
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Dehong Yan,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Dmitry Aleksandrovich Zinovkin,
Gomel State Medical University, Belarus
Zhao Jian,
Chinese People’s Liberation Army General
Hospital, China

*CORRESPONDENCE

Ligong Lu

luligong1969@jnu.edu.cn

Yaojun Zhang

zhangyuj@sysucc.org.cn

Limin Zheng

zhenglm@mail.sysu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 09 September 2024
ACCEPTED 12 November 2024

PUBLISHED 02 December 2024

CITATION

Peng K, Zhang X, Li Z, Wang Y, Sun H-W,
Zhao W, Pan J, Zhang X-Y, Wu X, Yu X, Wu C,
Weng Y, Lin X, Liu D, Zhan M, Xu J, Zheng L,
Zhang Y and Lu L (2024) Myeloid response
evaluated by noninvasive CT imaging predicts
post-surgical survival and immune checkpoint
therapy benefits in patients with
hepatocellular carcinoma.
Front. Immunol. 15:1493735.
doi: 10.3389/fimmu.2024.1493735

COPYRIGHT

© 2024 Peng, Zhang, Li, Wang, Sun, Zhao, Pan,
Zhang, Wu, Yu, Wu, Weng, Lin, Liu, Zhan, Xu,
Zheng, Zhang and Lu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 December 2024

DOI 10.3389/fimmu.2024.1493735
Myeloid response evaluated by
noninvasive CT imaging predicts
post-surgical survival and
immune checkpoint therapy
benefits in patients with
hepatocellular carcinoma
Kangqiang Peng1†, Xiao Zhang2,3†, Zhongliang Li2†,
Yongchun Wang1,4†, Hong-Wei Sun2, Wei Zhao2,5,
Jielin Pan2,6, Xiao-Yang Zhang7, Xiaoling Wu8,
Xiangrong Yu2,6, Chong Wu9, Yulan Weng9, Xiaowen Lin2,
Dingjie Liu2,10, Meixiao Zhan2,11, Jing Xu1, Limin Zheng 1,9* ,
Yaojun Zhang 1* and Ligong Lu 2,11*

1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for
Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China, 2Guangdong Provincial Key
Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational
Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China,
3Medical AI Lab, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment
Decision-Making, The First Hospital of Hebei Medical University, Shijiazhuang, China, 4Department of
Pathology, Xiangya Hospital, Central South University, Changsha, China, 5Department of
Management, School of Business, Macau University of Science and Technology, Macau, Macau SAR,
China, 6Department of Radiology, Zhuhai People’s Hospital, Jinan University, Zhuhai, China, 7College
of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China,
8Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China,
9Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life
Sciences, Sun Yat-sen University, Guangzhou, China, 10The Department of Cerebrovascular Disease,
Zhuhai People’s Hospital, Jinan University, Zhuhai, China, 11Guangzhou First People’s Hospital, The
Second Affiliated Hospital, School of Medicine, South China University of Technology,
Guangzhou, China
Background: The potential of preoperativeCT in the assessment ofmyeloid immune

response and its application in predicting prognosis and immune-checkpoint therapy

outcomes in hepatocellular carcinoma (HCC) has not been explored.

Methods: A total of 165 patients with pathological slides and multi-phase CT

images were included to develop a radiomics signature for predicting the

imaging-based myeloid response score (iMRS). Overall survival (OS) and

recurrence-free survival (RFS) were assessed according to the iMRS risk group

and validated in a surgical resection cohort (n = 98). The complementary

advantage of iMRS incorporating significant clinicopathologic factors was

investigated by the Cox proportional hazards analysis. Additionally, the iMRS in

inferring the benefits of immune checkpoint therapy was explored in an

immunotherapy cohort (n = 36).

Results:We showed that AUCs of the optimal radiomics signature for iMRS were

0.941 [95% confidence interval (CI), 0.909–0.973] and 0.833 (0.798–0.868) in

the training and test cohorts, respectively. High iMRS was associated with poor
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response score; OS, overall survival; RFS, recurre

confidence interval.
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RFS and OS. The prognostic performance of the Clinical-iMRS nomogram was

better than that of a single parameter (p < 0.05), with a 1-, 3-, and 5-year C-index

for RFS of 0.729, 0.709, and 0.713 in the training, test, and surgical resection

cohorts, respectively. A high iMRS score predicted a higher proportion of

objective response (vs. progressive disease or stable disease; odds ratio, 2.311;

95% CI, 1.144–4.672; p = 0.020; AUC, 0.718) in patients treated with anti-PD-1

and PD-L1.

Conclusions: iMRS may provide a promising method for predicting local myeloid

immune responses in HCC patients, inferring postsurgical prognosis, and

evaluating benefits of immune checkpoint therapy.
KEYWORDS

hepatocellular carcinoma, radiomics, myeloid cells, prognosis, immunotherapy
Background

Hepatocellular carcinoma (HCC) is one of the leading causes of

cancer-related death worldwide (1). Most HCCs arise from

persistent inflammation, including hepatitis B or C virus (HBV or

HCV) infections and nonalcoholic fatty liver disease (2). Therefore,

immune cells constitute a highly complex and interactive milieu

that contributes to the development and progression of HCC (3).

Increasing evidence has also shown that tumor-infiltrating immune

cells are potential prognostic and predictive factors for patient

survival and therapeutic outcome (4–6). Substantial efforts have

been made to depict the tumor microenvironment (TME) by

integrating the information of local immune cells (7–10).

Myeloid cells are a population of heterogenous innate cells in

the TME, including monocytes/macrophages, dendritic cells,

neutrophils, and myeloid-derived suppressor cells (11). These

cells are major components and critical regulators in the tumor

contexture, which play a vital role in tumor initiation, progression,

and therapy response (12, 13). Therefore, myeloid-based

biomarkers have attracted particular attention to predict the

prognosis and clinical benefit of patients (14–16). However, it

usually needs to involve several myeloid markers due to the

heterogenicity and plasticity of local myeloid cells in tumor

tissues (8, 17), resulting in extra and redundant pathological

examination. Previously, Wu et al. used 18 myeloid-related

features to fit clinical data of patients with HCC and finally

constructed a myeloid-specific prognostic signature (based on

CD11b and CD169) named myeloid response score (MRS) (8).

MRS reflects the changes in the myeloid response balance from

antitumor to protumor activities and is closely related to the

immune tolerance of CD8+ T cells. The findings indicate that
ard ratio; MRS, myeloid

nce-free survival; CI,

02
MRS is accurate and useful in predicting post-surgery HCC

prognosis and sorafenib efficacy for recurrent HCC. However, the

small specimens cannot comprehensively capture the biological

characteristics and reflect MRS levels in the whole tumor due to

tumor heterogeneity and limitations in pathology specimen

acquisition. Given the highly dynamic evolution and spatial

heterogeneity of TME (18), a noninvasive, economical, and

comprehensive panoramic view of the MRS assessment is still in

great demand to decipher the tumor immune infiltrate.

Medical imaging, which allows noninvasive and comprehensive

tumor evaluation, can reveal subtle relations between tumor texture

and the molecular biological processes active in the TME (19).

Multiphase dynamic enhancement CT scans can display lesions

from multiple angles and directions, to fully reveal the blood supply

and the intensification characteristics of patients with HCC. Unlike

the visual interpretation of medical images, an emerging high-

throughput computational method called “Radiomics” can reflect

the molecular properties of tumor tissues through translating

imaging data into high-dimensional quantitative data (20–22). It

allows noninvasive, timely, and longitudinal evaluation of the entire

tumor as well as its microenvironment to complement biopsies and

tissue sections, demonstrating a great advantage in predicting

vascular invasion, histological grade, prognosis, and therapeutic

outcomes in HCC (23–28) and other tumors (29–32).

In view of the tumor immune microenvironment, the association

and feasibility of radiomics-based biomarkers to tumor-infiltrating

immune cell (33–36), the response of immunotherapy (37–41), and

PD-L1/PD-L2 expression level (42–44) have also been investigated.

Previously, Jiang et al. successfully developed a noninvasive

radiomics-based predictor of ImmunoScore of gastric cancer from

lymphoid and myeloid cells (45) and further validated its association

with both disease-free survival and overall survival (OS) (35). The

finding implied that it might be feasible to use radiomics to

noninvasively predict MRS in HCC. Considering that only a

fraction of patients benefit from the PD-1/PD-L1 monotherapy, it
frontiersin.org
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implies a great need to excavate a curative effect predictor for precise

immunotherapy (46–48). In line with this, Yuming et al. (40)

proposed a new imaging-based TME classifier, i.e., deep learning

radiomics signature (DLRS), which could be used as a highly

independent prognostic factor to accurately predict clinical

response in patients treated with checkpoint blockade

immunotherapy. The efficacy of predictive radiologic markers

based on MRS in assessing the benefits of immune checkpoint

therapy are unknown and need to be further explored in HCC.

In this study, we aimed to construct a predictive radiomics signature of

MRS by combining triple-phase CT images and immunohistochemistry

(IHC) staining from tumor biopsies for patients with HCC. Amulti-phase

CT (mp-CT) imaging-based predictor for MRS was validated to predict

the local MRS, evaluate patient survival, and infer the benefits of immune

checkpoint therapy in HCC.
Methods

Study design and patients

The retrospective study was approved by the ethics committee

of Sun Yat-sen University Cancer Center, and the requirement for

informed consent was waived. The overall study design is shown in

Figure 1. To develop the radiomics model for MRS, patients with

HCC treated at our hospital were enrolled, in line with the inclusion

and exclusion criteria. The inclusion criteria were as follows: (a)

pathologic confirmation of HCC with available pathology slides and

(b) preoperative contrast-enhanced liver CT performed. The

exclusion criteria were as follows: (a) undergoing other treatments

before surgery and (b) poor-quality radiologic or pathologic images.
Frontiers in Immunology 03
A total of 165 patients who performed presurgical liver CT scans

and had available tumor samples for IHC staining from 2007 to

2010 were randomly split at a 7:3 ratio to cohort 1 (training cohort,

n = 110) for the construction of the radiomics signature and cohort

2 (test cohort, n = 55) for performance evaluation. An additional

surgical resection cohort (n = 98) including patients who were

consecutively treated from 2010 to 2016 with CT scans and

clinicopathological data was used for prognostic analysis based on

the MRS radiomics signature. Moreover, another immunotherapy

cohort (n = 36) with patients who underwent anti-PD-1/PD-L1

therapy from 2018 to 2020 was used to assess the outcome of

immune checkpoint therapy in HCC. All the patients were followed

up through telephone or admission notes to record recurrence and

death. OS was calculated as the time from surgery to death or the

last follow-up. Recurrence-free survival (RFS) was defined as the

interval between the time of surgery to recurrence, the last follow-

up for patients without recurrence, or death if no recurrence

was observed.
IHC staining and definition of MRS

Paraffin-embedded tumor tissues were cut into 4-mm sections,

which were used for IHC staining. Tumor sections were

sequentially deparaffinized and re-hydrated with xylene and a

decreasing ethanol series. Subsequently, the slides were subjected

to endogenous peroxidase activity elimination in 0.3% H2O2 for 10

min and heat-induced epitope retrieval in citrate buffer for 10 min.

The sections were then incubated with anti-CD169 antibody (1:200,

R&D Systems, Cat#AF5197) or anti-CD11b antibody (1:2000,

Abcam, Cat#ab133357) overnight at 4°C. Diaminobenzidine
FIGURE 1

Study design. The training cohort and test cohort that contain data from patients with CT images and pathology slides were used to develop the
radiomics signature of MRS. Two additional cohorts were used to validate the clinical and prognostic value of this radiomics signature. The surgical
resection cohort comprised clinical data and the corresponding imaging data from patients with surgical resection. The immunotherapy cohort
comprised advanced HCC patients who had been treated with anti-PD-1 or anti-PD-L1 therapy. MRS, myeloid response score.
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(DAB) staining was performed with horseradish peroxidase-

conjugated anti-rabbit/mouse Dako REAL™ EnVision™

detection systems (Dako, Cat# K5007) according to the

manufacturer’s instructions. Brown color indicated positive

s i g n a l i n g . A l l s e c t i on s we r e c oun t e r s t a i n ed w i t h

Mayer’s hematoxylin.

IHC-stained slides were scanned at ×20 magnification and

evaluated by the Vectra 2.0 Automated Quantitative Pathology

Imaging System and InForm Cell Analysis 2.2 (PerkinElmer) to

count the numbers of CD169+ or CD11b+ cells (8). The density of

cells was quantified as the number of positive cells per square

millimeter area. The MRS was calculated as follows: MRS = 0.161 ×

CD11b − 0.106 × CD169 + 35 (0 ≤MRS ≤ 100), to classify the HCC

patients into two subgroups (MRSlow, 0–60.6; and MRShigh, 60.7–

100; the cutoff was determined with the X-Tile software). IHC and

CT images from two randomly selected patients in the MRSlow and

MRShigh groups are shown in Figure 2A.
Frontiers in Immunology 04
CT acquisition, image preprocessing, and
tumor segmentation

Triple-phase CT images of the liver, namely, non-contrast

phase (NP), arterial phase (AP; 20–40 s postcontrast injection),

and portal venous phase (PVP; 50–70 s postcontrast injection), were

obtained after intravenous injection of contrast agent (Bayer

Schering Pharma AG, Berlin, Germany; Ultravist Iopromide 370

mgI/mL) at a rate of 2–3 mL/s and a dose of 1–1.5 mL/kg

bodyweight. The scanning range included the whole liver (from

the diaphragmatic dome to the lower edge of the liver). Details

regarding CT acquisition parameters are provided in

Supplementary Table S1.

All the images were retrieved from the picture archiving and

communication system. The gray values were normalized to a range

of 0–255 to reduce scanner- and patient-dependent intensity

variability in CT imaging. The manual segmentation containing
FIGURE 2

Radiomics workflow. (A) Representative imaging and pathology data of patients from MRS-high and MRS-low groups. (B) Radiomics workflow. MRS-
PM represents the mp-CT radiomics signature with the best predictive performance for MRS. Prognosis-PM represents the prognostic Clinical-iMRS
nomogram by combining iMRS and the significant clinicopathological features. NP, non-contrast phase; AP, arterial phase; PVP, portal venous phase;
ICC, intraclass correlation coefficient; PCC, Pearson correlation coefficient; RFE, recursive feature elimination; iMRS, imaging-based MRS; mp-CT,
multi-phase CT.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493735
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2024.1493735
the entire tumor for the NP, AP, and PVP images was

independently conducted by two radiologists (readers 1 and 2

with 5- and 8-year experience in abdominal diagnosis,

respectively) using the 3D Slicer software (version 5.0.3). Reader 2

repeated the segmentation a month later. A total of 50 patients were

randomly selected from the MRS cohort to assess intra- and inter-

segmentation reproducibility using dice similarity coefficient (DSC)

and intraclass correlation coefficient (ICC). A feature with intra-

and inter-ICC ≥ 0.75 was considered stable. A senior radiologist

with 12 years of experience confirmed the segmentation variation.

Any disagreement between the readers was discussed until a final

consensus was reached.
Radiomics feature extraction

Radiomics features were calculated in accordance with the

guidelines of the Image Biomarker Standardization Initiative

(https://theibsi.github.io/) (49). All voxels of the tumor region

were first uniformly resampled to 1 × 1 × 1 mm3 with the cubic

B-spline interpolation algorithm to improve the robustness of

feature extraction. Then, a total of 962 radiomics features were

extracted from each phase of CT images by using the Pyradiomics

package (version 3.0.1), characterizing shape, intensity, and texture

patterns of the tumor from the original and derived CT images

(processed by the Laplacian of Gaussian or wavelet filter). The

detailed extraction parameters and feature types are described in

Supplementary Method S1 and Supplementary Table S2.
Radiomics feature selection and signature
construction for MRS

Radiomics feature selection and signature construction to

distinguish the MRS-high and -low group only used data from

the training cohort. To eliminate the dimensions of feature

magnitudes, Z-score normalization was applied. The Synthetic

Minority Oversampling Technique (SMOTE) strategy was then

used to remove the imbalance of the training cohort (40). In the

procedure of feature selection, Pearson correlation coefficient (PCC)

analysis was first conducted to obtain a feature subset with low

redundancy; one of the features with PCC > 0.99 was randomly

eliminated from further consideration. Recursive feature

elimination (RFE) or Relief algorithm was further used for

identifying the well-predictive features. Different classifiers,

including random forest (RF), support vector machine (SVM),

logistic regression (LR), K-nearest neighbor (KNN), and

multilayer perceptron (MLP), were combined with five-fold cross-

validation to obtain the optimal radiomics signature for each CT

phase. A mp-CT radiomics signature was explored by fusing the

predictive score of the triple-phase CT images. Figure 2B depicts the

corresponding analysis flow.
Frontiers in Immunology 05
Imaging-based MRS construction
for prognosis

Imaging-based MRS (iMRS) from mp-CT imaging was

obtained from the predictive score of the optimal radiomics

signature and then guided the risk stratification of MRS in

subgroups. The cutoff value was defined by the optimal Youden’s

index of predictive score within the training cohort and then

applied to the other validation cohorts. Patients with a score

higher than the cutoff value were classified as the high-risk group,

and those with a score lower than the cutoff value were classified as

the low-risk group. The prognostic value of iMRS risk groups in

HCC was validated by Kaplan–Meier survival curves of RFS and

OS. Additionally, we explored the advantage of the iMRS in

inferring with the benefits of immune checkpoint therapy.
Clinical and Clinical-iMRS score
construction for prognosis

Clinicopathological features, including age, gender, hepatitis B

surface antigen (HBsAg), alpha-fetoprotein (AFP), alanine

aminotransferase (ALT), Child–Pugh class, tumor size, tumor

number, vascular invasion, and Barcelona Clinic Liver Cancer

(BCLC) stage, were enrolled. In the training cohort, significant

variables associated with RFS (p < 0.05) in univariate Cox

proportional hazards analysis were further adopted as covariates

in a multivariate Cox proportional hazards analysis. The clinical

prediction score was thus obtained by the output of the multivariate

model to predict the status of RFS and OS. Considering clinical

practice, we also analyzed the joint value of iMRS and the significant

clinicopathological features in prognosis. A combined Clinical-

iMRS nomogram was constructed by using the multivariate Cox

proportional hazards analysis to calculate the Clinical-iMRS score.
Statistical analysis

The difference in continuous variables between groups was

analyzed by the Mann–Whitney test. Categorical variables were

compared by the chi-square test or Fisher’s exact test, as

appropriate. Radiomics feature extraction and signature

development were performed using Python (version 3.7.6) and

Pycharm (version 2020.1.5). Area under the receiver operator

characteristic (ROC) curve (AUC), sensitivity, specificity, and

accuracy were used to evaluate the predictive performance. We

used the Delong test to compare the ROC curves of diverse

radiomics signatures from the CT phases. For the survival analysis,

the Kaplan–Meier curves for risk stratification were statistically tested

by the log-rank test. The Harrell concordance index (C-index) was

calculated for assessing the prognostic value of the scores. The

calibration curve was plotted for the Clinical-iMRS nomogram.

Note that a two-tailed p < 0.05 indicated statistical significance.
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Results

Patient characteristics

The clinicopathological features of patients from different

cohorts are summarized in Table 1. According to the MRS from

IHC staining, 24.5% (27/110) and 23.6% (13/55) of patients were

stratified into the MRShigh group in cohorts 1 and 2, respectively.

Except for vascular invasion in cohort 2 (p = 0.014), there was no

significant difference between the MRSlow and MRShigh groups

(Table 2). The median follow-up duration was 49.0 months

(range, 2–115 months) and 35.7 months (range, 2–107 months),

respectively. The median OS and RFS for patients were 49.0 and

12.5 months in cohort 1, respectively. As for cohort 2, the median

OS and RFS for patients were 35.7 and 11.7 months, respectively.
Frontiers in Immunology 06
Intra- and inter-
segmentation reproducibility

The mean value and 95% confidence interval (CI) of DSC values

[intra-rater DSC: 0.944 (0.936–0.953), 0.946 (0.940–0.953), and

0.946 (0.940–0.952); inter-rater DSC: 0.857 (0.838–0.876), 0.854

(0.842–0.865), and 0.858 (0.845–0.871)] for NP, AP, and PVP

images were calculated, respectively. The results indicated that the

difference in delineation was relatively small in this work.

Furthermore, the median ICC values [intra-rater ICC: 0.967

(0.958–0.973), 0.981 (0.978–0.984), and 0.972 (0.966–0.976);

inter-rater ICC: 0.854 (0.833–0.904), 0.915 (0.879–0.927), and

0.921 (0.902–0.928)] for NP, AP, and PVP images illustrated that

the radiomics features also presented good reproducibility under

the condition of small segmentation difference. 60.0% (577/962),
TABLE 1 Clinicopathological characteristics of patients with HCC included in four cohorts.

Characteristics Cohort 1 Cohort 2
Surgical

resection cohort
Immunotherapy

cohort
p-value

No. of patients 110 55 98 36

Age (years), median (range) 52 (13–74) 48 (22–76) 54 (20–87) 52 (31–70)

Gender

Female 15 4 13 6 0.523

Male 95 51 85 30

HBsAg

Negative 13 7 15 6 0.829

Positive 97 48 83 30

AFP (ng/mL), median (range)
267.85

(0–121,000)
290.00

(0–121,000)
213.10

(1–121,000)
19,902.00
(4–121,000)

ALT (U/L), median (range)
39.00

(0–118.0)
34.00

(8.0–140.0)
34.65

(11.0–389.3)
49.2

(19.6–254.7)

Tumor size (cm), median (range)
6.75

(1.5–17.0)
7.0

(2.0–19.0)
5.0

(1.5–30.0)
11.2

(3.0–18.5)

Child–Pugh class

A 107 54 96 36 0.999

B–C 3 1 2 0

Tumor number

Single 74 40 80 N.A. 0.056

Multiple 36 15 18 N.A.

Vascular invasion

No 96 44 89 9 < 0.0001*

Yes 14 11 9 27

BCLC stage

0–A 59 33 43 0 < 0.0001*

B–C 51 22 55 36
HCC, hepatocellular carcinoma; HBsAg, hepatitis B surface antigen; AFP, a-fetoprotein; ALT, alanine aminotransferase; BCLC, Barcelona Clinic Liver Cancer; N.A., not applicable.
p-values were analyzed by Fisher’s exact test.
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62.0% (596/962), and 64.3% (619/962) of the features from each

phase were separately identified as good segmentation stability with

ICC ≥ 0.75 of both intra- and inter-rater variability. The number of

features under different ICC thresholds is presented in

Supplementary Table S3.
Frontiers in Immunology 07
Predictive performance of the radiomics
signatures for MRS

Two NP features (Relief and KNN), 8 AP features (RFE and

MLP), and 11 PVP features (Relief and KNN) were identified as
TABLE 2 Clinicopathological characteristics of different MRS risk groups.

Characteristics
Cohort 1 (n = 110)

p-value
Cohort 2 (n = 55)

p-value
MRS low MRS high MRS low MRS high

Age (years)

≤48 33 13 0.504 20 9 0.215

>48 50 14 22 4

Gender

Female 13 2 0.351 4 0 0.562

Male 70 25 38 13

HBsAg

Negative 9 4 0.732 7 0 0.179

Positive 74 23 35 13

AFP (ng/mL)

≤25 24 10 0.476 13 2 0.477

>25 59 17 29 11

ALT (U/L)

≤40 44 14 1.000 30 8 0.511

>40 39 13 12 5

Tumor size (cm)

≤5 33 12 0.822 18 3 0.328

>5 50 15 24 10

Child–Pugh class

A 80 27 1.000 42 12 0.236

B–C 3 0 0 1

Tumor number

Single 56 19 1.000 31 9 0.734

Multiple 27 9 11 4

Vascular invasion

No 75 21 0.103 37 7 0.014*

Yes 8 6 5 6

BCLC stage

0–A 47 12 0.374 28 5 0.106

B–C 36 15 14 8
p-values were analyzed by c2 test or Fisher’s exact test, as appropriate.
HBsAg, hepatitis B surface antigen; AFP, a-fetoprotein; ALT, alanine aminotransferase; BCLC, Barcelona Clinic Liver Cancer. Data are presented as number of patients.
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well-predictive through the combination optimization of different

feature selection algorithms and classifiers, respectively

(Supplementary Table S4). The optimization results of the applied

machine learning algorithms are shown in Supplementary Figure

S1. According to the AUC and accuracy (Table 3), the optimal

radiomics signature from AP images (AUC, 0.769; 95% CI, 0.718–

0.820) showed better performance compared with that from NP and

PVP images in cohort 2. The corresponding sensitivity, specificity,

and accuracy were 69.2%, 73.8%, and 72.7%, respectively. The

predictive scores from the NP, AP, and PVP phase were further

fused into the mp-CT radiomics signature, which demonstrated a

pleasing improvement in performance with AUCs of 0.941 (95% CI,

0.909–0.973) and 0.833 (95% CI, 0.798–0.868) in cohorts 1 and 2,

respectively (Figure 3A).
Risk stratification from iMRS

Since the mp-CT radiomics signature provided the best

predictive performance in both cohorts (all p < 0.05), iMRS was

calculated and showed good net benefit for clinical use within the

whole risk threshold range (Figure 3B). In both cohorts 1 and 2, the

iMRSs of patients in the pathological MRShigh group were

significantly higher than those in the pathological MRSlow group,

(Figures 3C, D), which confirms the good discrimination of MRS

groups based on iMRS. Moreover, the iMRSs were positively

correlated with the number of tumor-infiltrating CD11b+ cells in

both cohort 1 (r = 0.5629, p < 0.001; Figure 3E) and cohort 2 (r =

0.4271, p = 0.001; Figure 3F).
Prognostic value of iMRS

The mp-CT radiomics score was calculated and patients were

classified into high- and low-risk groups by iMRS with a cutoff value

of 0.19. The Kaplan–Meier survival curves showed that patients

with high iMRS had shorter OS and RFS in both cohorts 1 and 2

(Figures 4A–D). At the same time, the prognostic value of iMRS was

confirmed in the surgical resection cohort. High iMRS indicated
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poorer OS (p = 0.009, Figure 4E) and RFS (p < 0.001, Figure 4F).

The C-indexes of the iMRS were 0.627, 0.664, and 0.660 for

predicting RFS in cohort 1, cohort 2, and the surgical resection

cohort, respectively. Correspondingly, the C-indexes were 0.661,

0.649, and 0.648 for predicting OS.

The iMRS of patients in the complete response or partial

response (CR/PR) group was significantly higher than those in the

progressive disease or stable disease (PD/SD) group (p = 0.030,

Figure 4G). High iMRS (odds ratio, 2.311; 95% CI, 1.144–4.672;

p = 0.020) in the immunotherapy cohort predicted a higher

proportion of CR/PR (vs. PD/SD; AUC, 0.718; 95% CI, 0.686–

0.749) in patients who had received anti-PD-1 or anti-PD-L1

treatment. Patients with high iMRS had improved OS than

those with low iMRS in the immunotherapy cohort (p =

0.030, Figure 4H).
Prognostic value of clinical score

Clinical variables including Child–Pugh class, tumor number,

vascular invasion, and BCLC stage were associated with RFS in

univariate analysis (p < 0.001). The multivariate Cox model revealed

that Child–Pugh class, tumor number, and vascular invasion were

independent negative prognostic factors for RFS in HCC patients

(Supplementary Table S5). We output the predicted probability as

the clinical score. The prognostic C-indexes associated with RFS

were 0.676, 0.654, and 0.610 for cohort 1, cohort 2, and the surgical

resection cohort, respectively. The prognostic C-indexes associated

with OS were 0.701, 0.647, and 0.667, respectively.
Prognostic value of the Clinical-iMRS score

Multivariate Cox analysis of clinicopathologic characteristics

and iMRS for prognosis showed that high Child–Pugh class, tumor

number, vascular invasion, and high iMRS were unfavorable

predictors for RFS survival of HCC patients (Table 4), resulting

in the Clinical-iMRS score. A well-discriminated and calibrated

nomogram (Figures 5A–D) was subsequently developed, enhancing
TABLE 3 Predictive performance of the optimal radiomics signatures identified from triple-phase CT images.

Datasets Phase AUC (95% CI) p-value Sensitivity (%) Specificity (%) Accuracy (%)

Cohort 1 NP 0.898 (0.863–0.932) 0.003* 100.0 63.9 72.7

AP 0.735 (0.653–0.817) <0.001* 51.9 83.1 75.5

PVP 0.756 (0.690–0.822) <0.001* 81.5 61.4 66.4

mp-CT 0.941 (0.909–0.973) Ref. 88.9 83.1 84.5

Cohort 2 NP 0.680 (0.631–0.730) <0.001* 76.9 57.1 61.8

AP 0.769 (0.718–0.820) 0.026* 69.2 73.8 72.7

PVP 0.734 (0.686–0.783) <0.001* 76.9 57.1 61.8

mp-CT 0.833 (0.798–0.868) Ref. 76.9 71.4 72.7
p-values were analyzed by the Delong test.
AUC, area under the curve; CI, confidence interval; NP, noncontrast phase; AP, arterial phase; PVP, portal venous phase; mp-CT, multiple-phase CT.
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predictive accuracy compared to both iMRS and clinical scores. The

C-indexes for 1-, 3-, and 5-year RFS prediction were 0.729, 0.709,

and 0.713 for cohort 1, cohort 2, and the surgical resection cohort

(Figures 5E–G), respectively. The advantage was also observed in
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OS with C-indexes of 0.770, 0.697, and 0.755, respectively. The

Kaplan–Meier survival curves revealed that the nomogram showed

notable capacity in predicting RFS and OS among postsurgical HCC

patients (Figure 6).
FIGURE 3

Performance of the radiomics signature. (A) ROC curves of the optimal mp-CT radiomics signature in cohorts 1 and 2. (B) Decision curve analysis.
(C, D) iMRS of patients in pMRS-high or -low groups in cohort 1 (C) and cohort 2 (D). Mann–Whitney test, ***p < 0.001. (E, F) The correlations
between the number of tumor-infiltrating CD11b+ cells and iMRS in cohort 1 (E) and cohort 2 (F). Spearman correlation analysis. ROC, receiver
operator characteristic; pMRS, pathological MRS.
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Discussion

Myeloid cells are a group of innate immune cells in the TME,

which play a critical role in tumor initiation, progression, and

therapy response in HCC. In this study, we sought to construct a

CT-based radiomics model to predict MRS, to examine the

prognostic value of iMRS, and to assess the association of iMRS
Frontiers in Immunology 10
with the outcome of patients treated with anti-PD-1 and anti-PD-

L1 in HCC.

Compared with the commonly used TNM staging, various

studies have shown that the type, density, and location of

immune cells have superior prognostic value (50–52). Tumor-

associated myeloid cells are important regulators and prognostic

factors in tumor tissues. The myeloid-specific MRS derived from
FIGURE 4

Prognostic and clinical value of the iMRS. (A–F) Overall survival and recurrence-free survival of patients relative to iMRS in cohort 1, cohort 2, and
the surgical resection cohort. (G) iMRS of patients with complete CR/PR or PD/SD to anti-PD-1/PD-L1 therapy in the immunotherapy cohort. Mann–
Whitney test, *p < 0.05. (H) Overall survival of patients relative to iMRS in immunotherapy cohort. CR, complete response; PR, partial response; PD,
progressive disease; SD, stable disease.
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the CD169 and CD11b expression in HCC has been proven to be

associated with the immune tolerance of CD8+ T cells, as well as the

prognosis of post-surgery HCC (8). It is known that CD11b is often

expressed by immunosuppressive myeloid cells in the blood and

tumors, promoting tumor sensitivity to checkpoint blockade (53).

This phenomenon has been confirmed in the latest study (54). As a

specific marker, CD169 was useful in identifying suppressive

tumor-associated macrophages in breast and endometrial cancers

(55). Hence, MRS could provide a multidimensional tumor measure

using various myeloid contextures. However, the evaluation of

myeloid cells in tumor tissues usually requires IHC staining,

which must be performed after surgery and specimen collection.

The complexity and low efficiency of current methods limit the

application of myeloid markers. Additionally, because of the

heterogeneity and plasticity of myeloid cells in the TME, multiple

antibodies are involved in the staining process, which can easily lead

to statistical errors.

Our study successfully constructed a predictive model for MRS

by an mp-CT radiomics signature, confirming the accuracy of iMRS

and its noninvasive capacity for differentiating MRS in HCC. The

derived iMRS was significantly higher in patients from the

pathological MRShigh group and was positively correlated with the

number of tumor-infiltrating CD11b+ cells. According to a previous

study (56), image-derived textural diversity might possibly reflect

increased immune cell infiltration, which increases tumor

heterogeneity. Since the optimal mp-CT radiomics signature was

constructed using multiple-phase CT images, the improved

performance of the fusion model confirmed that the differences in

gray levels across different phases could provide deeper

supplementary information for evaluating the local myeloid

response at the pre-surgery stage. In particular, the AUC of the

radiomics signature from AP images was superior to that from NP

and PVP images in cohort 2, which is consistent with the fact that

arterial phase intensification is obvious and can present high signal
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characteristics (57). From the perspective of pathology, the outer

layer of the tumor envelope in HCC patients presents relatively

abundant compressed blood vessels and new bile ducts (58). The

different blood supply of focal liver lesions is the basis of CT

diagnosis and differential diagnosis. In general, the proposed

method avoids the complex process of immunostaining and offers

a noninvasive, efficient tool for calculating MRS.

Before the radiomics analysis of MRS, voxel resampling, gray-

level discretization, and SMOTE strategy were adopted successively

to reduce the data heterogeneity. SMOTE was considered the most

prominent method for handling unbalanced data. As emphasized in

previous studies (21), accurate segmentation of tumors remains a

challenge affecting the popularization of radiomics models. Multiple

segmentation by different radiologists can be used as a reliable

method. Moreover, the inter- and intra-observer variability of

manual segmentation and robustness of radiomics features were

then investigated. The DSC and ICC values were higher than 0.85 in

various segmentation scenarios, which demonstrated pleasing

reproducibility in tumor delineation and made sure that our

analysis was based on the accurate segmentation of tumor areas.

From the perspective of features contained in the optimal

signatures, we found that the features selected were all from the

filtered CT images, and most of them were high-dimensional

texture features. The data indicated that the processed images

could amplify the differences between features, thereby providing

more powerful texture information to distinguish the MRS groups.

The strength of our iMRS is that it shows good potential for

predicting the survival of OS and RFS in patients with HCC as an

independent prognostic biomarker. Kaplan–Meier survival curves

reflected that there were significant differences between the two risk

groups. Extensive studies have also reported on the similar

association of tumor immunological infiltration with radiomics

features and have accordingly verified the prognostic value of the

noninvasive radiomics markers (33, 35, 36, 59, 60). Since the
TABLE 4 Univariate and multivariate Cox proportional hazards analysis of factors associated with recurrence.

Characteristics
Univariate Cox analysis Multivariable Cox analysis

HR (95% CI) p-value HR (95% CI) p-value

Age 1.005 (0.983–1.028) 0.678 – –

Gender 1 (0.507–1.974) 0.999 – –

HBsAg 1.503 (0.646–3.495) 0.344 – –

AFP group 1.133 (0.664–1.932) 0.648 – –

ALT group 1.017 (0.616–1.677) 0.948 – –

Child–Pugh class 16.040 (3.214–80.090) <0.001* 10.375 (1.983–54.276) 0.006*

Tumor size group 1.143 (0.685–1.909) 0.608 – –

Tumor number 2.607 (1.545–4.400) <0.001* 3.183 (1.817–5.576) <0.001*

Vascular invasion 3.487 (1.754–6.935) <0.001* 4.519 (2.200–9.285) <0.001*

BCLC stage 2.433 (1.465–4.042) <0.001* – –

iMRS 2.311 (1.144–4.672) 0.020* 3.321 (1.579–6.986) 0.002*
HBsAg, hepatitis B surface antigen; AFP, a-fetoprotein; ALT, alanine aminotransferase; BCLC, Barcelona Clinic Liver Cancer; HR, hazard ratio; CI, confidence interval.
Characteristics with a p < 0.05 are displayed in bold.
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predictive C-indexes of iMRS for RFS and OS in different subsets

were comparable to or worse than that of clinical scores, the

Clinical-iMRS score significantly improved the predictive value

for RFS. Our study revealed that the radiomics signature was an

important supplementation to clinical features in survival analysis

for HCC patients. Previous studies have found similar results (24,

25, 30, 34, 38, 61). It is an important trend for clinical utility to

provide a comprehensive evaluation system using multiple factors

that reflect the different biological properties of tumors.
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Since the objective response rate of immunotherapy in most

cancers is still relatively low (46–48), identifying reliable biomarkers

from immune cells, such as the percentage of CD8+ cells and TLS

structure, to quantify the TME associated with immunotherapy

response, is still an emerging area of oncology research (33, 40, 62).

In this study, a high iMRS predicted a higher proportion of

objective response in patients treated with anti-PD-1 and PD-L1.

Patients in the iMRS-high group had improved OS compared to

those with low iMRS in the immunotherapy cohort. The results
FIGURE 5

Clinical-iMRS nomogram and predictive performance evaluation. (A) The Clinical-iMRS nomogram to predict recurrence-free survival for post-
surgical HCC patients. (B–D) Calibration curves for the nomogram in cohort 1 (B), cohort 2 (C), and the surgical resection cohort (D). (E–G) C-index
for assessing the prognostic value of the clinical score, iMRS, and combined Clinical-iMRS score in cohort 1 (E), cohort 2 (F), and the surgical
resection cohort (G). C-index, Harrell concordance index.
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demonstrated that iMRS was significantly associated with the

response of HCC patients to immune checkpoint therapy, which

could identify patients most likely to benefit from anti-PD-1 and

PD-L1 therapy. In mechanism, the MRS was useful to describe the

immune microenvironment of HCC, and HCC patients with high

MRS displayed immunosuppressive TMEs (8). On the one hand,

MRShigh tumors are associated with CD8+ T-cell exhaustion,

especially PD-1 expression on infiltrating T cells. On the other

hand, the elevation of PD-L1 expression on Mjs and tumor cells is
Frontiers in Immunology 13
significantly associated with high MRS. Therefore, we suggest that

noninvasive iMRS can help promote the surveillance of the TME

and the translational application of immunotherapy effectively

and rationally.

Our study also has several limitations. First, the data were

retrospectively collected from a single center, and the amount of

data was small. It is important to note that we grouped the HCC

patients over different time periods to provide a longitudinal time

design to verify the generalization performance of the model. This
FIGURE 6

Prognostic value of the combined Clinical-iMRS model. (A–F) Overall survival and recurrence-free survival of patients relative to the Clinical-iMRS
model (high risk or low risk) in cohort 1, cohort 2, and the surgical resection cohort.
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also compensates for the shortcomings of a single center. Of course,

more data from other centers will be collected in the future to

further prospectively validate our findings. Second, despite our

efforts to select relatively stable radiomics features through intra-

and inter-ICC analysis, an automated and accurate segmentation

strategy is necessary and can improve the efficiency of radiomics

analysis. Third, while the radiomics signature was associated with

CD11b+ cells’ infiltration, the overview of the immune infiltration

pattern from single-cell RNA sequencing could better explain the

biological meaning of radiomics patterns of our iMRS. Lastly,

multiomics fusion holds great potential for future development,

and we hope to combine other multidimensional data with iMRS to

better characterize the TME of patients with HCC and assist clinical

treatment decision-making (63).
Conclusions

Our study constructed an accurate and efficient predictive

model for MRS, confirmed the correlation of the radiomics

signature and tumor-infiltrating myeloid cells, further revealed

the prognostic value of iMRS for survival, and assessed the

association of iMRS with the outcome of anti-PD-1 and PD-L1

therapy in HCC. Our study provided a promising and noninvasive

tool to evaluate the TME and to assist immunotherapeutic decisions

in clinical trials, thus enabling a more tailored therapeutic approach

with improved outcomes for HCC patients.
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