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Introduction: Early detection of oral squamous cell carcinoma (OSCC) is

critical for improving clinical outcomes. Precision diagnostics integrating

metabolomics and machine learning offer promising non-invasive solutions

for identifying tumor-derived biomarkers.

Methods: We analyzed a multicenter public dataset comprising 61 OSCC

patients and 61 healthy controls. Plasma metabolomics data were processed

to extract 29 numerical and 47 ratio features. The Extra Trees (ET) algorithm was

applied for feature selection, and the TabPFN model was used for classification

and prediction.

Results: Themodel achieved an area under the curve (AUC) of 93% and an overall

accuracy of 76.6% when using top-ranked individual biomarkers. Key metabolic

features significantly differentiated OSCC patients from healthy controls,

providing a detailed metabolic fingerprint of the disease.

Discussion: Our findings demonstrate the utility of integrating omics data with

advanced machine learning techniques to develop accurate, non-invasive

diagnostic tools for OSCC. The study highlights actionable metabolic

signatures that have potential applications in personalized therapeutics and

early intervention strategies.
KEYWORDS

machine learning, oral squamous cell carcinoma, precision metabolomics, feature
selection, personalized therapy
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1 Introduction

Oral squamous cell carcinoma (OSCC) is the most common

malignancy affecting the oral cavity, with a mortality rate exceeding

50% (1). Postoperative OSCC can severely impact patients’ speech,

chewing, and swallowing functions, significantly affecting their

quality of life (2). Many OSCC patients are diagnosed at advanced

stages, missing the window for optimal treatment. Early diagnosis is

crucial, as it significantly improves survival rates and treatment

outcomes and reduces costs. This highlights the need for more

sensitive and specific diagnostic methods for early OSCC detection.

Currently, imaging combined with histopathology remains the

gold standard for OSCC screening (3). Detecting early asymptomatic

cases of OSCC is challenging despite straightforward oral imaging

and sampling. Incisional biopsies cause physical trauma and suffer

from sampling accuracy issues due to tumor heterogeneity. Molecular

diagnostics, which detect subtle phenotypic changes that occur prior

to malignancy or metastasis, have become crucial tools for early

detection. Therefore, developing effective multianalyte detection

methods for biofluids is urgently needed (4).

Tumors, including OSCC, are rich in blood vessels, facilitating

the shedding of tumor cells and molecules into the bloodstream,

making blood-based tests an effective screening tool for early

detection. Thus, plasma is an ideal diagnostic fluid for the

molecular diagnosis and early screening of OSCC (5). It can be

sampled alongside routine blood tests, making it convenient to

collect samples during outpatient visits or regular check-ups. Owing

to its diverse components, including the genome, transcriptome,

proteome, microbiome, and metabolome, plasma is a potential

source of biomarkers. Its diversity makes blood a promising

medium for OSCC metabolite marker screening, which can offer

insights into metabolic pathways (5). Previous studies have reported

various blood metabolites associated with early OSCC screening,

demonstrating its potential as a noninvasive diagnostic tool.

Research has shown that the lipid content in the plasma of

OSCC patients is significantly lower than that in the plasma of

healthy controls (HC), with certain types of lipids being reduced by

at least twofold (4). Disparities in sphingolipid levels between OSCC

patients and healthy individuals have led to diagnostic methods

with high accuracy, sensitivity, and specificity. Lower levels of

certain amino acids and phosphatidylcholines in OSCC patients

are associated with poorer survival rates, suggesting their roles in

tumor progression and potential as predictive biomarkers (6). An

integrated analysis of plasma metabolomics data revealed distinct

profiles indicative of disrupted metabolic pathways, particularly in

advanced disease stages, potentially fostering tumor growth and

suppressing immune responses (7).

While the genome consists of approximately 20,000 protein-

coding genes, the metabolome presents a smaller yet more dynamic

landscape with approximately 220,000 metabolites noted in the

HMDB (4). The metabolome’s precise nature and direct reflection

of the physiological state make metabolites ideal candidates for

prognostic, diagnostic, and therapeutic monitoring applications

(5, 8). However, the diversity among cancer patients requires a

deeper understanding of specific tumor metabolisms, including
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those involved in OSCC, to tailor effective treatments and

screening strategies.

To be clinically applicable, molecular screening must consider

several factors: 1) the inclusion of highly specific and sensitive

measurable markers; 2) convenient sampling with high patient

acceptance; 3) affordable and accessible analytical technology

platforms; and 4) rapid feedback for clinical diagnostic decision-

making. Balancing these factors is essential for developing effective

analytical methods (9, 10).

Mass spectrometry (MS) is a widely utilized technology in

metabolomics that is capable of qualitative and quantitative

analysis of small molecules and is widely used in biomedical fields

(4, 11). The advantages of the MS platform include high specificity

and sensitivity for biomarker screening, mature detection

techniques, clear detection processes, and controlled costs.

Additionally, MS can provide rapid feedback, enabling quick

molecular screening. The combination of MS and machine

learning (ML) successfully translates metabolomics analysis into

clinical diagnostic decisions (12, 13). The application of MS/ML

methods can achieve routine blood diagnostics, enabling rapid,

accurate, cost-effective, and sustainable early screening and

intelligent diagnosis of OSCC, thereby offering new strategies for

early detection, diagnosis, and treatment (14).

In this study, we used a publicly available dataset with plasma

samples from OSCC patients and healthy controls. This dataset,

which was chosen for its comprehensive coverage and validated

data, forms a robust foundation for developing our diagnostic

model. By integrating metabolomic profiles with advanced ML

algorithms, we aimed to identify key metabolic biomarkers

associated with OSCC. This approach bridges the gap between

molecular data and clinical applicability, ensuring scientifically

rigorous and clinically relevant findings, ultimately contributing

to the development of reliable, noninvasive diagnostic tools for early

OSCC detection.
2 Methods

2.1 Chou’s 5-step rule

The methods section of this study is organized essentially by

following Chou’s 5-step rule (15), outlined as follows: 1) Build a

benchmark dataset: We utilized a publicly available metabolomics

dataset that includes plasma samples from 61 OSCC patients and 61

HC. The dataset comprises 131 numerical features and 104 ratio

features, ensuring a comprehensive foundation for training and

testing the predictor. 2) Dataset Representation: To effectively

represent the dataset, we employed the extra trees (ET) classifier

for feature selection. These selected features were then standardized

to ensure uniformity across the dataset. This step includes data

preprocessing such as cleaning, handling missing values, and

normalizing data to prepare it for feature selection. 3)

Introducing a powerful algorithm: We evaluate multiple machine

learning models, including support vector machines (SVMs),

random forests (RFs), neural networks (NNs), XGBoost, TabNet,
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logistic regression (LR), and TabPFN. Each model’s parameters

were initially tuned via Bayesian optimization to maximize

accuracy, except for the TabPFN model, which does not require

hyperparameter tuning and is straightforward to use. 4) Statistical

analysis: To evaluate the prediction accuracy, we performed

statistical analysis via cross-validation methods. For the ET

model, out-of-bag (OOB) estimates were used to observe the

accuracy of the top-ranked features. This step also incorporates

model evaluation, where metrics like accuracy, precision, recall, F1

score and the area under the ROC curve (AUC) are used to assess

the performance of the predictive models. 5) The development of a

user-friendly webserver for the predictor is left for future work. This

future development aims to provide a practical tool for clinicians

and researchers, enhancing the clinical applicability and impact of

our findings.
2.2 Public dataset collection

2.2.1 Data acquisition and preparation
We utilized a publicly available metabolomics dataset, initially

detailed in the study “Plasma metabolomics of oral squamous cell

carcinomas on the basis of NMR and MS approaches provides

biomarker identification and survival prediction” published in

Scientific Reports (4). Although the original dataset includes both

NMR and MS analyses, for this study, we focused solely on the MS

data for our analysis, as it aligns better with the objectives of our

research. This dataset includes plasma samples from 61 OSCC

patients and 61 healthy controls, which were meticulously collected

by four institutions: the Faculty of Medicine at the University of São

Paulo, Heliopolis Hospital, Arnaldo Vieira de Carvalho Cancer

Institute, and Barretos Cancer Hospital. These samples were

sourced from diverse demographics within São Paulo State, Brazil,

with the OSCC patients having not received any prior radiotherapy or

chemotherapy to ensure unaltered metabolic profiles. The dataset

specifics are cataloged in Supplementary Table S1.
2.3 Mass spectrometry analysis

The metabolic profiling of the dataset was conducted via the

AbsoluteIDQ® p180 Kit by BIOCRATES Life Sciences AG,

Innsbruck, Austria. This comprehensive platform facilitates the

quantification of up to 188 distinct metabolites spanning various

classes, such as 21 amino acids, 21 biogenic amines, one hexose (total

hexose), 40 acylcarnitines, 90 glycerophospholipids (including 76

phosphatidylcholines and 14 lysophosphatidylcholines), and 15

sphingolipids along with their derivatives. For detailed

categorization, metabolites are systematically labeled on the basis of

chain length and type of linkage—e.g., Cx:y, where ‘x’ denotes the

number of carbon atoms and ‘y’ denotes double bonds in the lipid

side chains (4).

To ensure high precision in metabolite quantification, sample

derivatization was performed using phenyl isothiocyanate (PITC)

with internal standards. Subsequent analyses employed flow
Frontiers in Immunology 03
injection analysis-tandem mass spectrometry (FIA-MS/MS) for

acylcarnitines, lipids, and hexoses and liquid chromatography-

mass spectrometry (LC-MS/MS) for amino acids and biogenic

amines. These procedures were executed via advanced mass

spectrometry equipment, namely, the SCIEX 4000 QTrap® and

Waters XEVO TQMS® systems with electrospray ionization. The

specific methodologies are detailed in the patent US 2007/0004044.

To increase data reliability, only metabolites above the detection

threshold and with identifiable peaks were considered (16), as

detailed in the analysis of samples in Supplementary Table S2.
2.4 Machine learning analysis

The machine learning analysis for this study followed a

structured approach encompassing data preprocessing, model

construction, model optimization, feature selection and model

evaluation. This comprehensive approach ensures the reliability

and accuracy of the models used to diagnose OSCC. The overall

process is illustrated in Figure 1.
2.4.1 Dataset preprocessing
Data preprocessing was a crucial step in preparing the dataset

for effective modeling. The preprocessing involved several steps.

Initially, irrelevant variables and extreme outliers, defined as values

beyond the mean ± 2 standard deviations, were removed (17).

Missing values were handled by imputing with median values or

removing features with substantial missing data (18). The features

were then standardized so that each had a mean of zero and a

standard deviation of one, ensuring consistency throughout the

dataset. After preprocessing, the dataset consisted of 253

characteristic values, including 131 numerical features and 104

ratio features. The labels were divided into two categories: OSCC

(61 samples) and HC (61 samples).
2.4.2 Model construction and optimization
To distinguish OSCC patients from HC via plasma metabolite

profiles, multiple machine learning algorithms have been evaluated.

The dataset was split into training (70%), validation (10%), and

testing (20%) sets. The models assessed included support vector

machines (SVMs), extra trees (ET), XGBoost, TabNet, logistic

regression (LR), TabPFN, multilayer perceptron (MLP) and

voting method. Bayesian optimization leverages Bayes’ theorem to

guide the search for optimal solutions by using prior knowledge

from previous iterations. It avoids poor-performing areas and

focuses on regions with better results, improving the efficiency of

finding the optimal solution. Thus Bayesian optimization was

employed to fine-tune the hyperparameters of most models,

focusing on optimizing validation accuracy (ACC) (19). Unlike

other models, the TabPFN does not require hyperparameter tuning,

offering a straightforward implementation (20). This optimization

method systematically explores the hyperparameter space, using a

probabilistic approach to identify the best configuration for

each model.
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2.4.3 Feature selection
Feature selection was performed via the ET algorithm (21),

which was chosen for its effectiveness in handling high-dimensional

data and robustness in identifying the most informative features.

The ET algorithm constructs multiple decision trees with random

splits at each node, increasing the variance among trees and

reducing overfitting. This method offers several advantages: 1)

Handling high-dimensional data: ET is particularly effective in

datasets with a large number of features, reducing dimensionality

while retaining significant predictive power. 2) Robustness: By

averaging over many trees, ET reduces the variance of the model,

making it less sensitive to noise in the training data. 3) Feature

importance evaluation: The ET algorithm evaluates the importance

of each feature on the basis of the mean decrease in impurity, which

measures the effectiveness of a feature in reducing uncertainty in

predictions (22). The importance scores derived from the ET

algorithm were used to identify the most significant features.

The ET model parameters were fine-tuned via Bayesian

optimization, and the accuracy of the top-ranked features was

observed via out-of-bag (OOB) estimates (23). This combined

approach ensures that the most relevant features are selected and

that the model parameters are optimized for the best performance.

2.4.4 Model evaluation
Following feature selection, the identified significant features

were used to train and evaluate the previously selected best models,
Frontiers in Immunology 04
ensuring that the models were built using the most informative and

relevant data. Model performance was assessed via metrics such as

accuracy, precision, recall, F1 score and ROC/AUC (24). The

specific formula is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2� Precision� Recall
Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

AUC  =  
Z 1

0
 TPR FPR−1(x)

� �
dx

where TP is the number of true positive cases, TN represents the

number of true negative cases, FP represents the number of false

positive cases, and FN represents the number of false negative cases.

where FPR−1(x) denotes the inverse function of FPRwith respect to x.

This integral essentially computes the area under the ROC curve,

which plots the TPR against the FPR as the discrimination threshold

varies. The ROC curve illustrates the diagnostic ability of the classifier
FIGURE 1

Workflow for dataset construction and model training. This figure outlines the workflow for constructing the dataset and training the machine
learning models. The process starts with dataset preparation, handling missing values, and performing 5-fold cross-validation with random splits of
the dataset. This cross-validation process is repeated 20 times, totaling 100 model training and validation iterations. For each iteration, models are
trained with the top n important features, and the change in accuracy (ACC) is monitored to identify the inflection point, representing the most
critical features for classification. The importance of each feature is determined by summing the feature importance scores calculated over 100
iterations using the Extra Trees (ET) model. The training set (70%) and validation set (10%) are used for parameter tuning and feature ranking, while
the test set (20%) is reserved for final performance evaluation. The process iteratively narrows down the feature set until the top-ranked features are
determined based on performance stabilization at the inflection point.
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system by plotting the true positive rate against the false positive rate

at various thresholds. The AUC measures the overall performance,

with values closer to 1 indicating better model discrimination

capability. These metrics provide a comprehensive evaluation of

model performance, ensuring that the selected model not only

achieves high accuracy but also maintains a balance between

precision and recall, which is crucial for effective OSCC diagnosis.

In this study, we used Python 3.8 and several Python packages,

including sklearn, xgboost, pytorch, pytorch_tabnet, matplotlib,

and TabPFN, to implement and evaluate our machine learning

models. The entire process was run on a system with an AMD

Ryzen 7 5800H CPU and an NVIDIA GeForce RTX 3070 Laptop

GPU. These tools and hardware allowed for efficient training and

optimization of the models. The details and algorithms of the

machine learning models can be found in their respective

documentation and publications.

In all the statistical P value calculations, the significance levels

are indicated as follows: *P ≤ 0.05 (significant), **P ≤ 0.01 (highly

significant), and ***P ≤ 0.001 (extremely significant).
3 Results

The machine learning analysis for this study followed a

structured approach encompassing data preprocessing, model

construction, feature selection, model optimization, parameter
Frontiers in Immunology 05
tuning and evaluation. This comprehensive approach ensures the

reliability and accuracy of the models used to diagnose OSCC.
3.1 Modeling performance
and comparisons

Figure 2 illustrates the Bayesian optimization procedure used to

fine-tune the parameters of various machine learning models and

the before and afterwards accuracy of all models. The Bayesian

optimization procedure (Figure 2A) fine-tunes parameters such as

the number of estimators, and maximum depth (25) as detailed in

Supplementary Table S3. This process highlights the importance of

parameter optimization in improving model performance, as

evidenced by the notable differences in accuracy scores.

The comparative accuracy of different models after Bayesian

optimization is shown in Figures 2B, C, with the TabPFN model

outperforming others without optimization in terms of accuracy,

precision, recall, and the F1 score. The detailed performance metrics

and the differences before and after optimization are presented in

Supplementary Tables S4 and S5. Both before and after

hyperparameter tuning, the TabPFN and ET models consistently

performed well, indicating their effectiveness (20). Although

TabNet is highly dependent on hyperparameters, Bayesian

optimization has significantly improved its performance (26). The

results indicate that the TabPFN model achieved an accuracy of
FIGURE 2

Bayesian optimization procedure for model parameters. (A) The Bayesian optimization procedure for tuning parameters such as the number of
estimators, and maximum depth. The x-axis represents parameter values, and the y-axis represents accuracy changes. Blue dots indicate parameter
values attempted by Bayesian optimization, and the red dot indicates the optimal parameter value. This process highlighted the importance of
parameter optimization in improving model performance. (B, C) Box plots of model accuracy before and after Bayesian optimization. The box’s
central red line represents the median, the outer red lines represent the maximum and minimum values, and the box edges represent the first and
third quartiles. Outliers are shown as individual points around the box. (B) shows the accuracy before parameter tuning, while (C) shows the
accuracy after parameter tuning. The comparison demonstrates that TabPFN outperformed others in terms of accuracy.
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80% with a comparatively short running time in distinguishing

OSCC and premalignant lesions from healthy conditions on a

person-by-person basis. The selected plasma metabolites are

significantly dysregulated in OSCC patients, highlighting their

potential as biomarkers for early diagnosis (27). Unlike traditional

supervised learning methods, the TabPFN is a single transformer

model pretrained on a large amount of generated data, making it

particularly suitable for small-sample table classification (20). This

model can approximate the calculation of a posterior prediction

distribution (PPD) on the basis of the likelihood of given data and

prior probability, providing a generic model applicable to various

small tabular classification tasks without retraining or model

selection (20). The breakthrough of this method lies in its ability

to quickly and accurately solve small table classification

problems (20).

The results demonstrate that the integration of metabolomics

analysis with advanced machine learning techniques, particularly

the TabPFN model, provides a powerful tool for the early detection

and clinical management of OSCC. This combined approach offers

high accuracy and reliability, underscoring the potential for

practical implementation in clinical settings (20).
3.2 Important features

Feature selection via the ET algorithm identified 29 numerical

features and 47 ratio features as crucial for the model’s predictive

power. The importance of these features is depicted in Figure 3,

which shows the value of feature importance for each selected

feature. These features were identified using the ET algorithm’s

feature importance calculation, where the importance of a feature

increases each time it is used to effectively split the data and improve

purity. Subsequently, significance analysis was performed on the

selected important features to further validate their impact on the

model’s classification accuracy.

The trend of accuracy changes when models are built using

different numbers of top-ranked important features is illustrated in

Figure 3A. The figure shows the optimization process, highlighting

an inflection point where 76 features yielded the highest accuracy

(ACC = 0.8057). This inflection point, calculated using the kneed

algorithm (28), indicates the optimal number of features needed to

achieve the best model performance without overfitting.

The specific important features identified are detailed in

Tables 1 and 2, which shows a mix of individual metabolites and

metabolite ratios (Figure 3B), and the top 13 features are all ratios

(standard deviation, mean, and significance information for all the

features are detailed in Supplementary Tables S6, S7). These

features play critical roles in differentiating OSCC patients from

HC, underscoring their potential as biomarkers for early diagnosis

(29). The important features include various sphingomyelins (SMs),

phosphatidylcholines (PCs), and amino acid ratios, each

contributing uniquely to the model’s predictive ability (4).

A heatmap of the Pearson correlation coefficients for the top-

ranked features is shown in Figure 3C. This heatmap illustrates the
Frontiers in Immunology 06
correlation between each pair of selected features, highlighting the

relationships and dependencies among them. High correlation

coefficients indicate strong relationships, which can provide insights

into the underlying metabolic pathways affected in OSCC (14, 30). In

the analysis of all metabolite correlations, the top 10 feature pairs

exhibit strong positive correlations (0.89 to 0.9995), for example C2/

C0 and (C2+C3)/C0 (0.9995), indicating substantial redundancy

between these features (Supplementary Table S8). In practice, when

two features are highly correlated, detecting both may not add

significant value to the diagnostic model, as they convey similar

information about the underlying metabolic changes.

The significance of these selected features is further validated by

their impact on model performance metrics. As shown in Figure 4,

the evaluation of the TabPFN model with all features versus only

the important features demonstrated significant improvements in

accuracy (0.851 ± 0.066), precision (0.858 ± 0.065), recall (0.851 ±

0.066), and F1 score (0.85 ± 0.067) when the important features

were SMs such as used (Figure 4A). This evaluation underscores the

efficacy of the feature selection process in enhancing

model performance.

The ROC curve and AUC value for the TabPFN model,

depicted in Figure 4B, further confirmed the model’s high

diagnostic capability. The ROC curve shows a high true positive

rate against the false positive rate, with an AUC of 0.93, indicating

excellent model performance. The performance of the machine

learning model was further evaluated via a confusion matrix

(Figure 4C). The model correctly identified 83.6% of the HC and

86.6% of the OSCC patients. This finding indicates a high level of

accuracy in distinguishing between healthy individuals and those

with OSCC, with only a small percentage of misclassifications in

each group. This robust classification performance underscores the

model’s potential for reliable early screening and diagnosis of OSCC

on the basis of plasma metabolite profiles.

To assess the predictive power of individual features and the

feasibility of using single features for practical screening in clinical

settings, all important features were used independently to predict

OSCC status. The accuracy of these predictions is presented in

Figure 5. Each feature’s ability to distinguish between OSCC

patients and HC was evaluated, with the highest accuracy

observed for the top-ranked feature. These findings demonstrate

that even single features can provide substantial predictive power

for early OSCC screening (5, 31). These results indicate that the top-

ranked feature alone can achieve an accuracy of 76.6%, highlighting

its potential for use in rapid early screening of OSCC.

These results highlight the potential of using machine learning

models combined with plasma metabolite profiling for accurate and

automated diagnosis of OSCC. The integration of these techniques

offers a robust and reliable approach for early detection and

improved patient outcomes (32). Feature selection via Bayesian-

optimized ET classifier and model construction with TabPFN

yielded the highest accuracy, demonstrating the suitability of

these methods (20, 33). Notably, the top-ranked features,

primarily ratios, were found to be particularly useful for rapid

early screening.
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4 Discussion

Predicting clinical outcomes can significantly optimize

diagnostic and treatment strategies for OSCC. In this study, we

developed a prediction model using a combination of metabolomic

profiles and machine learning techniques. The data were processed

and analyzed to identify significant attributes, which were then

utilized in a TabPFN model to make predictions (20).

The important step in creating our prediction model involved

validating and collecting key metabolic biomarkers associated with
Frontiers in Immunology 07
OSCC. Through the application of the ET algorithm for feature

selection, we identified 29 numerical features and 47 ratio features

as crucial for the model’s predictive power (Figures 3A, B). These

biomarkers provide a detailed metabolic fingerprint of OSCC,

highlighting the significant metabolic alterations that occur in this

disease (4).

The results show that these selected features correlate strongly

with OSCC diagnosis, as validated by high accuracy, precision,

recall, and F1 scores across different ML models. The TabPFN

model, which leverages pretrained data for small-sample table
FIGURE 3

Feature selection and importance analysis. (A) The trend of accuracy changes when applying different features for modeling is illustrated,
highlighting an inflection point where 76 features yielded the highest accuracy (ACC = 0.8057) with the OOB method. The x-axis represents the
number of top important features used for modeling, and the y-axis represents the corresponding OOB accuracy. The red line is a Gaussian fit curve
indicating the trend. (B) The importance of features is depicted, showing the value of feature importance for each selected feature. The identified
important features include a mix of individual metabolites and metabolite ratios, which together capture key metabolic changes linked to OSCC. This
combination improves the model’s ability to distinguish between healthy and cancerous states The feature importance is calculated based on the
sum of importance scores from 100 random splits and model trainings. (C) The heatmap presents Pearson correlation coefficients for the top 30
features ranked by importance in the model, as listed in Supplementary Table S8. The color intensity indicates the strength of the correlation: red
represents a strong positive correlation, blue indicates a strong negative correlation, and white shows little to no correlation. This visualization helps
identify relationships and dependencies among the selected features, providing insights into potential interactions that could influence the
model’s performance.
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TABLE 1 List of important features (ratio).

Number Important Features (ratio) HC OSCC p-value Significant

1 SM C24:1/(Met/PC aa C40:3) 0.746 ± 0.348 1.352 ± 0.596 0.000 ***

2 C3/C4 2.034 ± 0.649 1.412 ± 0.659 0.000 ***

3 (Ala/Gln)/Orn 0.008 ± 0.004 0.006 ± 0.003 0.000 ***

4 Phe/PC aa C42:4 405.921 ± 131.665 300.782 ± 71.689 0.000 ***

5 (Ala/Gln)/(Tyr/Phe) 0.688 ± 0.256 0.48 ± 0.192 0.000 ***

6 Val/C5 1610.717 ± 561.589 1121.013 ± 832.575 0.000 ***

7 (Tyr/Phe)/(Met/PC aa C40:3) 0.018 ± 0.007 0.031 ± 0.017 0.000 ***

8 Ala/Gln 0.706 ± 0.241 0.517 ± 0.135 0.000 ***

9 Met/PC aa C40:3 67.062 ± 35.062 43.083 ± 15.703 0.000 ***

10 Ala/PC aa C40:2 1892.746 ± 910.595 1269.65 ± 382.683 0.000 ***

11 SM (OH) C24:1/SM C16:0 0.013 ± 0.002 0.011 ± 0.003 0.000 ***

12 Gln/Thr 5.248 ± 1.299 6.569 ± 1.791 0.000 ***

13 Total PC ae/Total SM 0.534 ± 0.089 0.476 ± 0.081 0.000 ***

14 Thr/Ser 1.276 ± 0.379 1.035 ± 0.321 0.000 ***

15 Phe/PC aa C40:3 170.475 ± 75.462 125.024 ± 34.121 0.000 ***

16 Met/PC aa C40:2 119.134 ± 55.558 78.964 ± 26.552 0.000 ***

17 C4/C0 0.006 ± 0.002 0.008 ± 0.005 0.001 ***

18 (Tyr/Phe)/Ala 0.003 ± 0.001 0.004 ± 0.002 0.000 ***

19 (Ala/Gln)/Tyr 0.01 ± 0.004 0.008 ± 0.004 0.000 ***

20 Asn/Gln 0.074 ± 0.025 0.063 ± 0.019 0.000 ***

21 Total SM/Total Lipids 0.135 ± 0.02 0.148 ± 0.019 0.000 ***

22 Total SMOH/Total SM nonOH 0.16 ± 0.022 0.142 ± 0.027 0.000 ***

23 C4/C5 1.339 ± 0.524 1.173 ± 1.101 0.005 **

24 (Tyr/Phe)/Met 0.042 ± 0.013 0.063 ± 0.04 0.001 **

25 Total acylcarnitines/C0 0.169 ± 0.046 0.225 ± 0.098 0.001 ***

26 Glutaminolysis: (Ala+Asp+Glu)/Gln 0.86 ± 0.307 0.716 ± 0.383 0.000 ***

27 PC_ae_C32:1/PC_ae_C34:1 0.297 ± 0.041 0.284 ± 0.049 0.125

28 Pro/Orn 2.68 ± 0.907 2.235 ± 0.753 0.017 *

29 PUFA(PC)/MUFA(PC) 5.621 ± 0.883 5.298 ± 1.193 0.211

30 Ala/lysoPC a C18:1 37.608 ± 22.76 26.298 ± 10.968 0.000 ***

31 PC_aa_C40:3/PC_aa_C42:5 1.451 ± 0.301 1.606 ± 0.288 0.005 **

32 Leu/Gln 0.259 ± 0.087 0.211 ± 0.063 0.004 **

33 PC ae C44:5/PC ae C42:5 0.798 ± 0.169 0.821 ± 0.132 0.074

34 CPT1: (C16+C18)/C0 0.003 ± 0.001 0.003 ± 0.001 0.041 *

35 Met/lysoPC a C18:1 2.41 ± 1.777 1.642 ± 0.816 0.000 ***

36 (Asn/Asp)/Glu 0.279 ± 0.379 0.176 ± 0.253 0.103

37 CPT2: (C16+C18.1)/C2 0.031 ± 0.008 0.031 ± 0.012 0.579

38 Met-SO/Met 0.025 ± 0.017 0.043 ± 0.048 0.000 ***

39 Asn/Orn 0.537 ± 0.164 0.462 ± 0.159 0.017 *

(Continued)
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TABLE 1 Continued

Number Important Features (ratio) HC OSCC p-value Significant

40 (Glnlysis)/(Asp/Gln) 180.706 ± 189.567 126.211 ± 154.392 0.090

41 lysoPC_a_C20:4/lysoPC_a_C20:3 2.856 ± 0.876 2.837 ± 1.38 0.214

42 SDMA/Arg 0.006 ± 0.004 0.008 ± 0.006 0.081

43 Total lyso(PC)/Total(PC) 0.107 ± 0.027 0.104 ± 0.031 0.558

44 (Ala/Gln)/Ile 0.008 ± 0.003 0.007 ± 0.004 0.004 **

45 MUFA/SFA 10.77 ± 1.646 11.309 ± 2.812 0.669

46 C2/C0 0.139 ± 0.044 0.182 ± 0.093 0.016 *

47 (C2+C3)/C0 0.149 ± 0.044 0.191 ± 0.092 0.022 *
F
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This table lists the important ratio features identified through feature selection, including their mean values in healthy controls (HC) and OSCC patients, and the significance of the difference
between the two groups. p-values are represented as follows: p < 0.05 *, p < 0.01 **, and p < 0.001 ***.
TABLE 2 List of important features (value).

Number Important Features (value) HC OSCC p-value Significant

1 SM C24:1 41.628 ± 7.955 51.259 ± 12.199 0.000 ***

2 C5 0.201 ± 0.18 0.499 ± 0.647 0.000 ***

3 PC aa C36:6 0.624 ± 0.225 0.471 ± 0.205 0.000 ***

4 SM C26:1 0.285 ± 0.079 0.361 ± 0.114 0.000 ***

5 PC aa C42:4 0.181 ± 0.045 0.215 ± 0.053 0.000 ***

6 SM C16:0 103.144 ± 18.64 121.256 ± 27.081 0.000 ***

7 PC aa C36:0 1.584 ± 0.474 1.336 ± 0.521 0.031 *

8 C4 0.228 ± 0.09 0.314 ± 0.211 0.008 **

9 C14:1 0.091 ± 0.021 0.116 ± 0.055 0.002 **

10 PC aa C36:5 16.314 ± 6.622 13.535 ± 6.794 0.006 **

11 C3 0.429 ± 0.137 0.358 ± 0.147 0.003 **

12 PC ae C44:3 0.093 ± 0.021 0.108 ± 0.03 0.010 **

13 PC ae C38:0 1.428 ± 0.394 1.234 ± 0.392 0.012 *

14 C14:2 0.025 ± 0.011 0.037 ± 0.025 0.000 ***

15 PC aa C34:4 1.644 ± 0.738 1.31 ± 0.554 0.007 **

16 PC aa C40:2 0.244 ± 0.057 0.283 ± 0.065 0.003 **

17 Ala 431.684 ± 125.636 347.628 ± 94.083 0.000 ***

18 SDMA 0.484 ± 0.353 0.549 ± 0.333 0.066

19 PC aa C32:2 3.13 ± 1.303 2.663 ± 1.183 0.034 *

20 Ser 101.627 ± 23.284 113.342 ± 40.304 0.191

21 Gln 632.779 ± 142.604 687.898 ± 165.148 0.031 *

22 C0 41.368 ± 9.438 39.007 ± 10.676 0.123

23 PC ae C38:6 5.379 ± 1.328 4.966 ± 1.4 0.121

24 PC aa C42:1 0.245 ± 0.088 0.285 ± 0.083 0.004 **

25 PC aa C40:3 0.44 ± 0.11 0.518 ± 0.122 0.001 ***

26 Lys 246.288 ± 63.078 212.745 ± 56.475 0.003 **

(Continued)
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classification, demonstrated superior performance in distinguishing

OSCC patients from HC (Figure 4). This approach underscores the

model’s ability to handle complex, high-dimensional and small

sample data efficiently (20).

Among the identified metabolites (Table 2), SMs such as SM

C24:1 and SM C16:0 play crucial roles in cell membrane integrity

and signaling pathways that regulate cell proliferation and apoptosis

(34). Altered levels of these sphingomyelins have been linked to

cancer cell survival and resistance to apoptosis, which are

characteristic of OSCC progression (31, 35). PCs, like PC aa

C36:6 and PC aa C42:4, are also central to membrane structure

and cellular signaling, with abnormal PC metabolism being a

common feature in many cancers (36). Both SMs and PCs are

primarily formed via the Kennedy pathway, which is significant for
Frontiers in Immunology 10
OSCC progression and can be targeted for therapeutic interventions

(37). Elevated choline kinase activity, crucial for PC synthesis, has

been linked to poor prognosis and could play a similar role in OSCC

(38). The consistent detection of SM and PC features among the

top-ranked markers underscores their relevance as both potential

biomarkers and therapeutic targets in OSCC.

Within the candidate biomarkers identified in this study, short-

chain acylcarnitine (ACar) like C3/C4, C4, and C5, along with

medium-chain ACars such as C8 and C10, demonstrate significant

potential for OSCC diagnosis (39). These ACars are crucial

intermediates in fatty acid oxidation (FAO), a metabolic pathway

reprogrammed in OSCC cells to meet the high energy demands and

adapt to the harsh tumor microenvironment characterized by

hypoxia and acidosis (40). The observed upregulation of short-
TABLE 2 Continued

Number Important Features (value) HC OSCC p-value Significant

27 PC ae C44:4 0.273 ± 0.077 0.328 ± 0.104 0.002 **

28 Met 27.623 ± 10.139 21.974 ± 8.371 0.002 **

29 PC aa C38:6 51.035 ± 12.787 46.733 ± 14.33 0.110
This table lists the important metabolic value features identified through feature selection,including their mean values in healthy controls (HC) and OSCC patients, and the significance of the
difference between the two groups. p-values are represented as follows: p < 0.05 *, p < 0.01 **, and p < 0.001 ***.
FIGURE 4

Evaluation of model performance with all features and important features. (A) The evaluation of the TabPFN model with all features versus only the
important features demonstrates significant improvements in accuracy (0.851 ± 0.066), precision (0.858 ± 0.065), recall (0.851 ± 0.066), and F1
score (0.851 ± 0.067) when the important features are used. The figure presents violin plots with embedded box plots. The box plots’ central red line
represents the median, with the edges of the box denoting the first and third quartiles, and whiskers extending to the minimum and maximum
values. Outliers are shown as individual points. (B) The ROC curve and AUC value for the TabPFN model further confirm the model’s high diagnostic
capability, with an AUC of 0.93 indicating excellent performance. The violin plot, a variant of the box plot, shows the density of accuracy values,
highlighting the distribution of accuracy scores. (C) Confusion matrix analysis of model predictions: The confusion matrix compares real labels (HC
for HC and OSCC for oral squamous cell carcinoma patients) against predicted labels. The numbers represent the count and percentage of correctly
and incorrectly classified samples in each category. The model accurately classified 83.6% of HC and 86.6% of OSCC patients.
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chain ACars suggests an increased reliance on FAO for energy

production, while the downregulation of medium-chain ACars may

indicate selective consumption by OSCC cells. Such metabolic

alterations not only reflect the underlying pathophysiology of

OSCC but also highlight the value of ACars as biomarkers (41).

Their ease of detection in plasma makes them particularly suitable

for non-invasive early screening, offering a promising avenue for

early diagnosis and personalized intervention in OSCC.

The key biomarker ratios, (Ala/Gln)/Orn, Phe/PC aa C42:4, and

(Ala/Gln)/(Tyr/Phe), reflect significant metabolic reprogramming in

OSCC. The (Ala/Gln)/Orn ratio highlights disruptions in nitrogen

metabolism, as glutamine and alanine are crucial for tumor growth,

while ornithine links to altered urea cycle activity (42). The Phe/PC aa

C42:4 ratio connects amino acid metabolism with lipid synthesis,

underscoring the interplay between phenylalanine uptake and

phosphatidylcholine pathways, both critical in cancer progression

(43). Meanwhile, (Ala/Gln)/(Tyr/Phe) captures the balance of

nitrogen and aromatic amino acid metabolism, further emphasizing

OSCC’s reliance on reprogrammed amino acid pathways (43). These

ratios offer potential as diagnostic markers and therapeutic targets in

OSCC. These ratios are indicative of the extensive metabolic

reprogramming that occurs in cancer cells to support their rapid

growth and proliferation (15).

Furthermore, our analysis of the top-ranked individual features

demonstrated substantial predictive power even when used

independently, and the highest accuracy achieved with a single

feature (SM C24:1/(Met/PC aa C40:3)) was 76.6% (Figure 5). These

findings indicate the potential for the use of top-ranked features in

rapid screening protocols for OSCC. The ability of individual

biomarkers to predict disease status underscores their importance

and utility in clinical settings (44).
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The correlation analysis reinforces the feasibility of simplifying

OSCC diagnostic protocols by focusing on individual metabolites

(Figure 3C). The strong correlations observed among the top 10

feature pairs (Supplementary Table S8), ranging from 0.89 to

0.9995, suggest redundancy, where detecting a single feature in

each pair could be sufficient for accurate diagnosis. For instance, the

near-perfect correlation between C2/C0 and (C2+C3)/C0 (0.9995)

implies that either could be selected based on practical

considerations, such as ease of detection. Similarly, highly

correlated pairs like Total acylcarnitines/C0 with (C2+C3)/C0

(0.9834), and C4/C0 with C4 (0.9061), indicate that prioritizing

the more detectable metabolite is a viable strategy.

Despite the promising performance of our machine learning

model, which achieved an accuracy of 85% (Figure 4), several

factors may have contributed to it not reaching 100%. One

significant factor is the inherent biological variability among

patients (44, 45). Variations in age, sex, ethnicity, diet, and

lifestyle can influence metabolic profiles, potentially introducing

noise into the data and affecting the model’s ability to generalize

across diverse populations (44). Additionally, metabolic alterations

due to factors other than cancer, such as chronic diseases or

medication, can confound the data and reduce predictive

accuracy (44, 45). The list of biomarkers used in our model,

although comprehensive, may still be incomplete. The molecular

mechanisms underlying OSCC are complex and not fully

understood. There may be other relevant metabolites or metabolic

pathways that were not included in our analysis, potentially limiting

the model’s ability to capture all aspects of the disease (45).

Recognizing and accounting for these confounding factors can

increase the accuracy and reliability of metabolomic studies and

associated diagnostic models for OSCC.
FIGURE 5

Accuracy performance for individual features ranked by importance. This figure shows the accuracy results for individual feature predictions, with
the accuracy trend generally following the feature importance ranking. The shaded area represents the standard deviation of accuracy for each
feature. The top three features with the highest accuracy are labeled on the graph (ACC= 0.766, 0.698, 0.699, respectively). The red dashed line
represents the fit line with an R² value of 0.6273, indicating the overall trend.
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5 Limitations

Although our machine learning model demonstrated significant

predictive power via plasma metabolite profiles, several limitations

need to be addressed. First, the list of biomarkers identified and

used in this study may be incomplete because the molecular

mechanisms underlying OSCC are complex and not fully

understood. The biomarkers included in our model may not

encompass all relevant metabolic changes associated with OSCC,

potentially affecting the accuracy and generalizability of the model

(27). Additionally, the variability in drug dosage, treatment

regimens, and patient responses in clinical settings could

influence metabolic profiles and their diagnostic utility, which our

model does not account for (29).

Furthermore, our analysis was based on publicly available

datasets, which may not fully represent the diverse populations

affected by OSCC (29). Access to more extensive and diverse

datasets, including patient-level data, would likely enhance the

model’s predictive capability and robustness (29). The reliance on

a single dataset and the exclusion of patients who had undergone

radiotherapy or chemotherapy to ensure unaltered metabolic

profiles may limit the applicability of our findings to the broader

OSCC patient population (27). Future studies should aim to

validate these findings across multiple datasets and consider the

inclusion of treated patients to better understand the impact of

various treatments on metabolic profiles.
6 Conclusion

This study highlights the effectiveness of integrating advanced

machine learning techniques with plasma metabolomics for the

early diagnosis of OSCC. By leveraging biomarkers identified

through metabolomic profiling and applying sophisticated

algorithms such as TabPFN, we achieved high diagnostic

accuracy, underscoring the potential of this approach for

precision medicine. Additionally, we explored the potential of

using individual features for early screening, with the advantage

of avoiding accuracy inflation through multiple k-fold cross-

validations. The results demonstrate that combining multiple

disease features, including specific metabolite levels and ratios,

significantly enhances the predictive power of the models (27).

Future research should incorporate multi-omics data, such as

proteomics and transcriptomics, to enrich biomarker discovery and

explore the immune landscape associated with OSCC (29).

Integrating these multi-omics approaches with immunotherapy-

related biomarkers could offer novel insights into personalized

therapeutic strategies. Additionally, expanding patient-level data

across diverse cohorts and developing a publicly accessible web

platform for interactive biomarker analysis could enhance clinical

utility. Such a platform could enable personalized diagnostics and

immune-based treatment planning, ultimately improving patient

outcomes in OSCC.
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SUPPLEMENTARY TABLE 1

Clinicopathological data of OSCC patients and HC. Most patients are male,

over 40 years, current smokers and alcoholics, with large tumors from the
tongue (C02) and floor of mouth (C04) subsites, often with nodal metastases.

SUPPLEMENTARY TABLE 2

MS analysis of all samples. Concentration (uM) of 131 metabolites and 104

metabolite ratios/sums in plasma samples from61OSCCpatients and 61 controls.
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SUPPLEMENTARY TABLE 3

Bayesian optimization parameter list. This table lists the parameters used in
Bayesian optimization for various machine learning models, including their

start values, end values, and optimal values.

SUPPLEMENTARY TABLE 4

Performance metrics for all machine learning models before Bayesian
optimization. This table presents the accuracy, precision, recall, and F1

scores for various machine learning models, along with their running times,

measured over 100 runs (20 iterations of 5-fold cross-validation) before
Bayesian optimization.

SUPPLEMENTARY TABLE 5

Differences in model performance metrics before and after Bayesian

optimization. This table displays the differences in model performance
metrics before and after Bayesian optimization for various machine learning

models. Metrics include Accuracy, Precision, Recall, and F1 scores. Statistical
significance is denoted as follows: p ∗ ≤ 0.05, p ∗∗ ≤ 0.01, p ∗∗∗ ≤ 0.001.

SUPPLEMENTARY TABLE 6

Standard deviation, mean, and significance information for ratio features. This

table provides the standard deviation, mean values, and significance
information for the ratio features in HC and OSCC patients.

SUPPLEMENTARY TABLE 7

Standard deviation, mean, and significance information for value features.

This table provides the standard deviation, mean values, and significance
information for the numerical features in HC and OSCC patients.

SUPPLEMENTARY TABLE 8

Correlation matrix of important metabolic features used in classification. The

table presents the Pearson correlation coefficients among the important
features identified in the study.
References
1. Radaic A, Kamarajan P, Cho A, Wang S, Hung GC, Najarzadegan F, et al.
Biological biomarkers of oral cancer. Periodontol 2000. (2023) 96:250–80. doi: 10.1111/
prd.12542

2. Hasegawa T, Yatagai N, Furukawa T, Wakui E, Saito I, Takeda D, et al. The
prospective evaluation and risk factors of dysphagia after surgery in patients with oral
cancer. J Otolaryngol Head Neck Surg. (2021) 50:4. doi: 10.1186/s40463-020-00479-6

3. FaedoRR,Da SG,Da SR,UshidaTR,Da SR, Lacchini R, et al. Sphingolipids signature in
plasma and tissue as diagnostic andprognostic tools in oral squamous cell carcinoma.Biochim
Biophys Acta Mol Cell Biol Lipids. (2022) 1867:159057. doi: 10.1016/j.bbalip.2021.159057

4. Polachini GM, de Castro TB, Smarra L, Henrique T, de Paula C, Severino P, et al.
Plasma metabolomics of oral squamous cell carcinomas based on NMR and MS
approaches provides biomarker identification and survival prediction. Sci Rep. (2023)
13:8588. doi: 10.1038/s41598-023-34808-2

5. Wang S, Yang M, Li R, Bai J. Current advances in noninvasive methods for the
diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res. (2023) 28:53.
doi: 10.1186/s40001-022-00916-4

6. Balonov I, Mattis M, Jarmusch S, Koletzko B, Heinrich K, Neumann J, et al.
Metabolomic profiling of upper GI Malignancies in blood and tissue: a systematic review
andmeta-analysis. J Cancer Res Clin Oncol. (2024) 150:331. doi: 10.1007/s00432-024-05857-5

7. An R, Yu H, Wang Y, Lu J, Gao Y, Xie X, et al. Integrative analysis of plasma
metabolomics and proteomics reveals the metabolic landscape of breast cancer. Cancer
Metab. (2022) 10:13. doi: 10.1186/s40170-022-00289-6

8. Pekarek L, Garrido-Gil MJ, Sanchez-Cendra A, Cassinello J, Pekarek T, Fraile-
Martinez O, et al. Emerging histological and serological biomarkers in oral squamous
cell carcinoma: Applications in diagnosis, prognosis evaluation and personalized
therapeutics (Review). Oncol Rep. (2023) 50(6):213. doi: 10.3892/or.2023.8650

9. Graf EH, Pancholi P. Appropriate use and future directions of molecular
diagnostic testing. Curr Infect Dis Rep. (2020) 22:5. doi: 10.1007/s11908-020-0714-5

10. Kurzrock R, Chaudhuri AA, Feller-Kopman D, Florez N, Gorden J, Wistuba II.
Healthcare disparities, screening, and molecular testing in the changing landscape of
non-small cell lung cancer in the United States: a review. Cancer Metastasis Rev. (2024)
43:1217–31. doi: 10.1007/s10555-024-10187-6
11. Zhang XW, Li QH, Xu ZD, Dou JJ. Mass spectrometry-based metabolomics in
health and medical science: a systematic review. Rsc Adv. (2020) 10:3092–104.
doi: 10.1039/c9ra08985c

12. Zhang L, Ma F, Qi A, Liu L, Zhang J, Xu S, et al. Integration of ultra-high-
pressure liquid chromatography-tandem mass spectrometry with machine learning for
identifying fatty acid metabolite biomarkers of ischemic stroke. Chem Commun
(Camb). (2020) 56:6656–59. doi: 10.1039/d0cc02329a

13. Galal A, Talal M, Moustafa A. Applications of machine learning in
metabolomics: Disease modeling and classification. Front Genet. (2022) 13:1017340.
doi: 10.3389/fgene.2022.1017340

14. Mumtaz M, Bijnsdorp IV, Bottger F, Piersma SR, Pham TV, Mumtaz S, et al.
Secreted protein markers in oral squamous cell carcinoma (OSCC). Clin Proteomics.
(2022) 19:4. doi: 10.1186/s12014-022-09341-5

15. Plans-Beriso E, Babb-de-Villiers C, Petrova D, Barahona-Lopez C, Diez-Echave
P, Hernandez OR, et al. Biomarkers for personalised prevention of chronic diseases: a
common protocol for three rapid scoping reviews. Syst Rev. (2024) 13:147. doi: 10.1186/
s13643-024-02554-9

16. Song X, Yang X, Narayanan R, Shankar V, Ethiraj S, Wang X, et al. Oral
squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc Natl Acad Sci
U.S.A. (2020) 117:16167–73. doi: 10.1073/pnas.2001395117

17. Alapati S, Fortuna G, Ramage G, Delaney C. Evaluation of metabolomics as
diagnostic targets in oral squamous cell carcinoma: A systematic review. Metabolites.
(2023) 13(8):890. doi: 10.3390/metabo13080890

18. Khan SI, Hoque A. SICE: an improved missing data imputation technique. J Big
Data. (2020) 7:37. doi: 10.1186/s40537-020-00313-w

19. Ganapathy S, Harichandrakumar KT, Penumadu P, Tamilarasu K, Nair NS.
Comparison of Bayesian, Frequentist and Machine learning models for predicting the
two-year mortality of patients diagnosed with squamous cell carcinoma of the oral
cavity. Clin Epidemiol Glob Health. (2022) 17:101145. doi: 10.1016/j.cegh.2022.101145

20. Hollmann N, Müller S, Eggensperger K, Hutter F. Data from: TabPFN: A
Transformer That Solves Small Tabular Classification Problems in a Second (2023).
Available online at: https://go.exlibris.link/HqMS7xW0. doi: 10.48550/arXiv.2207.01848
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1493377/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1493377/full#supplementary-material
https://doi.org/10.1111/prd.12542
https://doi.org/10.1111/prd.12542
https://doi.org/10.1186/s40463-020-00479-6
https://doi.org/10.1016/j.bbalip.2021.159057
https://doi.org/10.1038/s41598-023-34808-2
https://doi.org/10.1186/s40001-022-00916-4
https://doi.org/10.1007/s00432-024-05857-5
https://doi.org/10.1186/s40170-022-00289-6
https://doi.org/10.3892/or.2023.8650
https://doi.org/10.1007/s11908-020-0714-5
https://doi.org/10.1007/s10555-024-10187-6
https://doi.org/10.1039/c9ra08985c
https://doi.org/10.1039/d0cc02329a
https://doi.org/10.3389/fgene.2022.1017340
https://doi.org/10.1186/s12014-022-09341-5
https://doi.org/10.1186/s13643-024-02554-9
https://doi.org/10.1186/s13643-024-02554-9
https://doi.org/10.1073/pnas.2001395117
https://doi.org/10.3390/metabo13080890
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.1016/j.cegh.2022.101145
https://go.exlibris.link/HqMS7xW0
https://doi.org/10.48550/arXiv.2207.01848
https://doi.org/10.3389/fimmu.2024.1493377
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1493377
21. Talukder MSH, Sulaiman RB, Angon MBP. Data from: Unleashing the Power of
Extra-Tree Feature Selection and Random Forest Classifier for Improved Survival
Prediction in Heart Failure Patients (2023). Available online at: https://go.exlibris.link/
DyP7vpkZ. doi: 10.48550/arXiv.2308.05765

22. Dalleau K, Couceiro M, Smail-Tabbone M. Unsupervised extra trees: a stochastic
approach to compute similarities in heterogeneous data. Int J Data Sci Anal. (2020)
9:447–59. doi: 10.1007/s41060-020-00214-4

23. Goldstein BA, Polley EC, Briggs FB. Random forests for genetic association
studies. Stat Appl Genet Mol Biol. (2011) 10:32. doi: 10.2202/1544-6115.1691

24. Meysam V, Mohammad G, Masoumeh R. Data from: Performance Analysis and
Comparison of Machine and Deep Learning Algorithms for IoT Data Classification (2020).
Available online at: https://arxiv.org/abs/2001.09636. doi: 10.48550/arXiv.2001.09636

25. Rimal Y, Sharma N, Alsadoon A. The accuracy of machine learning models relies
on hyperparameter tuning: student result classification using random forest,
randomized search, grid search, bayesian, genetic, and optuna algorithms. Multimed
Tools Appl. (2024) 83:74349–64. doi: 10.1007/s11042-024-18426-2

26. Zhang H, Wu Y, Zhang W, Zhang Y. FFNN–tabNet: an enhanced stellar age
determination method based on tabNet. Appl Sci. (2024) 14:1203. doi: 10.3390/app14031203

27. Wang Y, Zhang X, Wang S, Li Z, Hu X, Yang X, et al. Identification of
metabolism-associated biomarkers for early and precise diagnosis of oral squamous
cell carcinoma. Biomolecules. (2022) 12(3):400. doi: 10.3390/biom12030400

28. Satopaa V, Albrecht J, Irwin D, Raghavan B. Data from: finding a “Kneedle” in a
haystack: detecting knee points in system behavior. IEEE. (2011). doi: 10.1109/
ICDCSW.2011.20.

29. Yang W, Zhou W, Zhao X, Wang X, Duan L, Li Y, et al. Prognostic biomarkers
and therapeutic targets in oral squamous cell carcinoma: a study based on cross-
database analysis. Hereditas. (2021) 158:15. doi: 10.1186/s41065-021-00181-1

30. Jiang W, Zhang T, Zhang H, Han T, Ji P, Ou Z. Metabolic patterns of high-invasive
and low-invasive oral squamous cell carcinoma cells using quantitative metabolomics and
13C-glucose tracing. Biomolecules. (2023) 13:1806. doi: 10.3390/biom13121806

31. Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, et al. Oral squamous cell
carcinomas: state of the field and emerging directions. Int J Oral Sci. (2023) 15:44.
doi: 10.1038/s41368-023-00249-w

32. Chen Z, Huang X, Gao Y, Zeng S, Mao W. Plasma-metabolite-based machine
learning is a promising diagnostic approach for esophageal squamous cell carcinoma
investigation. J Pharm Anal. (2021) 11:505–14. doi: 10.1016/j.jpha.2020.11.009

33. Alfian G, Syafrudin M, Fahrurrozi I, Fitriyani NL, Atmaji FTD, Widodo T, et al.
Predicting breast cancer from risk factors using SVM and extra-trees-based feature
selection method. Computers. (2022) 11:136. doi: 10.3390/computers11090136
Frontiers in Immunology 14
34. Hirano K, Kinoshita M, Matsumori N. Impact of sphingomyelin acyl chain
heterogeneity upon properties of raft-like membranes. Biochim Biophys Acta
Biomembr. (2022) 1864:184036. doi: 10.1016/j.bbamem.2022.184036

35. Tallima H, Azzazy H, El RR. Cell surface sphingomyelin: key role in cancer
initiation, progression, and immune evasion. Lipids Health Dis. (2021) 20:150.
doi: 10.1186/s12944-021-01581-y

36. Dickinson A, Saraswat M, Joenvaara S, Agarwal R, Jyllikoski D, Wilkman T, et al.
Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals
aberrant cholesterol and glycerophospholipid metabolism - A Pilot study. Transl Oncol.
(2020) 13:100807. doi: 10.1016/j.tranon.2020.100807

37. Gibellini F, Smith TK. The Kennedy pathway–De novo synthesis of
phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. (2010) 62:414–28.
doi: 10.1002/iub.337

38. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. (2012) 279:2610–23.
doi: 10.1111/j.1742-4658.2012.08644.x

39. Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P,
et al. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and
physiopathology. Mol Aspects Med. (2011) 32:223–33. doi: 10.1016/j.mam.2011.10.008

40. Wu L, Ye C, Yao Q, Li Q, Zhang C, Li Y. The role of serum acylcarnitine profiling
for the detection of multiple solid tumors in humans. Heliyon. (2024) 10:e23867.
doi: 10.1016/j.heliyon.2023.e23867

41. Xu J, Chen Y, Zhang R, Song Y, Cao J, Bi N, et al. Global and targeted
metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic
and therapeutic biomarkers. Mol Cell Proteomics. (2013) 12:1306–18. doi: 10.1074/
mcp.M112.022830

42. Wu SL, Zha GY, Tian KB, Xu J, Cao MG. The metabolic reprogramming of
gamma-aminobutyrate in oral squamous cell carcinoma. BMC Oral Health. (2024)
24:418. doi: 10.1186/s12903-024-04174-0

43. Cao J, Balluff B, Arts M, Dubois LJ, van Loon L, Hackeng TM, et al. Mass
spectrometry imaging of L-[ring-(13)C(6)]-labeled phenylalanine and tyrosine kinetics
in non-small cell lung carcinoma. Cancer Metab. (2021) 9:26. doi: 10.1186/s40170-021-
00262-9

44. Ran R, Zhong X, Yang Y, Tang X, Shi M, Jiang X, et al. Metabolomic profiling
identifies hair as a robust biological sample for identifying women with cervical cancer.
Med Oncol. (2023) 40:75. doi: 10.1007/s12032-022-01848-z

45. Qiang YX, You J, He XY, Guo Y, Deng YT, Gao PY, et al. Plasma metabolic
profiles predict future dementia and dementia subtypes: a prospective analysis of
274,160 participants. Alzheimers Res Ther. (2024) 16:16. doi: 10.1186/s13195-023-
01379-3
frontiersin.org

https://go.exlibris.link/DyP7vpkZ
https://go.exlibris.link/DyP7vpkZ
https://doi.org/10.48550/arXiv.2308.05765
https://doi.org/10.1007/s41060-020-00214-4
https://doi.org/10.2202/1544-6115.1691
https://arxiv.org/abs/2001.09636
https://doi.org/10.48550/arXiv.2001.09636
https://doi.org/10.1007/s11042-024-18426-2
https://doi.org/10.3390/app14031203
https://doi.org/10.3390/biom12030400
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1186/s41065-021-00181-1
https://doi.org/10.3390/biom13121806
https://doi.org/10.1038/s41368-023-00249-w
https://doi.org/10.1016/j.jpha.2020.11.009
https://doi.org/10.3390/computers11090136
https://doi.org/10.1016/j.bbamem.2022.184036
https://doi.org/10.1186/s12944-021-01581-y
https://doi.org/10.1016/j.tranon.2020.100807
https://doi.org/10.1002/iub.337
https://doi.org/10.1111/j.1742-4658.2012.08644.x
https://doi.org/10.1016/j.mam.2011.10.008
https://doi.org/10.1016/j.heliyon.2023.e23867
https://doi.org/10.1074/mcp.M112.022830
https://doi.org/10.1074/mcp.M112.022830
https://doi.org/10.1186/s12903-024-04174-0
https://doi.org/10.1186/s40170-021-00262-9
https://doi.org/10.1186/s40170-021-00262-9
https://doi.org/10.1007/s12032-022-01848-z
https://doi.org/10.1186/s13195-023-01379-3
https://doi.org/10.1186/s13195-023-01379-3
https://doi.org/10.3389/fimmu.2024.1493377
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrating omics data and machine learning techniques for precision detection of oral squamous cell carcinoma: evaluating single biomarkers
	1 Introduction
	2 Methods
	2.1 Chou’s 5-step rule
	2.2 Public dataset collection
	2.2.1 Data acquisition and preparation

	2.3 Mass spectrometry analysis
	2.4 Machine learning analysis
	2.4.1 Dataset preprocessing
	2.4.2 Model construction and optimization
	2.4.3 Feature selection
	2.4.4 Model evaluation


	3 Results
	3.1 Modeling performance and comparisons
	3.2 Important features

	4 Discussion
	5 Limitations
	6 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


