF2B, with their

specific expression levels detailed in Figure 4C. Notably, HES6

exhibited high expression in the C3 XIST+ TCs, C4 GNG11+

TCs, and C5 PCOLCE+ TCs subclusters.
Cell communication analysis

Cell communication encompassed the capacity of cells to

receive, process, and transmit signals, playing a crucial role in

coordinating various biological activities such as development,

differentiation, and inflammation. This interaction was primarily

facilitated by ligand-receptor complexes, enhancing cell-to-cell

communication. In our study, we employed the “CellChat” R

package to quantitatively infer and analyze the communication

networks among UM cells. The results revealed extensive

communication links across different cell types, particularly

focusing on the interactions between the C5 PCOLCE+ TCs

subcluster and other clusters. Notably, the number and intensity

of interactions between C5 PCOLCE+ TCs and fibroblasts were

elevated, suggesting a significant signaling exchange between these

cell types (Figure 4D). This robust interaction implies that C5

PCOLCE+ TCs may play a pivotal role in tumor progression and

related biological processes, such as tissue remodeling and

extracellular matrix regulation, through their communication

with fibroblasts in the tumor microenvironment. Figure 4E

illustrated the afferent and efferent signal strengths of all UM cell

interactions, highlighting that nearly all UM subclusters are

associated with CD99. Furthermore, within the incoming

signaling patterns, the C5 PCOLCE+ TCs subgroup exhibited

strong connections to CCL, SEMA6, LAMININ, and MK,

underscoring the importance of these pathways in cell

signal transduction.
Construction and analysis of PTRS model

To enhance clinical decision-making for UM and to gain deeper

insights into patient prognosis, we developed a novel prognostic

model centered on the key C5 PCOLCE+ TCs subgroup. We began

by conducting univariate Cox analysis on the top 100 candidate

genes from this subgroup to identify those with significant

prognostic relevance (Supplementary Figure 3). Subsequently, we

performed LASSO regression analysis on the selected prognostic
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493752
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2024.1493752
genes, yielding a lambda.min of 0.064 and identifying eight crucial

genes (Figure 5A): APOE, ARC, CITED1, COX6C, S100A4, ATP5I,

APOA1BP, and C4orf48. Multivariate Cox regression analysis

revealed that APOE acted as a protective gene, while the majority

were associated with increased risk (Figure 5B).
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Using the expression levels of these genes and their respective

coefficients, we constructed a new UM prognostic model, termed

the PCOLCE TCs Risk Score (PTRS). The calculation formula was

defined as: PCOLCE TCs Risk Score (PTRS)= on
i Xi� Yi (X:

coefficient, Y: gene expression level). Based on the optimal cutoff
FIGURE 3

Metabolic analysis of UM subpopulations. (A) A heatmap illustrated the AUcells of each UM subpopulation in the top 5 metabolism-related pathways.
(B) UMAP plots displayed the specific distribution of the top 5 metabolism-related pathways in each subpopulation. (C) The violin plots represented
the specific expression levels of the top 5 metabolism-related pathways in each UM subpopulation. (D) The violin plots showed the specific
expression levels of the top 5 metabolism-related pathways in each group (M and T). (****P< 0.0001).
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value of the PTRS, we categorized UM patients into Low PTRS and

High PTRS groups to analyze survival outcomes. Consistent with

our expectations, results indicated that the High PTRS group had a

poorer prognosis (Figure 5C). Additionally, to evaluate the
Frontiers in Immunology 10
predictive capability of the PTRS model, we generated ROC

curves, yielding AUC values of 0.803, 0.930, and 0.923 at 1, 3,

and 5 years, respectively (Figure 5D), thereby demonstrating the

model’s high sensitivity and specificity.
FIGURE 4

Transcription factor and cellular communication analysis of subgroups. (A) A heatmap displayed the top 5 TFs of the 6 UM cell subclusters. (B) UM
subcluster transcription factors were ranked based on their Regulon specificity score (RSS). (C) Violin plots illustrated the top 5 TFs of the C5
PCOLCE+ TCs subcluster across each UM subcluster. (D) Circle plots represented the weight of cell interactions (left) and the number of cell
interactions (right) between the C5 PCOLCE+ TCs subcluster and other subclusters. Thicker lines indicated a higher number of interactions and
stronger interaction weight between the two cell types. (E) An overview was provided of outgoing and incoming signaling patterns.
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We conducted multivariate Cox regression analysis

incorporating clinical factors alongside the PTRS to evaluate its

potential as an independent risk factor. The analysis revealed a

hazard ratio (HR) for PTRS of 30.42, with a 95% confidence interval

(CI) of 6.48–142.80 and a P-value< 0.001 (Figure 5E). This finding

underscored the significant association of PTRS with prognosis,

suggesting its role as an independent prognostic indicator for UM

patients and providing robust support for clinical decision-making.

To enhance prognostic accuracy, we developed a nomogram

integrating clinical factors—such as gender, age, and tumor clinical

stage (T, N, M)—alongside PTRS to predict overall survival (OS) for

UM patients at 1, 3, and 5 years (Figure 5F). Both the PTRS

subgroups and tumor clinical stage significantly influenced OS

outcomes. Decision Curve Analysis (DCA) further evaluated the

reliability of this UM prognostic model (Figure 5G), confirming its

utility as a clinical decision support tool. The C-index for the

nomogram model, displayed in Figure 5H, indicated predictive

accuracy ranging from 0.5 to 1 for OS at 1, 3, and 5 years,

demonstrating the model’s robust predictive ability across various

time points. Notably, the C-index approached 1 over time,

reinforcing its reliability for long-term prognostic assessments.

Additionally, Figure 5I illustrated the correlation between the eight

prognostic genes within the PTRS model and both OS and PTRS,

revealing that OSwas negatively correlated withmost of these genes. This

comprehensive analysis highlighted the potential of the nomogram in

providing valuable prognostic information for clinical practice.
PTRS model correlation analysis

We investigated the survival and mortality status, as well as the

levels of the PTRS, across the Low and High PTRS Groups over

time, alongside the overall distribution of the eight prognostic genes

within the PTRS model (Figure 6A). The specific distribution of

these genes in different PTRS cohorts was illustrated using ridge

plots combined with boxplots (Figure 6B). Notably, APOE exhibited

higher expression in the Low PTRS Group, whereas the other seven

genes (ARC, CITED1, COX6C, S100A4, ATP5I, APOA1BP, and

C4orf48) were more highly expressed in the High PTRS Group, with

all differences being statistically significant.

Based on the expression levels of the eight PTRS model genes,

the UM patient cohort was stratified into high and low expression

groups for each gene (Figure 6B). The analysis revealed that the

High APOE Group experienced better survival outcomes compared

to the Low APOE Group, with this difference also being statistically

significant. In contrast, the remaining seven PTRS model

prognostic genes were associated with poorer prognosis in the

High expression group, further establishing APOE as a protective

factor while indicating that the other genes serve as risk factors.
Analysis of immune infiltration and
immune function in different PTRS groups

The tumor immune microenvironment significantly influenced

tumor progression and affected the response to therapy. To further
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investigate the heterogeneity among different PTRS cohorts, we

analyzed immune infiltration in both Low and High PTRS Groups.

Figures 7A, B illustrated the distribution of 22 types of immune-

infiltrating cells across these cohorts, with macrophages

representing a substantial proportion relative to other immune

cells. Figure 7C detailed the specific distribution levels of various

immune cells within the Low and High PTRS Groups.

Moreover, we examined the correlation between immune cell

types, prognostic genes, OS, and PTRS within the PTRS model, as

shown in Figure 7D. M1 macrophages exhibited a positive

correlation with most prognostic genes in the PTRS model while

being negatively associated with OS. In contrast, resting CD4

memory T cells were negatively correlated with most prognostic

genes but positively correlated with OS. Figure 7E displayed the

correlations between immune cells and PTRS, highlighting that

resting CD4 memory T cells were significantly negatively correlated

with PTRS, whereas follicular helper T cells showed a significant

positive correlation. This suggested their involvement in pro-

tumorigenic immune regulatory processes that may facilitate

tumor growth or immune evasion. These findings underscored

the notion that various immune cell types not only differ in

abundance but also maintain a complex dynamic balance in their

functional roles within the tumor microenvironment.

Additionally, we calculated the immune stromal scores for the

different PTRS groups, revealing that the Immune Score, ESTIMATE

Score, and Stromal Score were significantly higher in the High PTRS

Group compared to the Low PTRS Group (Figures 7F–H). These

results indicated a greater degree of immune infiltration and stromal

component activity within the High PTRS tumor microenvironment,

suggesting a more intricate structural composition associated with

tumor progression and treatment resistance. Conversely, the Low

PTRS Group exhibited higher Tumor Purity values (Figure 7I),

implying a simpler microenvironment with less immune and

stromal disruption, correlating with improved treatment

responsiveness and better prognosis. Notably, TIDE scores did not

significantly differ between the two groups (Figure 7J).

Finally, we assessed the correlations between immune checkpoint

genes and the eight PTRS-related genes, OS, and PTRS, with results

depicted in bubble plots (Figure 7K). The analysis revealed significant

positive correlations between the constructed PTRS and several genes

(COX6C, CITED1, ARC, S100A4) with most immune checkpoint

genes. Figure 7L illustrated the expression differences of immune

checkpoint genes across PTRS cohorts, showing that most were more

highly expressed in the High PTRS Group.We also integrated various

algorithms, including ESTIMATE, CIBERSORT, EPIC, and Xcell, to

quantify immune infiltration across the PTRS groups, with the results

presented in Figure 7M.
Functional enrichment, mutational
landscape analysis of different
PTRS cohorts

We identified DEGs across various PTRS cohorts, presenting

the results using volcano plots (Figure 8A). These plots effectively

illustrated the distribution of significantly up- and down-regulated
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493752
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2024.1493752
FIGURE 5

UM novel modeling and its correlation analysis. (A) Results of LASSO regression analysis indicated that, with lambda.min = 0.064, the constructed
UM model was optimal, including a total of 8 genes. (B) A bar graph displayed the coefficients of UM prognosis-related genes along with their
corresponding P-values. (C) Results of Kaplan-Meier survival analysis was shown for the low PTRS group and high PTRS group. (D) ROC curves of
the PTRS model were presented, with AUC values of 0.803, 0.930, and 0.923 for 1 year, 3 years, and 5 years, respectively. (E) A forest plot illustrated
the results of multivariate Cox regression analysis, indicating PTRS as an independent risk factor. (F) A nomogram was constructed by combining
PTRS with clinical factors (race, age, staging). (G) DCA assessed the reliability of the new UM model. (H) The bar graph demonstrated the C-index of
the predictive nomogram modeling. (I) A heatmap combined with a dot plot showed the correlation between OS, 8 prognostic genes of the PTRS
model, and PTRS. **P< 0.01; ***P< 0.001.
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genes, facilitating the visualization of notable expression differences

among the PTRS groups. To further investigate the global variability

in gene expression profiles, we conducted principal component

analysis (PCA), which revealed that Dim1 and Dim2 accounted for
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25.2% and 10.3% of the variance, respectively. This indicated that

these principal components capture a substantial portion of the

intergroup gene expression differences (Figure 8B), reaffirming the

significant heterogeneity among the PTRS cohorts.
FIGURE 6

Correlation analysis of genes constituting PTRS. (A) Scatter plot and curve plot illustrated the survival/death status and PTRS levels across different
PTRS groups over time (left). A heatmap displayed the distribution of 8 UM prognostic genes among the different PTRS groups (right). (B) The ridge
plots combined with boxplots demonstrated the expression levels of the 8 genes constituting PTRS in different PTRS groups. Based on the optimal
threshold of gene expression levels, samples were categorized into high and low expression groups. Kaplan-Meier survival curves revealed
prognostic differences between the high and low expression groups of genes, with all results being statistically significant.
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FIGURE 7

Immune infiltration analysis of different PTRS groups. (A) A stacked bar graph illustrated the distribution of 22 immune cells across different PTRS
groups. (B) A box line graph displayed the proportion of 22 immune cells relative to total cell types. (C) A heatmap showed the expression of
immune cells with differential distribution in the various PTRS groups. (D) A heatmap presented the correlation analysis between prognostic genes,
OS, and immune cells in the PTRS model. (E) A lollipop plot depicted the correlation between immune cells and PTRS. (F–J) Box line plots
demonstrated the immune score, ESTIMATE score, tumor purity, and TIDE values for different PTRS groups. (K) A bubble plot illustrated the
correlation between PTRS-related genes, OS, and immune checkpoint-related genes. (L) A box line graph displayed the expression levels of immune
checkpoint-related genes. (M) Various algorithms, including ESTIMATE, CIBERSORT, EPIC, and Xcell, were applied to calculate immune infiltration in
different PTRS groups. *P< 0.05; **P< 0.01;***P < 0.001; and ****P< 0.0001. NS indicated an insignificant difference.
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We subsequently performed Gene Ontology (GO) enrichment

analysis on the DEGs, categorizing them into three main

classifications: Cellular Component, Biological Process, and

Molecular Function (Figure 8C). The GO enrichment results

highlighted significant associations with several immune-related

biological processes, particularly in pathways such as immune

response regulation, cell adhesion, and cell signaling at the

plasma membrane. These processes were crucial for modulating

the tumor microenvironment and immune responses, suggesting

that immune regulation may play a vital role in the varying

PTRS groups.

The mutation waterfall plot revealed that GNAQ exhibited the

highest mutation frequency at 49%, followed closely by GNA11 at

44% (Figure 8D). An analysis of CNV events among the PTRS

model prognostic genes showed that most genes lacked CNV

alterations, although some gains were noted in ARC and COX6C

(Figure 8E). However, no significant differences in tumor mutation

burden (TMB) values were observed between the different PTRS

groups (Figure 8F). Based on TMB and PTRS values, the UM cohort

was classified into four groups: High PTRS-High TMB, High PTRS-

Low TMB, Low PTRS-High TMB, and Low PTRS-Low TMB.

Notably, the High PTRS-High TMB group exhibited the worst

survival prognosis (P< 0.0001) (Figure 8G). The correlation

between TMB and PTRS was weak, with R = -0.042 and P =

0.71 (Figure 8H).

We further conducted gene set variation analysis (GSVA)

utilizing gene sets from the Molecular Marker Database (MsigDB)

to elucidate the biological characteristics of the different PTRS

groups. The GSVA results, depicted in Figure 8I, demonstrated

significant differences in multiple biological functions and pathways

among the groups. Additionally, an in-depth analysis of GOBP

revealed variations in specific biological processes linked to different

PTRS groupings (Supplementary Figure 4A). Supplementary Figure

4B illustrated the Spearman correlation analysis between PTRS and

the HALLMARK gene set, further elucidating molecular

distinctions among the groups. These findings may provide new

insights into the biology of UM and its therapeutic strategies.

To enhance clinical applicability, we systematically evaluated

the sensitivity of various drugs in Low and High PTRS groups. We

analyzed the differences in semi-inhibitory concentrations (IC50)

for these drugs to inform individualized therapeutic approaches.

Our assessment indicated that Paclitaxel and Bortezomib displayed

higher IC50 values in the Low PTRS Group, suggesting reduced

sensitivity to these agents. Conversely, Docetaxel exhibited higher

IC50 values in the High PTRS Group, indicating a comparatively

weaker effect in this cohort (Figure 8J).
In vitro experimental validation

In summary, we selected CITED1, the risk gene with the

smallest absolute value in the PTRS prognostic model, for in vitro

experiments to validate the applicability of the PTRS model in UM.

We employed two UM cell lines, MP65 and 92-1, establishing both

a negative control group and a CITED1 knockdown group for

comparative analysis.
Frontiers in Immunology 15
Cell viability assays (Figure 9A) demonstrated that knockdown

of CITED1 significantly reduced cell viability, as indicated by CCK-

8 results. Colony formation assays (Figure 9B) revealed a marked

decrease in the number of colonies formed by both MP65 and 92-1

cell lines following CITED1 knockdown compared to the negative

control group. In Transwell assays (Figure 9C, D), the migration

and invasion capabilities of the CITED1-knockdown cell lines were

significantly impaired.

Wound healing assays (Figures 10A, B) showed that the

scratches in the CITED1 knockdown groups were considerably

wider after 48 hours compared to the negative control, indicating

a notable reduction in migratory capacity. EdU staining

(Figures 10C, D) further corroborated these findings, revealing a

decrease in cell proliferation in the CITED1 knockdown UM cell

lines, emphasizing the critical role of CITED1 in cell growth.

Collectively, our experimental results indicated that knockdown

of CITED1 significantly impaired cell viability, proliferation,

migration, and invasion in both UM cell lines. These findings

underscored the potential of CITED1 as a therapeutic target,

highlighting its significance in the pathogenesis of UM and

supporting the clinical feasibility of the PTRS prognostic model.

Thus, targeting CITED1 and implementing the PTRS model may

offer novel strategies and insights for the treatment of UM.
Discussion

UM is a highly malignant intraocular tumor that significantly

affects patient health due to its invasiveness and metastatic potential

(61). Although current local treatments—such as enucleation, local

resection, and radiotherapy—have shown efficacy (6, 11, 62),

controlling tumor metastasis remains a challenge, with many

patients succumbing within a year of symptom onset (13).

Therefore, understanding the mechanisms behind UM metastasis

is essential for developing targeted therapies and predictive models.

In our study, we analyzed theGSE139829 dataset, focusing on single-

cell sequencing from eight primary UM patients and three with

metastatic disease. This analysis revealed significant heterogeneity

among UM cells. We identified eight distinct cell types and confirmed

the existence of six subgroups based on marker gene expression. The C5

PCOLCE+ TCs subcluster, particularly prominent in advanced tumor

stages, may play a critical role inUMprogression, supported by its higher

Cell Stemness AUC score and CytoTRACE analysis, suggesting it serves

as a reservoir for malignant cells.

Cell communication within the tumor microenvironment was

vital for UM progression. CellChat analysis highlighted significant

signaling between the C5 PCOLCE+ TCs and fibroblasts, indicating

that this interaction may promote tumor growth through

extracellular matrix remodeling. This finding aligned with existing

studies demonstrating the importance of tumor-stroma interactions

(63, 64). Thus, further investigation of the biological functions of C5

PCOLCE+ TCs was warranted as potential therapeutic targets.

Differential metabolic pathway analysis revealed that C5

PCOLCE+ TCs exhibit heightened activity in oxidative

phosphorylation and glutathione metabolism, which were linked

to tumor cell proliferation and survival. This suggested that
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FIGURE 8

Enrichment analysis, mutation analysis, and drug sensitivity analysis of different PTRS groups. (A) A volcano plot displayed DEGs and their distribution
across different PTRS groups. (B) PCA depicted the clustering distribution of the various PTRS groups. (C) Results of GO enrichment analysis was
provided for the obtained DEGs. (D) A mutation waterfall plot illustrated differences in the top 30 most frequently mutated genes, with the upper
column indicating mutation load per sample and the right column showing the total percentage of mutations in these genes. (E) A bar graph
represented CNV events for selected PTRS model prognostic genes, where green indicated no CNV, red indicated CNV loss, and blue indicated CNV
gain. (F) Tumor mutation burden (TMB) analysis of different PTRS groups showed no significant difference between the two groups. (G) Kaplan-Meier
survival analysis results were presented for the High PTRS-High TMB, High PTRS-Low TMB, Low PTRS-High TMB, and Low PTRS-Low TMB groups.
(H) A scatter plot demonstrated the correlation between TMB and PTRS (R = -0.042, P = 0.71). (I) Results of GSVA analysis for different PTRS groups
were provided. (J) Results of drug sensitivity analysis for different PTRS groups were shown for Cisplatin, Vinblastine, Paclitaxel, Docetaxel, and
Bortezomib. *P< 0.05; **P< 0.01; ***P< 0.001; NS indicated an insignificant difference.
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metabolic reprogramming may confer a survival advantage to

this subcluster.

Transcription factor analysis via SCENIC identified HES6 and

E2F3 as key regulators in C5 PCOLCE+ TCs, with HES6 showing

broad expression across subclusters, underscoring its role in UM
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biology. The activity of these transcription factors may drive UM

cell differentiation and proliferation, providing a basis for future

therapeutic studies.

The development of the PTRS model presented a new approach

to UM prognosis. Cox regression identified genes within C5
FIGURE 9

Functional validation experiments of CITED1. (A) The CCK-8 assay indicated that CITED1 knockdown resulted in a significant decrease in cell viability.
(B) The colony formation assay revealed that the number of colonies formed by the CITED1 knockdown cell line was significantly reduced compared
to the negative control. (C, D) Transwell migration and invasion assays demonstrated that the migration and invasion abilities of MP65 and 92-1 cell
lines were significantly reduced following CITED1 knockdown. ***P< 0.001.
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PCOLCE+ TCs significantly associated with prognosis, leading to a

robust prognostic model validated by high sensitivity and specificity

in ROC analyses. Additionally, multivariate Cox analysis confirmed

PTRS as an independent prognostic indicator, enhancing clinical

decision-making.

The tumor microenvironment profoundly influences cancer

initiation, progression, and metastasis (65). Our immune

infiltration analysis revealed distinct immune landscapes among

PTRS groups. The high PTRS group exhibited complex immune

and stromal components, correlating with poorer prognosis.

Specifically, M1 macrophages were positively correlated with

prognostic genes, while resting CD4 memory T cells showed a

negative correlation, suggesting that immune infiltration plays a key

role in UM progression and treatment resistance.
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Among the prognostic-related genes in the PTRS model,

CITED1 has been identified as a significant high-risk factor. As a

key member of the CITED family of transcriptional co-regulators,

CITED1 operated as a non-DNA-binding nuclear co-regulator

(66, 67). Previous research has demonstrated that CITED1

overexpression markedly increases proliferation in nephroblastoma

(68) and enhances invasion and metastasis in thyroid-like cancer

cells (69) Notably, CITED1 is the risk gene with the smallest absolute

value in the PTRS model, leading us to hypothesize that it

contributes to the progression of UM. Supporting this hypothesis,

our in vitro experiments revealed that CITED1 positively impacted

UM cell proliferation, invasion, and metastasis. Consequently, we

proposed that CITED1 may represent a promising prognostic and

therapeutic target for metastatic UM.
FIGURE 10

Assessment of wound healing and cell proliferation. (A, B) The scratch healing assay indicated that the migration ability of MP65 and 92-1 cells was
significantly reduced following CITED1 knockdown. (C, D) EdU staining results demonstrated that the proliferation of MP65 and 92-1 cells was
inhibited after CITED1 knockdown. ***P< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493752
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2024.1493752
Overall, this study elucidated the heterogeneity of UM tumor cells

and their complex interactions within the tumor microenvironment

through systematic single-cell RNA sequencing analysis. The unique

biological functions and potential malignant progression characteristics

of the C5 PCOLCE+ TCs subcluster position it as a significant target for

future UM research and therapy. Additionally, the PTRS model

provided a novel tool for prognostic assessment of UM patients,

indicating promising clinical applicability. Furthermore, the genes

within the PTRS model may represent potential therapeutic targets

for UM. Future investigations should delve deeper into the specific

mechanisms of the C5 subcluster in UM progression and evaluate its

potential value in precision therapy.
Conclusion

This study employed scRNA-seq to analyze tumor

subpopulations in uveal melanoma (UM), focusing on immune

cell dynamics. We identified that C5 PCOLCE+ T cells, found at the

end of the pseudotime trajectory, have high differentiation

potential. Through cell communication, metabolic, and

transcription factor analyses, we recognized the C5 subgroup as a

key population. We developed the PTRS model, which revealed

distinct immune landscapes associated with prognosis. The

modeling gene CITED1 was validated as a high-risk gene,

underscoring potential therapeutic targets for UM.
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SUPPLEMENTARY FIGURE 1

UM source data analysis. (A) The UMAP figure illustrated the distribution of
patient sample sources from 8 primary UM patients (T) and 3 metastatic UM

patients (M). (B) The UMAP plot depicted the distribution of high-quality cells,

categorized into 39 seurat_clusters. (C) Cells were annotated into 8 clusters
based on distinct marker genes: T_NK, ECs, Tumor cells, Fibroblasts,

Photoreceptor cells, RPE cells, Plasma, and Myeloid cells. (D) The scale
diagram represented the proportion of each cell cluster in each patient

sample. (E) The scale diagrams illustrated the proportion of each cell
cluster from different tissue sources (T, M). (F) A bubble diagram presented

the top 5 marker genes and their relative expression across the 8 cell clusters.

SUPPLEMENTARY FIGURE 2

InferCNV analysis. InferCNV analysis results of UM tumor cell subclusters
were presented, using ECs as a control. Red indicated high CNV levels, while

blue indicated low CNV levels.

SUPPLEMENTARY FIGURE 3

Results of Cox analysis of key subpopulation genes. Results of univariate Cox
analysis were presented for candidate genes of the C5 PCOLCE+ TCs.

SUPPLEMENTARY FIGURE 4

GSVA analysis. (A) T-SNE plots illustrated changes in GOBP pathways and HP
gene set activity across different PTRS groups. (B) Spearman correlation

analysis was conducted between PTRS and the HALLMARK gene set.
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