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Background: Fibroblast Growth Factor Receptor (FGFR) signaling is linked with

tumor progression and tumor immunoevasion, yet the potential effect of FGFR

signature on the prognosis of patient with colorectal cancer (CRC) and response

to immune therapy remains elusive.

Methods: The fibroblast growth factor receptor risk signature (FRS) was identified

through single-cell RNA sequencing, bulk RNA sequencing, and machine learning

techniques. Signaling enrichment analyses were conducted using Gene Set

Enrichment Analysis (GSEA) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG). Drugs targeting the FRS were predicted using the Cancer Therapeutics

Response Portal (CTRP) and PRISM databases. The analysis of T cell function and

the tumor microenvironment (TME) was performed using flow cytometry.

Results: In this study, we characterized the FRS in cancer patients with CRC. By

integrating advanced techniques, we identified the FRS and revealed the intricate

molecular landscape and diversity of the FRS within the TME. Notably, the FRS

effectively predicted unfavorable prognosis and resistance to immunotherapy in

CRC patients. Furthermore, PHA-793887, identified as a potential FRS inhibitor by

the CTRP and PRISM databases, significantly restructured the immunosuppressive

TME and enhanced the antitumor immune response, resulting in a reduced tumor

burden in the MC38 murine tumor model.

Conclusion: Together, these data support FRS positively correlates with poor

prognosis and therapy resistance. The PHA-793887 could be a potential FRS

inhibitor to improving the effectiveness of CRC management via bolstering

antitumor immunity.
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Introduction

Colorectal cancer (CRC) stands as a significant contributor to

cancer-related deaths globally, featuring an intricate interaction

between genetic and environmental elements that propel its onset

and advancement (1, 2). The disease’s diversity and inconsistent

reaction to therapies highlight the necessity for a more profound

comprehension of its molecular foundations. Despite advancements

in early detection and treatment, the precise mechanisms driving CRC

progression and the genes influencing patient prognosis remain

insufficiently understood. Elucidating these complexities is essential

for developing new prognostic indicators and treatment strategies.

Fibroblast growth factor receptor (FGFR) signaling plays a critical

role in multiple aspects of tumor biology, including cell proliferation,

survival, angiogenesis, and invasion. The activation of FGFR signaling

is observed in various cancers, contributing to aggressive disease

phenotypes and poor outcomes (3–5). Nevertheless, the correlation

between FGFR signaling and the tumor microenvironment (TME) in

CRC remains inadequately defined. With an increasing understanding

of the TME’s influence on cancer progression and response to

immunotherapy, clarifying the association between FGFR signaling

and the immunological landscape of CRC is highly relevant (6, 7).

Examining FGFR risk signature (FRS) holds promise for shedding light

on CRC pathogenesis and guiding prognostic assessments of patients.

The emergence of cancer immunotherapy has revolutionized the

management of various malignancies, including CRC. Despite its

potential, the clinical effectiveness of immunotherapy is frequently

impeded by the development of treatment resistance, benefiting only a

subset of patients (8, 9). The mechanisms driving this resistance are

complex, involving aberrant activation of specific intracellular

transcriptional pathways in tumor cells, among other factors (10, 11).

In the context of CRC, our investigation has revealed a significant

association between the FRS and immunotherapy resistance. Given the

established role of FRS in influencing cellular behavior and the TME,

targeting this signature presents a promising strategy to overcome

this resistance.

In this study, we utilized bioinformatic tools and experimental

models to identify and forecast the effectiveness of inhibitors targeting

the FRS. Our goal was to devise a therapeutic strategy capable of

selectively disrupting FRS, thereby enhancing the anti-tumor immune

response and impeding tumor progression. Our results indicate that

FRS-targeting inhibitors have the potential to reshape the TME,

enhance T cell function, and elicit antitumor responses. This

discovery carries substantial translational significance, suggesting that

the integration of FRS inhibitors with existing immunotherapies may

provide a novel approach to improving treatment efficacy and clinical

outcomes for CRC patients.
Materials and methods

Animal experiments

In the present investigation, male C57BL/6J mice, aged 6-8

weeks, were obtained from Ensiwer Corporation and utilized in the

ICB-resistant MC38 tumor model. The colorectal cancer MC38 cell
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line, adjusted to a concentration of 1 × 10^5 cells, was

subcutaneously inoculated into these mice. On the seventh day

post-inoculation, the animals were administered either IgG or anti-

CTLA4 antibodies (Bio X cell, 9H10) at a dosage of 5 mg/kg for a

continuous period of five days. At the culmination of the designated

experimental timelines, the tumor tissues were meticulously excised

for further analysis. In a subsequent experimental paradigm, mice

bearing MC38 tumors were subjected to treatment with either a

control vehicle or PHA-793887 (MedChemExpress, HY-11001),

administered at a dosage of 10 mg/kg. Post-treatment, the excised

tumor tissues underwent flow cytometric analysis to elucidate the

impact of PHA-793887 on the TME. Concurrently, tumor

dimensions were meticulously monitored biweekly throughout

the experimental period.
Flow cytometry analysis

Live cells were assessed using the Fixable Viability Dye eFluor

450. To evaluate cytokine production, the cells were stimulated with

the Cell Stimulation Cocktail and subsequently labeled with anti-

IFN-g (BioLegend, XMG1.2) and anti-TNF-a (BioLegend, MP6-

XT22) antibodies. Other antibodies included an-CD45 (Biolegend,

2D1), anti-CD11b (BioLegend, M1/70), anti-CD8a (BioLegend, 53-

6.7), anti-CD4 (BioLegend, GK1.5), anti-FOXP3 (BioLegend, MF-

14), anti-F4/80 (BioLegend, BM8).

Analysis of stained cells was conducted using a BD FACSCanto

II Flow Cytometer in conjunction with BD FACSDiva software (BD

Biosciences), and the resulting data were processed using FlowJo

software (version 10.5.3).
RNA sequencing analysis

Total RNA was isolated from MC38 tumor tissues using the

Trizol reagent (Invitrogen, catalog number 15596026). RNA

samples were forwarded to ANNOROAD for construction of

sequencing libraries and subsequent sequencing on the NovaSeq

platform (Illumina). The resultant raw fastq files were processed to

quantify gene expression as transcripts per million (TPM) using the

htseq-count tool, facilitating the downstream analysis. Differential

expression analysis of genes (DEGs) was performed using the

“DESeq2” R package, applying stringent filtering criteria: a fold

change threshold greater than 2, an adjusted P-value of less than

0.05, and a mean log2-TPM in the high-expression cohort

exceeding 0.
Data acquisition

In the present investigation, we procured five distinct public

datasets from the NCBI Gene Expression Omnibus (GEO)

repository. Our approach entailed the application of scRNA-seq

datasets, namely GSE231559 and GSE166555, to dissect the

heterogeneity of fibroblast populations within both normal and

neoplastic colorectal tissues. Additionally, we leveraged the COAD
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cohort from the TCGA database and an aggregate of three bulk

RNA sequencing datasets, GSE17536, GSE29621, and GSE38832,

for the development and substantiation of our prognostic model. It

is important to note that for analyses based on publicly available

datasets, neither patient consent nor ethical board approval

is required.
scRNA-seq data analysis

The processing of scRNA-seq data was executed utilizing the

‘Seurat’ R package (version 5.0.2), following established protocols (12).

Initially, a stringent filtration criterion was applied, excluding cells

with gene expression levels below the 200-gene threshold or exceeding

the 6000-gene ceiling, as well as those with mitochondrial gene

expression surpassing the 5% mark. This exclusionary process was

pivotal for the retention of a substantial cell population representative

of the datasets in question. Subsequently, the SCTransform function

was utilized to standardize and normalize the raw count data, which

was then subjected to principal component analysis (PCA) to identify

the underlying patterns. To address and neutralize batch effects

inherent in the dissociated scRNA-seq datasets, the “Harmony” R

package, was strategically implemented. Clustering was conducted by

assessing the edge weights connecting pairs of cells, culminating in the

construction of a shared nearest-neighbor graph. This graph was

adeptly derived using the Louvain algorithm, facilitated by the

FindNeighbors and FindClusters functions. The outcome of this

process was a visual representation of the cells, rendered through

the UMAP algorithm, providing a comprehensive overview of cellular

distribution. The “FindMarkers” function was employed to pinpoint

genes that were preferentially expressed within specific clusters, in

addition to identifying DEGs. Each resultant cell cluster was annotated

with reference to established cell-type marker genes, enhancing the

interpretability of the data. To elucidate the distinct expression profiles

of the identified genes at the single-cell level, the “scRNAtoolVis”

package was utilized, providing a graphical interface that enabled

precise and clear visualization of gene expression patterns.
High dimensional weighted gene co-
expression network analysis

To explore genes associated with FGFRS-positive fibroblasts, we

conducted a hdWGCNA using the “hdWGCNA” package. We

created metacells for each sample and cell cluster, with 50 cells

per metacell, and applied a standard pipeline of functions to analyze

gene expression patterns and visualize module relationships in a

reduced-dimensional space.
Machine learning-based construction of an
FGFRS-fibroblast-related prognosis model

As previous published study (13, 14), we identified FGFRS-

fibroblast-related genes using hdWGCNA and validated their

predictive potential in tumor development with three
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transcriptome datasets, GSE17536 GSE29621, and GSE38832.

Using the “mlr3” package, we developed a predictive model

incorporating seven machine learning algorithms. Following

cross-validation, we selected the most accurate model and

assessed its predictive ability on an independent test set.
Trajectory and cell-cell
communication analysis

Employing an unsupervised approach, pseudotemporal analysis

was performed using the “Monocle” package, applying the DDR-Tree

algorithm with its default parameters to delineate the developmental

trajectory of fibroblasts. Following the pseudotemporal trajectory

mapping, the “plot_pseudotime_heatmap” function was engaged to

craft a heatmap. This visual tool effectively depicted the fluctuating

expression patterns of a cohort of genes, illustrating their dynamic

behavior along the pseudotime trajectories of fibroblasts.

Furthermore, to uncover potential cellular interactions, both

intracellular and extracellular, the “CellChat” package was deployed

using its default settings and recommended pipeline configurations.

This application facilitated the identification of communication

networks among fibroblasts and other cellular components within

the TME.
Enrichment analysis

The Seurat package’s “FindMarkers” function was deployed to

discern DEGs within each delineated cell subcluster. The selection

criteria for these genes were stringent, requiring a fold change

surpassing a threshold of 2 and an adjusted p-value below the

significance level of 0.05. Subsequently, leveraging the identified

DEGs, a comprehensive GSEA and KEGG enrichment analyses

were conducted to explore the functional profiles of the cell

subgroups. These analyses were executed utilizing the

“clusterProfiler” package, which provided a robust framework for

assessing the overrepresentation of specific gene sets and biological

processes. To visually represent the functional enrichment results,

the “GseaVis” package was employed. This tool facilitated the

creation of intuitive and informative visualizations that

encapsulated the enriched biological themes and pathways

associated with the cell subclusters under investigation.
Non–negative matrix factorization analysis

To explore the diversity of FGFRS subtypes, we applied the

NMF algorithm from the “NMF” package (15). The objective was to

identify distinct subtypes characterized by unique gene expression

patterns. To assess the prognostic value of these genes, we

conducted survival analysis using the “survival” package.

Additionally, we used the “ggrisk” package to analyze the survival

and risk profiles of cancer patients, categorizing them into high-

and low-risk groups. The analyses were considered statistically

significant for P values below 0.05.
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Statistical analysis

All computational analyses and graphical representations were

executed utilizing the R software (v4.3.2). The strength and

direction of the linear relationships between pairs of continuous

variables were evaluated through Pearson’s correlation coefficients.

In the case of quantitative datasets, statistical comparisons among

subgroups were made using either a two-tailed, unpaired Student’s

t-test for two-group comparisons or a one-way analysis of variance

(ANOVA) complemented with Tukey’s post hoc test for multiple

group analyses. The threshold for statistical significance was set at a

P-value of less than 0.05.
Results

Single-cell RNA sequencing analysis
reveals FGFRS-positive fibroblast subsets

To elucidate the role of the fibroblast growth factor receptor

(FGFR) signature in tumors, we analyzed single-cell RNA sequencing

(scRNA-seq) data from colorectal cancer contained in the Gene

Expression Omnibus (GEO) database (GSE231559, GSE166555) to

identify potential fibroblast subsets that are positive for FGFRS

(FGFRS+). In the GSE231559 dataset, we annotated cell types using

established markers, including T cells, malignant cells, neutrophils,

myeloid cells, fibroblasts, B cells, epithelial cells, and plasma cells, each

characterized by their unique gene expression profiles (Figure 1A).

Notably, the analysis highlights genes like GZMK, GZMM, CD3G,

which are expressed in T cells, and genes such as CD79A and CD19,

which are characteristic of B cells. The myeloid and plasma cells are

associated with genes like C1QC and IGHA1, respectively (Figure 1B).

In the GSE166555 dataset, we identified 22 clusters and further

annotated these clusters to 10 main clusters based classic markers,

including B cells, DC cells, endothelial cells, fibroblasts, malignant cells,

mast cells, monocyte/macrophage, plasma and T cells (Supplementary

Figure S1A). These established markers including of MZB1, MS4A1,

EPCAM, CD3D, CPA3, CD163, COL1A2, VWF, and IDO1

(Supplementary Figure S1C). Significantly, each cluster exhibited

different gene expression profiles (Supplementary Figure S1D).

Furthermore, to analyze the effect of FGFR signaling, we constructed

an FGFR signature (FGFRS) using 86 genes involved in the FGFR

signaling pathway from Molecular Signatures Database (MSigDB).

This signature was then applied to score the identified cell groups

using the “AddModuleScore” function in the Seurat package. Our

findings reveal that fibroblast cell groups exhibit the highest FGFRS

score, indicating a significant involvement of FGFR signaling in these

cells (Figures 1C, Supplementary Figure S1B). To further dissect the

role of FGFRS in fibroblast cell cluster, we isolated these cells and

identified nine main fibroblast subgroups. Notably, in tumor tissues, a

distinct fibroblast subgroup was found to have an increased proportion

relative to normal tissues and showed highest FGFRS score (here after

as “FGFRS+ fibroblast”) (Figures 1D, Supplementary Figure S1E). This

observation suggested a potential role of FGFRS in the transformation

and proliferation of fibroblasts in the TME. Furthermore, Gene Set

Enrichment Analysis (GSEA) was performed on the transcriptome of
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several key cells signaling pathways that are potentially modulated by

FGFRS. In the GSE231559 dataset, these pathways include receptor-

mediated endocytosis, positive regulation of phagocytosis, and the

regulation of miRNA metabolic processes, among others. In the

FGFRS+ fibroblast, some signaling pathways were significantly

enriched, including epithelial tube morphogenesis and collagen fibril

organization (Figure 1E). In the GSE16655 dataset, FGFRS+ fibroblasts

exhibited upregulated signaling pathways, including cytokine-cytokine

receptor interactions, while downregulated pathways included theWnt

and Hippo signaling pathways (Supplementary Figure S1F). In

summary, the integration of scRNA-seq data analysis highlighted

that FGFRS is enriched in the fibroblast cluster within the TME, and

these relevant signaling pathways may be critical for the role of FGFRS+

fibroblasts in tumor progression.
Predictive model to identify core genes
correlated to FGFRS+ fibroblasts

To identify potential core genes associated with FGFRS+

fibroblasts, we conducted high-dimensional Weighted Gene Co-

expression Network Analysis (hdWGCNA), a comprehensive

methodology for analyzing co-expression networks in the scRNA-seq

data. This analysis aimed to detect co-expressed gene modules and

unravel their functional roles within FGFRS+ fibroblasts. Subsequently,

we constructed a scale-free co-expression network by applying an

optimal soft thresholding power of 12 (Supplementary Figure S2A).

From this analysis, we distinguished a total of 19 distinct gene co-

expression modules, identified the top 10 hub genes from these

modules, and constructed protein-protein interaction (PPI) networks

for the identified hub genes in each module (Supplementary Figure

S2B, C, Figure 2B). Additionally, we investigated the correlation

between each module (Supplementary Figure S2D), where modules

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 15, 18, and 19 displayed significant activation

primarily in FGFRS+ fibroblasts (Figure 2C, Supplementary Figure

S2E). Subsequently, 325 genes from these modules underwent

univariate Cox regression analysis in the TCGA COAD cohort,

leading to the identification of 13 genes significantly associated with

overall survival in CRC patients (Figure 2D). Additionally, by

integrating data from the TCGA COAD and GEO database cohorts,

we constructed robust models using 101 algorithmic combinations and

calculated the area under the curve (AUC) for each model across all

cohorts to assess their predictive capacity. (Figure 2A). Among the 101

models, the Step Cox (direction = both) algorithm in conjunction with

a Random Survival Forest (RSF) demonstrated the highest AUC,

serving as the basis for the final model creation. We further utilized

RSF analysis to assess the prognostic relevance of various genes in

predicting patient survival outcomes systematically. Notably, genes

such as JDP2, HEYL, NRG1, RPS17, and MANF exhibited substantial

predictive value, as indicated by their low Minimal Depth and high

Variable Importance scores, thus influencing the accuracy of the

survival model significantly (Figures 2E, F, Supplementary Figure

S2F). The gene signature, comprising JDP2, HEYL, NRG1, RPS17,

andMANF, known as the FRS, has demonstrated substantial predictive

capabilities for patient survival at the 1-year, 3-year, and 5-year
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FIGURE 1

The scRNA-seq analysis uncovers the diversity of fibroblast subsets within CRC. (A) UMAP plot representing 8 distinct groups. The color coding
corresponds to predominant cell types, with contours delineating cluster boundaries. The four corner insets provide a detailed view of myeloid, T
cells, fibroblasts, and neutrophils. The peripheral axis displays the log-transformed total cell counts per class. The concentric colored tracks (exterior
to interior) signify class identity (aligned with the central UMAP), cluster, group, and cell types. (B) Volcano plot showing the differential expression of
markers in the distinct cell types. (C) Violin plot showing the score of FGFRS in the distinct cell types. (D) UMAP plot showing the fibroblast subsets
in the normal or tumor tissues (left) and the score of FGFRS in the distinct fibroblast subsets (right). (E) The left panels illustrate the dynamic patterns
of DEGs specific to each subset, while the central heatmap compares the expression profiles of these DEGs across populations. The right panels
summarize the GO terms, providing insights into the biological functions associated with each cluster.
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intervals. This integrated genetic profile serves as a valuable prognostic

tool, providing insights into anticipated clinical outcomes for patients

over the specified time frames (Figure 2G). Based on the FRS, cancer

patients were categorized into high- and low-risk groups, with high-

FRS patients exhibiting a poor prognosis (Figure 2H). These results

were further validated using cohorts from the TCGA and GEO

databases. In the TCGA cohort, Kaplan-Meier survival curve analysis

revealed adverse outcomes for high-FRS patients, with an Area Under

the Receiver Operating Characteristic curve (AUROC) of 0.7334

serving as a critical metric for model evaluation. These

comprehensive results highlight the predictive capacity of the model

and align with the analysis of COAD cohorts from the GEO database

(Figures 2I-L).
FRS is correlated to the tumor immunity

To further analyze the correlation between the FRS and tumor

immunity, we employed Non-negative Matrix Factorization

(NMF), a robust technique for clustering analysis, to investigate

the FRS of cancer patients based on the FGFRS. Our analysis

specifically aimed to identify the optimal number of clusters (K)

that would best capture the heterogeneity within the patient cohort.

Following the NMF-based clustering, we observed that when K was

set to 2, the consensus matrix revealed a clear distinction between

two distinct patient groups. This finding suggests that dividing the

patients into two groups at K=2 provides the most meaningful

separation in terms of their FRS (Figure 3A, Supplementary Figure

S3A). Notably, patients in cluster 1 exhibited a poorer prognosis

compared to those in cluster 2 (Figure 3B). Upon TME score

analysis, cluster 1 displayed lower immune scores, including

stromal score, immune score, and ESTIMATE score, in contrast

to cluster 2 (Supplementary Figure S3B). Additionally, CIBERSORT

analysis was conducted for both clusters. Notably, tumors from

patients in cluster 1 demonstrated reduced CD8+ T cell infiltration

but increased M0-like macrophages compared to those in cluster 2

(Figure 3C). Moreover, tumors from patients in cluster 1 exhibited

decreased expression levels of immunostimulatory molecules

(Supplementary Figure S3C). These findings imply that tumors

from patients in cluster 2 might possess heightened antitumoral

immunity within an immune-stimulating TME. The cell-cell

interactions within the TME play a crucial role in tumor

progression. Therefore, to further understand the interactions

between FGFRS+ fibroblasts and T cells, we conducted CellChat

analysis. While the total interaction strength was notably increased

in tumor tissues compared to normal tissues, the number and

weight of interactions showed no significant differences

(Supplementary Figures S3D, E). Subsequently, we investigated

whether specific signaling interactions between FGFRS+

fibroblasts and T cells were altered. Utilizing signal flow analysis,

a quantitative method for assessing information transmission in

biological systems, revealed substantial changes in signaling

pathways between tumor and normal tissues. These results

highlight a significant divergence in the flow of information

within distinct tissue states (Figure 3D). In our subsequent

analysis, we delved into the ligand-receptor interactions within
Frontiers in Immunology 06
the TME, focusing on the FGFRS+ fibroblasts and their potential

binding partners. Utilizing a comprehensive approach, we identified

a significant interaction between collagen (COL)-related ligands

and the CD44 receptor on T cells. Notably, this interaction was

found to be markedly enhanced in the TME compared to normal

tissues (Figure 3E). Our findings underscore the complex interplay

between the extracellular matrix components and immune cells.

Specifically, the pairs COL4A2-CD44, COL6A1-CD44, and

COL1A2-CD44 demonstrated a pronounced increase in their

relative contribution to the signal transduction within the tumor

context (Figures 3F, Supplementary Figure S3F). Moreover, there

was a significant increase in COLLAGEN signaling between

FGFRS-positive fibroblasts and T cells in the tumor tissue

compared to normal tissues (Figures 3G, H). This heightened

interaction between collagen ligands and the CD44 receptor on T

cells implies a potential role in influencing the immune response

within the TME.
FRS were negatively correlated with
T cell function

In our investigation of the influence of the FRS on T cell dynamics,

we conducted a comprehensive analysis of scRNA-seq data from the

GEO database. Using unsupervised clustering techniques, we analyzed

T cell populations and identified seven primary clusters. By annotating

these clusters with characteristic markers, we delineated sixmajor T cell

subsets: naïve T cells, regulatory T cells (Tregs), effector T cells (Teffs),

central memory T cells (Tcms), natural killer T cells (NKTs), and

exhausted T cells (Tex). Each subset exhibited distinct expression

patterns of specific markers (Figures 4A, D, Supplementary Figure

S4A, B). Our results revealed a notable shift in the proportion of T cell

subsets between tumor tissues with high FRS scores and those with low

FRS scores. Specifically, there was a significant increase in the

proportion of Teff and NKT in tumors with low FRS scores, whereas

the proportion of Tex was markedly reduced in comparison to tissues

with high FRS scores (Figures 4B, C). Given the pivotal role of T cell

function in determining the success of tumor immunity, we further

analyzed the impact of FRS on the functionality of Teff cells. We

observed a significant upregulation of effector molecules in Teff cells

within tumors with low FRS scores, including PRF1, GZMH, GZMB,

and IFNG (Figure 4E). Additionally, we utilized pseudotime analysis to

elucidate the temporal evolution of T cell subset differentiation. Our

findings indicated that in the early stages of differentiation, the T cell

population was predominantly composed of Treg cells. As pseudotime

progressed, there was a transition towards a predominance of naive T

cells. In the late stages of differentiation, the population was

characterized by an increase in Tex cells and NKT cells (Figures 4F,

Supplementary Figure S4C). Importantly, the expression levels of CD8,

GZMB, and IFNG and other markers associated with T cell function

were significantly increased in the late stages of differentiation

(Supplementary Figures S4D, E).

Utilizing the transcriptomic sequencing data from the TCGA

COAD cohort, we embarked on a comparative analysis of gene

expression differences between tumor tissues with high and low

levels of FRS score. This analysis unveiled a spectrum of
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FIGURE 2

Construction and validation of the artificial intelligence-derived prognostic model. (A) Assessment of the area under the receiver operating
characteristic curve (AUC) for multiple models generated from diverse combinations of machine learning algorithms across four cohorts. (B)
Illustration of the interaction network among core prognostic genes, highlighting their interconnectivity. (C) Dot plot representation of the
expression levels of module genes across distinct fibroblast subpopulations. (D) Forest plot delineating the hazard ratios associated with prognostic
genes, quantifying their impact on patient outcomes. (E, F) RSF analysis, emphasizing the relative importance of prognostic genes in predicting
survival. (G) The AUC curve at various time points, demonstrating the predictive accuracy of the FGFRS for survival. (H) Kaplan-Meier survival curves
comparing the overall survival of cancer patients stratified by high and low FGFRS scores, FRS, FGFR risk score. (I-L) A comprehensive analysis was
conducted to evaluate the survival benefits and predictive efficacy of the FSR score in cancer patients using data from TCGA and the GEO. The
analysis was stratified according to high and low FRS expression.
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FIGURE 3

FGFRS-related molecule subtype correlates to tumor immunity. (A) Heatmap showing the clustering outcomes derived from NMF analysis, which has
been applied to categorize patients into two distinct molecular subtypes based on the FGFRS signature. (B) Survival analysis of cancer patients in the
cluster 1 and cluster 2. (C) Box plot showing the fractions of immune cells in the COAD tissues between cluster 1 and cluster 2. (D) The relative flow
among cell clusters in the TME of normal and COAD tumors. (E) The contribution of ligand-receptor pair in the TME of COAD tissues. (F) The dot plot
showing the interaction of ligand-receptor between FGFRS-positive fibroblasts and T cells. (G) Heatmap showing the changes of collagen signaling
among cell clusters between normal and tumor tissues. (H) A shell plot illustrating the interaction of collagen signaling between FGFR score (FGFRS)-
positive fibroblasts and T cells is presented. P values are from log-rank test (B) and two-way ANNOVA (C). *P < 0.05, *P < 0.01, ***P < 0.0001.
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FIGURE 4

FRS correlates to the T cell function in the TME. (A) The UMAP depicting the cell cluster of T cells within COAD tumors, with each distinct color
indicating a different cell type. (B) The UMAP visualizing the distribution of cell clusters in both FRS high and FAMS low COAD tumors, Treg, regulator
T cells, Teff, effector T cells, Tcm, central memory T cells, NKT, natural killer cells, Tex, exhausted T cells. (C) A bar plot illustrating the ratio of cell
clusters in the FRS high and FRS low COAD tumors. (D) Multiple volcano exhibiting the changes in markers across various cell types. (E) A violin plot
displaying the expression levels of cytotoxic molecules in T effector cells among specified groups. (F) Pseudotime analysis demonstrating the
differentiation trajectory of T cell subsets. (G) The network diagram illustrating the interactions of markers associated with T cell function. (H) KEGG
analysis revealing the enriched signaling pathways.
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differentially expressed genes (DEGs), which we subsequently

subjected to a co-expression network analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis. Notably, genes such as NRG1, SAMD13, MFAP3L,

SALL1, ZNF704, SEMA5A, and HLA-DQB1 were identified as

having altered expression patterns, potentially reflecting the

diverse roles of FGFRS in tumor biology. The presence of

immune-related genes such as CX3CL1, HLA-DQBY, and

KIR2DL4, along with cytotoxic markers like GZMH and GZMB,

suggests an intricate interplay between FRS signaling and immune

response modulation within the TME (Figure 4G). Furthermore,

the KEGG analysis elucidated the biological pathways and cellular

processes significantly enriched among the differentially expressed

genes (DEGs). Pathways such as the NF-kappa B signaling pathway,

the STAT signaling pathway, and the TNF signaling pathway were

prominently highlighted, indicating the roles of immune response

and cell signaling in tumors altered by the FRS. Additionally, the

identification of processes, including neutrophil extracellular trap

formation and natural killer cell-mediated cytotoxicity, underscores

the influence of the FRS on immune cell functions (Figure 4H).

Collectively, FRS exhibited a negative correlation with T cell

function, thereby impairing antitumor immunity and facilitating

tumor progression.
FRS correlates to ICB resistance in murine
MC38 tumor model

The expression of FRS is inversely associated with T cell function,

but it is unclear whether this correlation contributes to

immunotherapy resistance. In order to elucidate the role of FRS in

colon tumors following immune checkpoint blockade (ICB) therapy,

we developed an ICB-resistant MC38 tumor model and conducted

RNA sequencing analysis. Within our experimental framework, mice

engrafted with MC38 tumors were treated with either IgG or anti-

CTLA4 antibodies, and we meticulously monitored changes in tumor

volume. Upon completion of the treatment, we classified tumors that

exhibited a significant reduction in volume following anti-CTLA4

treatment as “responder” phenotypes, in stark contrast to those that

showed minimal change with IgG treatment, which we labeled as

“nonresponder” phenotypes (Figure 5A). Of particular interest, the

expression levels of HEYL, RPS17, and JDP2 were significantly

elevated in tumors from nonresponders compared to those from

responders (Figure 5B). To investigate the potential correlation

between FRS expression and immune checkpoint blockade (ICB)

resistance, we stratified nonresponders into two groups based on the

gene set variation analysis (GSVA) score of the FRS and identified

differentially expressed genes (DEGs) between high and low FRS-

expressing tumors (Figures 5C, D). Utilizing these DEGs, we

performed GSEA, revealing that several signaling pathways were

significantly enriched in low FRS -expressing tumors, including those

involved in extracellular matrix organization, collagen formation, and

oxidative stress response. Notably, key genes associated with collagen

and oxidative stress were found to be significantly downregulated in
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low FRS -expressing tumors (Supplementary Figures S5A-F). Further

investigation into the impact of FRS on the TME of nonresponsive

MC38 tumors using MCPcounter analysis indicated elevated levels of

endothelial and fibroblast infiltration, alongside a diminished

presence of T cells in the TME of tumors with high FRS expression

(Figure 5E). Additionally, the expression of GZMA, a marker for

cytotoxic T lymphocytes, was significantly higher in tumors with low

FRS expression (Figure 5F). Our data suggest that reduced FRS may

enhance T cell function within the TME. To comprehensively assess

the influence of FRS expression on ICB-resistant tumor development,

we conducted pseudotime analysis on RNA sequencing data from

nonresponsive tumors. The findings revealed that the expression

patterns of three key genes closely mirrored one another and were

significantly elevated during the advanced stages of tumor

progression (Figures 5G, H). Collectively, these results suggest that

the FRS is positively associated with ICB resistance and may facilitate

tumor progression.
FRS inhibitor significantly rewires the TME
to promote tumor regression

As our analysis, the correlation between FRS expression and

tumor immunity has been established, yet the extent to which FRS

inhibitors can curtail tumor progression through the enhancement

of antitumor immunity is not fully understood. To address this, we

utilized the CTRP and PRISM databases to prognosticate potential

inhibitors that target the FRS and subsequently validated the

antitumoral efficacy of these inhibitors in murine tumor models.

Through the amalgamation of data from both databases, we

identified PHA-793887, recognized as a quintessential cyclin-

dependent kinase (CDK) inhibitor, as a promising candidate with

potential inhibitory effects on the FRS (Figures 6A, B). Then, we

developed a mouse xenograft model of colorectal cancer by

subcutaneously inoculating MC38 tumor cells and evaluated the

impact of PHA-793887 on tumor progression and the TME via oral

administration (Figure 6C). Notably, the treatment did not induce

any discernible harm to the vital organs of the mice, encompassing

the heart, liver, intestine, stomach, and lungs (Figure 6D).

Importantly, the PHA-793887 significantly suppressed tumor

growth and reduced the tumor burden relative to the control

cohort (Figure 6E). Further examination of the TME utilizing

flow cytometry disclosed that PHA-793887 markedly augmented

the secretion of cytotoxic T cell-associated cytokines, including

interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-a),
and granzyme B (GZMB), within the tumor milieu (Figure 6F). This

suggests an enhancement of T cell functionality. Moreover, in

tumors treated with PHA-793887, there was a significant increase

in the infiltration of CD8+ T cells and effector CD4+ T cells, along

with a decrease in tumor-associated macrophages (TAMs) and

regulatory T cells (Tregs) (Figures 6G–J). These findings

underscore that PHA-793887, acting as an FRS inhibitor, can

profoundly rewire the immunosuppressive TME, bolster anti-

tumor immune responses, and reduce tumor growth.
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FIGURE 5

High FRS score correlates positively with ICB resistance in murine MC38 tumors. (A) The schematic representation of the experimental timeline for
the RNA-seq analysis of ICB resistant murine MC38 tumors. The image was illustrated by the Biorender.com. (B) Expression profiles of pivotal genes
within the FRS in responsive and nonresponsive MC38 tumors, highlighting variations in gene activity, R, responders, NR, non-responders. (C) Violin
plot depicting the distribution of scores for tumors with high and low expression of FRS, specifically within the nonresponsive MC38 tumor group.
(D) A volcano plot illustrating the differential gene expression between tumors exhibiting high versus low FRS score in the nonresponsive category.
(E) MCPcounter analysis revealing the enrichment of distinct cell clusters associated with high and low FRS score in nonresponsive tumors. (F) A
violin plot displaying the expression levels of GZMB in tumors with high and low FRS score among the nonresponsive group. (G) Heatmap
representing the expression patterns of key genes derived from pseudotime analysis of bulk RNA-seq data from nonresponsive tumors. (H) Line
graphs illustrating the trend of key gene expression changes within the FRS across the nonresponsive tumors. P values are from unpaired t-tests (B,
C, F) and two-way ANOVA (E).
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FIGURE 6

PHA-793887 enhances antitumor immunity in MC38 tumor model. (A, B) The prediction of drugs targeting FRS via CTRP (A) and PRISM (B) database.
(C) The schedule process of animal experiments. (D, E) Tumor growth (D) and tumor weight (E) of MC38 tumors bearing mice treated with Veh. or
PHA. (10 mg/kg). Veh., vehicle; PHA., PHA-793887. (F) Representative images of hematoxylin and eosin (HE) staining were obtained to evaluate
organ toxicity in mice treated with either vehicle or PHA-793887. (G) The expression levels of cytotoxic molecules in the CD8+ T cells within MC38
tumors treated with Veh. or PHA. (H) The expression of ki67 in the CD8+ T cells (top) and CD4 effector cells (bottom). (I) tSNE plot showing the
distribution of immune cell clusters. Distinct colors represent the different cell clusters. (J) The box plot showing the percentages of CD8+ T cells,
CD4 effector cells, Treg cells, and TAMs in the MC38 tumors treated with Veh. or PHA, Treg, regulator T cell, TAM, tumor-associated macrophage,
Veh., Vehicle, PHA., PHA-793887. P values are from a two-tailed unpaired Student’s t-test (A, B, E, G, H, J) and two-way ANOVA (D).
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FRS is positively correlated ICB therapy
resistance in cancer patients

To further elucidate the association between FRS and the

therapeutic efficacy of ICB in cancer patients, we conducted an

integrative analysis using TCGA and the Tumor Immune

Dysfunction and Exclusion (TIDE) database. Our analysis

revealed that patients with tumors exhibiting high FRS score had

a significantly lower survival rate compared to those with low FRS

score within their tumors (Figure 7A). Additionally, by examining

patients within the TIDE database who underwent ICB treatment,

we observed a notable increase FRS among patients with stable
Frontiers in Immunology 13
disease (SD) or progressive disease (PD) compared to those with

partial response (PR) (Figure 7B). Utilizing the TIDE scoring

system, we identified a higher prevalence of responders among

patients with low FRS expression (Figure 7C). Furthermore, the

SubMap analysis revealed that the low FRS group exhibited a high

likelihood of response to anti-PD-1 in the immunotherapy cohorts

(IMvigor210) (Figure 7D). In the context of patients undergoing

ICB therapy, we conducted a detailed analysis of the prognostic

impact of key genes within the FRS. Our findings indicate that

tumors with elevated expression levels of HEYL, RPS17, and JDP2

are associated with a poorer prognosis for cancer patients

(Figures 7E-G). These results suggest that the FRS may serve as a
FIGURE 7

FRS is negatively correlated to the response of immune therapy in cancer patients. (A) Survival curve of cancer patients with high or low FRS score. (B)
The FRS score of cancer patients in the indicated groups, CR, complete response, PR, partial response, SD, stable disease, PD, progressive disease. (C)
TIDE analysis showing the immune therapy response of cancer patients. (D) Submap showing the correlation between FRS score and therapy response
of ICB in the cancer patients. (E-G) The survival analysis of cancer patients received ICB therapy in indicated groups, PFS, progression-free survival, OS,
overall survival. P values are from the log-rank test (A, E-G) and one-way ANOVA (B). Pearson’s correlation coefficient is calculated (D).
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prognostic indicator for ICB treatment outcomes, with a lower FRS

score potentially correlating with a more favorable response to

ICB therapy.
Discussion

Our comprehensive analysis leveraging scRNA-seq data from

CRC cohorts has unveiled the intricate relationship between FRS

and tumor biology, particularly within the TME. The identification

of FGFRS+ fibroblast subsets through scRNA-seq analysis provides

a foundation for understanding the heterogeneity of cancer and the

potential for targeted therapeutic intervention. The significant

association between FRS and fibroblasts suggests a pivotal role for

these cells in modulating the TME, which could be a critical factor

in tumor progression and response to therapy. The enrichment of

FRS in fibroblasts, as evidenced by the highest module scores,

indicates that these cells may be key players in the tumor’s

resistance to ICB therapy. This finding is supported by the

observation that FGFRS+ fibroblasts display distinct gene

expression profiles linked to pathways, including epithelial tube

morphogenesis and collagen fibril organization, which are known to

influence tumor growth and invasion.

Previous studies have reported the relevant signature of

immune cells, such as macrophages, predicted patient prognosis

and therapy resistance (16–19). The development of a predictive

model using machine learning algorithms has been instrumental in

identifying a gene signature that strongly predicts patient survival

outcomes (20, 21). The FRS, composed of genes like JDP2, HEYL,

NRG1, RPS17, and MANF, has demonstrated robust predictive

capabilities across various cohorts. This underscores the potential of

using FRS as a prognostic tool in clinical settings to stratify patients

into high and low-risk groups, thereby personalizing treatment

strategies. Furthermore, our analysis elucidates the correlation

between the FRS and tumor immunity. The identification of

distinct patient clusters based on FRS, along with the associated

differences in immune scores and cell infiltration patterns, suggests

a complex interplay between the FRS and immune cell dynamics

within the TME. Notably, the reduced infiltration of CD8+ T cells

and the increased presence of M0-like macrophages in tumors with

higher FRS scores indicate a possible mechanism through which

FRS enrichment may suppress antitumor immunity.

Many drugs harbor significant anti-tumor, whereas the

mechanism remains elusive (22). Previous research has established

PHA-793887 as a potent, ATP-competitive cyclin-dependent kinase

(CDK) inhibitor capable of inhibiting key cell cycle regulators such as

CDK2, CDK1, CDK4, AND CDK9 (23, 24). While its efficacy in

disrupting cell cycle progression is well-documented, the exploration

of additional potential targets and its impact on tumor immunity

remains less explored (25). Our study takes a significant step toward

addressing this gap by employing in silico drug prediction methods

to identify FRS as a potential target for PHA-793887. The application

of PHA-793887 in our murine model of colorectal cancer has yielded

promising results, demonstrating a significant inhibitory effect on

tumor growth without any detectable organ toxicity. In the TME,

various factors could contribute to T cell dysfunction, subsequently
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promoting immunotherapy resistance and tumor progression (26,

27). In this study, we found PHA-793887 treatment induced an

enhanced secretion of cytotoxic T cell-associated cytokines and

facilitated an increase in the infiltration of CD8+ T cells and

effector CD4+ T cells within the TME. These observations suggest

an improvement in T cell functionality, indicative of the compound’s

potential to bolster antitumor immunity. Together, these findings

underscore the PHA-793887 could be a potential inhibitor enhancing

antitumor immunotherapy for the cancer patients with CRC. Future

research should focus on clinical trials to evaluate the efficacy of FRS

inhibitors in combination with ICB therapies and on further

elucidating the mechanisms by which FRS modulates the TME and

immune responses in CRC patients.
Conclusion

Our study presents a multi-faceted perspective on the role of

FRS in colorectal cancer, highlighting its enrichment in fibroblasts,

its correlation with ICB resistance, and its impact on tumor

immunity. The findings have implications for the development of

novel therapeutic strategies targeting the FRS and for the

refinement of prognostic models to better predict patient

outcomes. Importantly, PHA-793887 could be a potential

inhibitor targeting the FRS in the immunotherapy of CRC patients.
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