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Sepsis is characterized by a concomitant early pro-inflammatory response by

immune cells to an infection, and an opposing anti-inflammatory response that

results in protracted immunosuppression. The primary pathological event in sepsis

is widespread programmed cell death, or cellular self-sacrifice, of innate and

adaptive immune cells, leading to profound immunological suppression. This

severe immune dysfunction hampers effective primary pathogen clearance,

thereby increasing the risk of secondary opportunistic infections, latent viral

reactivation, multiple organ dysfunction, and elevated mortality. The types of cell

death include apoptosis (type I programmed cell death), autophagy (type II

programmed cell death), NETosis (a program for formation of neutrophil

extracellular traps (NETs)) and other programmed cell deaths like pyroptosis,

ferroptosis, necroptosis, each contributing to immunosuppression in distinct ways

during the later phases of sepsis. Extensive apoptosis of lymphocytes, such as CD4

+, CD8+ T cells, and B cells, is strongly associated with immunosuppression.

Apoptosis of dendritic cells further compromises T and B cell survival and can

induce T cell anergy or promote regulatory Treg cell proliferation. Moreover,

delayed apoptosis and impaired neutrophil function contribute to nosocomial

infections and immune dysfunction in sepsis. Interestingly, aberrant NETosis and

the subsequent depletion of mature neutrophils also trigger immunosuppression,

and neutrophil pyroptosis can positively regulate NETosis. The interaction between

programmed cell death 1 (PD-1) or programmed cell death 1 ligand (PD-L1) plays a

key role in T cell modulation and neutrophil apoptosis in sepsis. The dendritic cell

growth factor, Fms-like tyrosine kinase (FLTEL), increases DC numbers, enhances

CD 28 expression, attenuates PD-L1, and improves survival in sepsis. Recently,

immunoadjuvant therapies have attracted attention for their potential to restore

host physiological immunity and homeostasis in patients with sepsis. This review

focuses on several potential immunotherapeutic agents designed to bolster

suppressed innate and adaptive immune responses in the management of sepsis.
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Introduction

Sepsis is characterized by a dysregulated inflammatory host

response to life-threatening infection, which can trigger circulatory

shock, organ dysfunction, and ultimately, death (1). The hallmark

of sepsis is a simultaneous, cytokine-mediated, early excessive pro-

inflammatory response to infection that contributes to the

recruitment and activation of innate and adaptive immune cells

to the site of infection. Progression of sepsis leads to immune cell

exhaustion by continuous encounters with pathogens and

inflammatory signals with increased expression of immune

checkpoint molecules like PD-1 and CTLA-4. The exhausted

immune cells exert a compensatory anti-inflammatory response

and undergo different types of massive cell death (2). The human

body manages this through a negative feedback mechanism referred

to as immunosuppression, which leads to immunoparalysis

involving both the innate and adaptive immune systems. This

profound immune dysfunction results in poor primary pathogen

clearance and enhances the risk of secondary opportunistic

infections, latent viral reactivation, multiple organ dysfunction,

and increased mortality (3, 4). Despite numerous clinical trials

focused on mitigating hyper-inflammation by blocking pro-

inflammatory mediators (5, 6), no FDA-approved treatments

have been approved to date, and sepsis remains a predominant

cause of death among critically ill patients in most intensive care

settings worldwide (7). While advances in treatment and supportive

care have reduced mortality and improved overall survival in sepsis

management, researchers have yet to elucidate various

immunological aspects of the syndrome or identify novel, targeted

therapeutics to reverse sepsis effectively. It is well established that

cell death, a conserved mechanism in multicellular organisms, plays

a vital role in responding to external injuries. Dysregulation of

widespread programmed immune cell death, or cellular self-

sacrifice, is now recognized as the primary pathological event in

sepsis, leading to significant immunological suppression (8). These

cell death mechanisms include apoptosis (type I programmed cell

death), autophagy (type II programmed cell death), NETosis

[a program for formation of neutrophil extracellular traps

(NETs)] pyroptosis, ferroptosis, and necroptosis. An inadequate

immune response resulting from cell death and subsequent

aggressive immunosuppression has been identified as a significant

contributor to sepsis pathogenesis (9, 10). Excessive apoptosis of

splenic CD4+, CD8+ T, and B cells, coupled with reduced autophagy

in CD4+ T cells, has been observed in patients with sepsis, thereby

accelerating acquired immunodeficiency (11). Furthermore,

apoptosis of dendritic cells in sepsis also compromises the

survival of T cell and B cells and can induce a state of T cell

anergy or promote regulatory T cell (Treg) proliferation (12). In

addition, during sepsis, the major interferon-gamma (IFN-g)-
producing natural killer (NK) cells encounter immoderate

apoptosis after a reduced number is present in the circulation,

thus increasing the risk of secondary infection (13). Due to the

inhibition of spontaneous apoptosis, neutrophils may undergo

other types of cell death, including NETosis and pyroptosis (14).

Excessive NETosis, followed by the depletion of mature neutrophils,
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heightens the risk of nosocomial infections and immune

dysfunction. Investigators are actively trying to clarify the

underlying inconsistencies in innate and adaptive immunity as

well as the mechanisms of immunosuppression that contribute to

the long-term prognoses in sepsis. Consequently, immunoadjuvant

therapies have recently attracted considerable attention in sepsis

management to restore host immunity. This review focuses on the

dysregulation of immune cell death patterns induced by sepsis and

the subsequent disruptions to immunity. In addition, we outline

current potential therapeutic interventions, including interleukin

(IL)-7, IL-15, IFN-g, granulocyte-macrophage colony stimulating

factor (GM-CSF), Fms-like tyrosine kinase-3 ligand, inhibition of

programmed cell death protein 1(PD-1), programmed cell death

ligand 1 (PD-L1), and other cell death checkpoints, as well as future

directions for sepsis management.
Mechanism of immune cell deaths
in sepsis

The prime mechanism of immune cell death in sepsis is a type I

programmed cell death, apoptosis. To date, three pathways of

apoptosis have been reported: the extrinsic (death receptor)

pathway, the intrinsic (mitochondrial) pathway, and the perforin/

granzyme pathway. The three pathways intersect into the common

execution pathway initiated by activating the effector enzyme

cysteinyl aspartate- specific protease (caspase)-3 (15). Tumor

necrosis factor (TNF)-a, high mobility group box-1 protein

(HMGB1), Fas ligand (FasL), heat shock, oxygen-free radicals,

nitric oxide (NO), glucocorticoids, granzymes, and TNF-alpha-

induced protein eight like-2 (TIPE2) are the triggers of apoptosis,

on the contrary interleukin (IL)-1, IL-6, and granulocyte colony-

stimulating factor (G-CSF) are the inhibitor of apoptosis (16). The

extrinsic pathway of apoptosis involves interaction between TNF

family-derived extracellular death ligands, e.g., FasL, TNF-a, and the

corresponding death receptors that include Fatty acid synthetase

receptor, FasR, TNFR1. The ligand-receptor binding induces the

recruitment of cytoplasmic adaptor protein FADD for FasL/FasR and

TRADD with the recruitment of FADD and RIP in the case of TNF-

a/TNFR1. Currently, caspase-8 gets activated by forming a death-

inducing signaling complex (DISC) through the association of FADD

and procaspase-8 (17). Caspase-8 activation leads to the downstream

execution phase of apoptosis. The intrinsic pathway involves a wide

range of non-receptor-mediated stimuli, and the intracellular signal

generated changes the inner mitochondrial membrane. This pathway

is governed by anti-apoptotic versus pro-apoptotic Bcl-2 family

members. Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, BAG, Mcl-1, and

Bfl-1/A1 are anti-apoptotic proteins, and Bcl-10, Bak, Bax, Bim,

Bik, Blk, Bmf, Bad, and Bid are pro-apoptotic protein. These proteins

determine whether the cell will undergo cell death or skip the death

process. The intrinsic and extrinsic pathways are associated, and the

molecules involved in each pathway can impact each other.

NETosis is a novel cell death program distinct from apoptosis

and necrosis (14). In NETosis stimulated neutrophil release, NETs,

a web-like architecture composed of a DNA backbone decorated
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with anti-microbial proteins like myeloperoxidase (MPO),

neutrophil elastase (NE), and cathepsin G (18, 19). Although

NETosis is a physiological process and essential part of the innate

immune system to eliminate invading microbes, but the

uncontrolled NETosis has a pathological role in numerous ways,

attributed to sepsis, autoimmune, infectious, and non-infectious

diseases that have attracted recent attention. NETosis occurs via two

pathways: suicidal NETosis and vital NETosis. Suicidal NETosis is a

lytic and slow cell death process, usually taking 2–4 h, whereas vital

NETosis is a cell-death-independent non-lytic process that happens

faster, within 5–60 min (20). To date, two different mechanisms,

NADPH Oxidase 2 (Nox 2)-dependent and Nox 2-independent of

NETosis, have been validated. Nox-dependent NETosis is triggered

by inducers like PMA, LPS, and bacteria such as Pseudomonas

aeruginosa, while agonists like calcium ionophores (A231128,

ionomycin), uric acid crystals, certain microbes, and UV light

trigger Nox-independent NETosis through the formation of

different ROS, Nox-ROS and mitochondrial ROS, respectively

(21). Different sets of kinases (MAPK, ERK, p38, and JNK)

specific to both NETosis get activated, leading to transcriptional

firing and activation of downstream pathways. In both types of

NETosis ultimately nuclear membrane disintegrates, and NETs

are expelled.

Pyroptosis is a caspase-1 (canonical pathway) or caspase-4/5/11

(non-canonical pathway)-dependent proinflammatory

programmed cell death process (22). The control form of this cell

death is a part of innate immunity to actuate phagocytic immune

cells and thus control pathogen infection. On the other hand,

exaggerated pyroptosis results in a dysregulated host immune

response and augments inflammatory injury, leading to organ

dysfunction or septic shock. In the canonical pathway,

intracellular pattern recognition receptors (PRRs) such as

NLRP1B, NLRP3, NLRC4, recognize the stimulus signals of

pathogens and activate caspase-1 protein through the association

of pro-caspase-1, and adaptor protein ASC. In the non-canonical

pathway, bacterial LPS directly bind and activate caspase-11/4/5

(23). At this point, gasdermin D gets activated, and pyroptosis

occurs by rapid cell membrane disruption and release of

proinflammatory mediators.

Autophagy, a type II programmed cell death, is an essential

cellular process and a damaged protein or organelle degradation

system necessary for cellular homeostasis. These regulated innate

immune defense mechanisms act as cellular defense against oxidative

stress and the elimination of pathogenic microorganisms and play a

role in antigen presentation (24). Autophagy begins with the

formation of a double-membrane vesicle called autophagosomes.

Many signaling complexes and pathways participate in the

initiation and maturation of the autophagy process.

Ferroptosis is a unique form of iron-dependent programmed

cell death distinct from apoptosis, necrosis, and autophagy (25). In

this process, lipid peroxides are generated from intracellular ROS

and hydrogen peroxide (H2O2) by the action of iron and oxidize

lipid membranes with polyunsaturated fatty acids (PUFAs) (26). At

this stage, membrane damage begins followed by cell death. Innate

and adaptive immune cells such as macrophages, T, and B cells

undergo ferroptosis, reducing numbers and function. This cell
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death favors bacterial multiplication and dampens the body’s

immune function, leading to sepsis (27).

Necroptosis, a novel form of programmed cell death, plays a

significant role in the pathophysiology of sepsis. This death process

is initiated by activating death receptors like TNF receptor 1

(TNFR1) (28). Then, the receptor-interacting protein kinase 1

(RIPK1) gets activated, which subsequently phosphorylates and

activates RIPK3. The RIPK1-RIPK3-mixed kinase domain-like

protein (MLKL) complex facilitates cell death by forming

membrane pores. Staphylococcus aureus is responsible for

nosocomial infection and sepsis (29). Staphylococcus aureus can

also induce necroptosis of macrophages (30) and neutrophils (31)

in host cells.
Role of immune checkpoint in sepsis

Immune checkpoints are specific membrane molecules and the

key controllers of the immune system that balance immune

homeostasis and limit excessive immune response. Immune

checkpoints play a significant role in the pathophysiology of

sepsis (32). Leukocytes (neutrophils, monocytes, natural killer

cells, and dendritic cells) and lymphocytes (T and B cells) express

checkpoint molecule PD-1 on their surface. PD-1 can interact with

complementary ligand PD-L1 on the surface of antigen-presenting

cells (APCs) such as monocytes, macrophages, and dendritic cells.

Cell surface inhibitory immune checkpoint molecules include PD-1,

PD-L1, PD-L2, cytotoxic T lymphocyte antigen-4 (CTLA-4), B and

T lymphocyte attenuator (BTLA), lymphocyte activation-gene-3

(LAG-3) and T cell membrane protein-3 (TIM-3) and 2B4 (33).

This review will focus on the PD-1/PD-L1 axis. During sepsis, both

innate and adaptive immune cells become immunocompromised.

PD-1/PD-L1 axis is involved in immune cell dysfunction and

sepsis-induced immunosuppression (34). A few studies confirmed

that increased PD-L1 expression on neutrophils and monocytes is

linked to both pro- and anti-inflammatory cytokine levels,

decreased phagocytic capacity, delayed apoptosis of neutrophils,

and mortality in septic patients (34, 35). A recent study suggests

that overexpression of NK cell PD-L1 is associated with increased

sepsis severity (36). Increased levels of PD-1 expression in T cells

have been reported to be associated with lymphopenia, T cell death,

and increased mortality (37).
Sepsis-induced innate immune
cell death

Sepsis markedly affects the lifespan, production, and function of

the effector cells within the innate immune system, thereby

disrupting homeostasis. The innate immune system, which serves

as the body’s front line of defense, consists of neutrophils,

monocytes and macrophages, dendritic cells, and other

components. Sepsis induces marked losses of these innate

immune cells through various cellular death pathways,

contributing to immune suppression (Figure 1).
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Neutrophils, the most abundant circulating leukocytes derived

from bone marrow and primary responders to pathogen attack,

typically undergo apoptosis within 24 hours of release (38). In

sepsis, unlike the delayed apoptosis observed in lymphocytes,

mature neutrophils exhibit several dysfunctions: release of

immature neutrophils from bone marrow to circulation, reduced

oxidative burst capacity, decreased cell migration, diminished

complement activation, and impaired bacterial clearance. These

factors contribute to the development of immune suppression and

persistent inflammation, which may continue even after the

disappearance of symptoms (9). This significant impairment of

neutrophil functions increases the susceptibility of patients to

nosocomial infections (39), ventilator-associated pneumonia (40),

and other secondary infections (41). Experiments using a mouse

model of sepsis have provided further support for these findings,

demonstrating reduced neutrophil functions and increased risk of

secondary Pseudomonas aeruginosa infection (42) and organ injury

(43). Prolonged neutrophil survival is attributed to an imbalance

between anti-apoptotic and pro-apoptotic signals. Notably, the

activation of anti-apoptotic factors such as B-cell lymphoma-extra

large (Bcl-xL), annexin A1, Bak, and myeloid cell leukemia-1

(MCL-1) is the primary cause of delayed neutrophil apoptosis

(14, 44). In addition, certain neutrophil subsets (CD16hi,

CD62Llow) exhibit suppressive properties by releasing large
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amounts of the immunosuppressive cytokine IL-10 (45), which is

associated with delayed neutrophil apoptosis (46) and also

suppresses T-cell proliferation (47). Furthermore, NF-kB-

mediated inhibition of caspase-3 and caspase-9, along with

impaired phosphorylation and inhibition of caspase-8 catalytic

activity, also affects neutrophil apoptosis (48, 49). Overexpression

of PD-L1 on septic neutrophils is strongly associated with delayed

neutrophil apoptosis, and has been shown to drive lung injury and

increase mortality in experimental sepsis, i.e., a cecal ligation and

puncture (CLP) model (43). In sepsis, delayed apoptosis allows

mature neutrophils to undergo other types of cell death, such as

NETosis and autophagy (50, 51). Like NETosis, pyroptosis

mediated by caspase-1/11, GSDMD is an essential physiological

host defense mechanism. However, excessive neutrophil pyroptosis

also contributes to sepsis (52). Overproduction of IL-1b and IL-18

through the classical caspase-1-dependent pathway increases the

magnitude of the inflammatory response, suppresses immunity

(53), and reduces survival rate (54). Consequently, marked

depletion of neutrophils through various cell death pathways

accelerates immunosuppression in sepsis.

Monocyte and macrophage apoptosis occurs during the

progression of sepsis, potentially leading to immunosuppression and

increasing host vulnerability to secondary infections or mortality.

Apoptosis in monocytes may reprogram the immune system
FIGURE 1

Overview of sepsis-attributed immunosuppression: Impairment of innate immune cell death pathways. In sepsis, alteration of cytokines (upregulated
IL-1, IL-10) and reduced antigen presentation (downregulated HLA-DR) is marked. Sepsis slows neutrophil apoptosis and augments NETosis,
autophagy, and pyroptosis, like cell deaths, resulting in an increase in the number of immature neutrophils, T cell proliferation inhibitory MDSCs, and
the depletion of mature neutrophils. Monocytes and macrophages also encounter increased apoptosis, pyroptosis, autophagy, and NETosis-like cell
death. Dendritic cells undergo extensive apoptosis, which induces a tolerogenic state. Unlike increased NETosis, DCs have less potential to undergo
autophagy in sepsis. The PD-1/PD L-1 axis plays a significant role in the induction of all these cell death pathways. All these different cell death
patterns contribute to immunosuppression in sepsis.
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towards an anti-inflammatory, immunosuppressive response. These

monocytes exhibit a reduced capacity to release pro-inflammatory

cytokines, such as tumor necrosis factor (TNF), IL-1a, IL-6 and IL-12

against lipopolysaccharide (LPS) and other bacterial inducers, a

phenomenon resembling ‘endotoxin tolerance’ that results in poor

outcomes (55, 56). Interestingly, the same monocytes are capable of

secreting significant levels of anti-inflammatory mediators, such as IL-

1 receptor antagonist and IL-10, which correlate with increased rates of

nosocomial infection and higher mortality (9). Also, impaired

monocytes are linked to decreased antigen-specific lymphocyte

proliferation (57). This endotoxin tolerance, along with increased

susceptibility to nosocomial infections and elevated mortality, is

associated with reduced HLA-DR expression on monocytes and

macrophages, referred to as ‘anergy’ (58, 59). Moreover, reports have

shown that expression of PD-L1 is increased on the monocytes of

septic patients (60) and that this can be used as an independent

predictor of mortality (61). In addition, studies have revealed a

correlation between reduced monocyte activities and the levels of

PD-1 on T lymphocytes (34). Macrophage pyroptosis also contributes

to the pathology of septic disseminated intravascular coagulation

(DIC) (62), with caspase-11-dependent pyroptosis playing a pivotal

role in exacerbating damage and reducing survival (63, 64). Caspase-1-

induced monocyte pyroptosis has also been noted in patients with

post-traumatic sepsis (65). NETotic-like cell death and macrophage

extracellular traps (METs) have also been observed in macrophages

(66). Additionally, autophagy influences sepsis progression by affecting

senescence, phagocytic capacity, and the activation of inflammatory

cytokine release by macrophages (67). Thus, these excessive self-

sacrificial processes may facilitate immunosuppression in sepsis.

Dendritic cells (DCs) are dynamic antigen-presenting cells

(APCs) that link innate and adaptive immunity and contribute to

pathogen recognition, immune response regulation, and

inflammation (68, 69). Both conventional dendritic cells (cDCs)

and plasmacytoid dendritic cells (pDCs) are highly susceptible to

sepsis-induced apoptosis, resulting in significant depletion of DCs

in patients with sepsis (70, 71). A study in mouse and other animal

models of sepsis has investigated caspase-3-mediated apoptosis of

DCs (16). In addition, recent reports have also confirmed the

involvement of PD-1 in activating DC apoptosis (72, 73). This

intense apoptosis and depletion of DCs not only increases

susceptibility to nosocomial infections (74), but also diminishes

their functional capabilities (75), resulting in reduced expression of

CD40, CD 86, and HLA-DR, and increased section of IL-10 (76, 77).

These alterations reflect the tolerogenic state of surviving DCs,

which lose their ability to activate effector T cell responses, instead

inducing either T cell anergy or Treg cell proliferation (12).

Consequently, these immunosuppressive DCs fail to mount an

immune response against subsequent bacterial challenges (78). In

addition to apoptosis, pDCs can release NET-like extracellular traps

(pETs) in response to bacterial infection (79). Furthermore, the loss

of autophagy potential in DCs heightens the risk of sepsis (80).

Natural Killer Cells (NK cells) are innate lymphocytes that play a

crucial role in coordinating innate and adaptive immune responses in

sepsis and defense against pathogen attack (81). NK cells produce

IFN-g during microbial sepsis, and IFN- g can activate macrophages

(71). In sepsis, NK cells undergo extensive apoptosis, significantly
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decreasing their number in circulation (13). Thus, the low titer of IFN-

g increases the risk of secondary infection. Due to impaired cytokine

secretion, the surviving and remainingNK cells cannot correctly induce

an immune response against endotoxin. NK cells also lose cytotoxic

function, which results in immune suppression (82).
Sepsis-induced adaptive immune
cell death

The adaptive immune system consists of highly specialized

lymphocytes , including T and B lymphocytes. These

subpopulations of adaptive immune cells are also susceptible to

sepsis-induced cell death. Persistent lymphopenia, a hallmark

characteristic in patients with sepsis, is associated with an increased

risk of nosocomial infection and a higher risk of mortality (Figure 2).

B cells are critical components of both innate and adaptive

immunity, with multifunctional roles and diverse phenotypes.

Different subpopulations of B cells have specific roles in immunity.

For instance, B cells that are activated by pattern recognition

receptors (PRRs), referred to as innate response activator (IRA) B

cells, augment the antimicrobial response to clear bacteria and induce

emergency myelopoiesis by producing GM-CSF and IL-3,

respectively (83, 84). Sepsis induces apoptosis in B cells and

reduces the diversity of B cell subtypes (85, 86). A growing body of

evidence has revealed impaired B cell functions, including diminished

antigen presentation to T lymphocytes (87), imperfect interactions

with bacterial products (88), and increased secretion of IL-10 (89),

which collectively suppress immune responses. Antibody-producing

memory B cells, extracellular signal-regulated kinase (ERK)-

activation-associated B cells, and CD5+ B1 cells are more

susceptible to apoptosis compared to other B cell types (85, 86).

Sepsis also reduces the number of naïve B cells, triggers B cell

exhaustion (90), and impairs the production of IgM (91). While

there is no strong evidence directly linking B cell pyroptosis to sepsis,

studies using a caspase-1 knockout, IL-1 knockout, and IL-1/IL-18

double knockout mouse models suggest that caspase-1-dependent

pyroptosis delays B lymphocyte apoptosis, potentially improving

macrophage phenotype and survival rates (92). Further extensive

investigation is required to elucidate the relationship between

lymphocyte pyroptosis and sepsis.

T cells are the primary actors of the adaptive immune system.

Sepsis triggers significant apoptosis of different T cell subsets (93).

Specifically, marked apoptosis and reductions in CD4+ and CD8+ T

lymphocytes occur in the early phase of sepsis (82, 94). This extensive

cell death leads to lymphopenia, which is associated with

immunosuppression following the acute resuscitation phase of sepsis.

In patients with sepsis, apoptosis of T cells occurs via both intrinsic and

extrinsic pathways (95). The interaction of PD-1 with PD-L1 plays a

critical pathological role in the immunosuppression observed in sepsis

(96). Patients exhibit elevated PD-1 and PD-L1 expression on CD4+ T

cells, decreased lymphocyte proliferation, and increased IL-10

secretion (97). In addition, stimulatory molecules such as CD28 and

HLA-DR are significantly downregulated in sepsis, reflecting the host’s

impaired ability to combat pathogens. Research has shown that the

interaction of PD-L1 on APC with PD-1 on T cells disrupts the
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positive costimulatory signaling of CD28, inhibits T cell proliferation,

increases immune effector cell death, reduces cytokine secretion (such

as IL-2 and IFN-g), and ultimately impairs antigen clearance (98).

Moreover, a deficiency in T cell autophagy in sepsis contributes to

sepsis-induced immunosuppression and increased mortality (99).

Another mechanism of immune impairment in the subacute phase

of sepsis is T cell anergy (Figure 1), which is characterized by the

inability of lymphocytes to recognize the cognate antigen, activate,

proliferate, and produce cytokines (100). Guinault et al. demonstrated

that an expression pattern of the three CD8+ T cell exhaustionmarkers

(2B4, PD-1, and CD160) was strongly associated with the mortality of

patients with sepsis (101). To date, there are no reports of lymphocytes

releasing NET-like structures.
Collaboration and interplay among
cell death pathways in sepsis

Among the various forms of cell death, apoptosis of immune

cells is a central pathophysiological event responsible for sepsis-

induced immunosuppression. On one hand, an increased

propensity for apoptosis among B cells, T cells, macrophages, and

dendritic cells leads to a tolerogenic nature of these cells and a

significant reduction in their presence in circulation. On the other

hand, delayed apoptosis in neutrophils facilitates alternative forms

of cell death, such as autophagy, pyroptosis, and NETosis.
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Experimental murine models have revealed that sepsis also

compromises T cell viability and function by suppressing

autophagy and accelerating apoptosis (102). A growing evidence

is uncovering the cross-talk among these different cell-death

pathways. Notably, there is interaction between apoptosis and

autophagy; the cleavage of autophagy-related protein 5 (Atg5) by

the protease calpain induces mitochondria-mediated apoptosis

through its binding to the anti-apoptotic protein Bcl-xL (103). In

septic CD4-Cre/Atg5f/f mice, an increase in the apoptosis of CD+ T

cells has been observed, accompanied by upregulation of the pro-

apoptotic gene PDCD1 and downregulation of the anti-apoptotic

gene BCL2 (102). Further research has demonstrated that decreased

ATG5 expression levels are correlated with the severity of

sepsis progression and mortality (104), suggesting that the

inhibition of autophagy promotes immune cell apoptosis and

immunosuppression. Other recent studies highlighted the close

association between neutrophil autophagy pathways and

increased NET formation in patients with septic-DIC (23, 105).

Increased neutrophil autophagy has been noted in survivors of

sepsis, and autophagy in healthy neutrophils may stimulate NETs

(50). Additionally, autophagy and pyroptosis are inter-connected

(106), as are pyroptosis and NETosis, with each having mutual

effects. In patients and a mouse model with sepsis, the use of specific

inhibitors against primary actors (PAD)2 has been shown to reduce

NETosis and macrophage caspase 11-dependent pyroptosis. This

inhibition of caspase 11 results in decreased release of inflammatory
FIGURE 2

Sepsis-induced immunosuppression: impairment of adaptive immune cell death pathways. Upregulated IL-10 and downregulated CD8 and HLA-DR
is notable in sepsis. B-cells undergo apoptosis in sepsis, resulting in a reduction of overall B-cell populations and impairment of the antigen-
presenting role of B-cells. Sepsis causes excessive T-cell apoptosis, causing lymphopenia and ultimate immunosuppression. On the contrary,
reduced T-cell autophagy in sepsis also contributes to immunosuppression. PD-1 and PD-L-1 play a vital role in this immunosuppression.
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mediators, increased macrophage counts, enhanced bacterial

clearance, and improved survival (107). Targeting GSDMD and

PADs could therefore be promising in sepsis therapy, as it couples

pyroptosis and NETosis. The ablation of caspase-1/11 in septic mice

enhances neutrophil phagocytosis and the levels of inflammatory

cytokines, which reflects improved immunity (53).
Why immunotherapy?

Recent extensive research has broadened our understanding of

sepsis pathophysiology, evolving from the traditional view of early

inflammation-driven pathology to encompassing concurrent

immunosuppression. The discussions above confirm that

immunosuppression in sepsis results from the extensive loss of both

innate and adaptive immune cells through apoptosis, autophagy,

NETosis, pyroptosis, ferroptosis, and necroptosis. Consequently,

targeting a single cell death pathway and enhancing host immunity

with immunomodulatory agents represents a promising therapeutic

strategy to restore impaired host defenses. The following section of

this review focuses on immunomodulatory agents aimed at enhancing

immune cell function by modulating cell death pathways.
Current status of clinical therapies

Interleukin-7, primarily derived from stromal cells, is an

indispensable hematopoietic cytokine crucial for T cell survival,

proliferation, differentiation, and effector functions. It is also an

attractive immunoadjuvant therapeutic molecule targeting adaptive

immune irregularities in sepsis. Clinical trials have demonstrated that

IL-7 is safe and well-tolerated, without inducing toxicities such as

cytokine storms or exacerbating inflammation or organ dysfunction.

Moreover, IL-7 can inhibit the massive apoptosis of immune-effector

cells induced by sepsis and restore the production of IFN-g, which is

essential for the host’s response to invading pathogens (108). A recent

clinical trial demonstrated that IL-7 therapy successfully restored

depleted CD4+ and CD8+ effector cells by threefold to fourfold in

patients with sepsis (109). This pluripotent cytokine can mitigate

lymphocyte apoptosis by enhancing the expression of anti-apoptotic

proteins such as Bcl-2, CD-28, boosting IFN-g levels, and increasing

TCR diversity, which are typically diminished in patients with sepsis

(110, 111). Consequently, recombinant IL-7 therapy not only increases

the numbers of CD4+ and CD8+ T cells, but it also reduces Treg cells

in circulation, decreasing morbidity and mortality. Interestingly, when

IL-7 is administered alongside antiretroviral therapy in patients with

HIV exhibiting lymphopenia and immune suppression, it results in

reduced PD-1 expression (112). We conclude that IL-7

immunostimulatory therapy, whether used individually or in

combination, may represent a promising and potentially protective

treatment option for sepsis-induced immunosuppression.

Interleukin-15 promotes the proliferation of memory CD8+ T

cells, stimulates dendritic cells, and enhances B cell immunoglobulin

production. In a mouse model of sepsis, IL-15 has been shown to

attenuate sepsis-induced apoptosis of natural killer (NK) cells,

dendritic cells, and CD8+ T cells by increasing the expression of
Frontiers in Immunology 07
the anti-apoptotic protein Bcl-2, and decreasing the expression of

pro-apoptotic proteins Bim and PUMA (113). Additionally, IL-15

enhances IFN-g production and improves survival in the cecal

ligation and puncture (CLP) sepsis model. In cancer trials, the

combination of IL-15 and anti-PD-1 therapy has demonstrated

reduced IL-10 production and PD-1 expression on CD8+ T cell,

augmenting anti-tumor activity (114). Given that IL-15 has shown

toxicity in a previous animal study (115), it is important to determine

the optimal dosage when employing it as an immunotherapeutic

agent in sepsis. Further clinical trials are necessary to evaluate the

synergistic potential of IL-15 with other immunotherapeutic agents.

IFN-g is a key cytokine that is essential for the activation of

innate immunity, which is necessary for the clearance of microbial

pathogens. However, IFN-g production is markedly decreased in

sepsis. Recombinant IFN-g therapy in protracted Staphylococcus

aureus sepsis has been shown to increase monocyte HLA-DR

expression and function, as well as enhance bacterial clearance,

without any adverse effects (116). Similarly, INF-g treatment in

patients with invasive fungal infections has also been demonstrated

to restore HLA-DR expression on leukocytes (117). Although IFN-g
therapy offers potential benefits in patients with sepsis exhibiting

immunosuppression by reviving monocyte functions associated

with reduced HLA-DR expression, there are no records of it

ameliorating T cell defects. Interestingly, the combined

application of IFN-g therapy with the anti-PD-1 antibody,

nivolumab, in fungal sepsis has shown promising in restoring

immune func t ion and e l imina t ing in f e c t ion (118) .

Immunoadjuvant adjunctive IFN-g therapy, along with IL-7 and

anti-PD1/PD-L1, could be beneficial for patients with sepsis, as it

has proven impacts on enhancing CD4+ and CD8+ T cell functions.

Fms-like tyrosine kinase-3 ligand (Flt3L), a stem cell growth

factor, acts on the class III tyrosine kinase receptor (Flt3R), which is

typically expressed on hematopoietic progenitor cells and dendritic

cell populations. Enhanced dendritic cell apoptosis and the subsequent

impairment of T cell function are common in sepsis pathophysiology.

Flt3L treatment has demonstrated effectiveness in promoting the

growth and expansion of dendritic cells in both human (119) and

mouse models (120). In addition, Flt3L therapy in models of burn

injury and sepsis not only increases dendritic cell populations but also

enhances neutrophil antimicrobial functions and improves survival

(121). A recent study using a mouse model of burn injury and sepsis

has shown that Flt3L treatment mitigates T cell depletion, restores

CD28 expression on CD4+ and CD8+ T cells, and increases IFN-g
production by CD8+ T cells, thereby reducing organ injury markers

and enhancing survival (122). Flt3L also suppresses PD-L1 expression

on APCs, such as dendritic cells, macrophages and monocytes. A

research group has revealed that Flt3 can mitigate oxidative stress and

protect cardiomyocytes from apoptotic death through the regulation

of Bcl-2 family proteins (123). Thus, Flt3 is hypothesized to reduce T

cell apoptosis in sepsis. Further investigation is warranted to explore

the synergistic potential of Flt3 therapy with other established

therapeutics, such as IL-7, in the management of sepsis.

Granulocyte macrophage colony stimulating factor (GM-CSF), a

hematopoietic growth factor, enhances the production of neutrophils

and monocytes, enhances monocyte survival, and restores TNF

production, thereby helping to prevent nosocomial infections and
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mitigate immunosuppression (124). GM-CSF therapy increases the

expression of HLA-DR on monocytes, facilitates bacterial clearance,

and contributes tomore ventilation-free days and reduced stays in the

intensive care unit (125). However, a meta-analysis by Bo et al. found

no evidence supporting the routine use of G-CSF or GM-CSF in

patients with sepsis (126).

PD-1 receptor system acts as a negative regulator of the immune

response. In sepsis, there is an overexpression of inhibitory receptors

PD-1 on B and T lymphocytes and PD-L1 and PD-L2 on epithelial

cells, endothelial cells, and APCs. This overexpression leads to

decreased cytokine secretion, increased apoptotic cell death,

immunosuppression, and, eventually, deleterious outcomes. A high

serum soluble form of PD-L1 (sPD-Ll) has also been detected in

patients with sepsis, and is correlated with disease severity and poor

clinical outcomes (127). The PD-1/PD-L1 axis, targeted by immune

check point inhibitor antibodies, is gaining attention as an

immunotherapeutic approach in sepsis due to its successful

application in the treatment of infectious diseases and regression of

advanced-stage cancers (128, 129). In addition, anti-PD-1/PD-L1

therapy has also been shown to increase the expression of CD28 on

proliferating peripheral CD8+ T cells following treatment. Mice

models and ex vivo clinical studies of patients with sepsis have

shown that blockade of PD or PD-L1 plays a significant role in

reversing immune defects caused by sepsis (130). Furthermore, anti-

PD-L1 treatment has been shown to promote apoptosis in septic

neutrophils in mice models (131). The immunosuppressive properties

of septic neutrophils, monocytes, and macrophages can also be

reversed by blocking either PD-1 or PD-L1 (34, 132). Additionally,

treatment with anti-PD1 antibodies enhances DC survival in sepsis

(72). An anti-PD-1 antibody nivolumab, i.e., immune checkpoint

inhibitor has been evaluated the safety, tolerability, pharmacokinetics,

and pharmacodynamics at the phase 1b (133) and the phase 1/2 study

(134). Taken together, these findings suggest that targeting the PD-1/

PD-L1 axis with immunoadjuvant therapy represents a promising

approach to reverse sepsis-induced immunosuppression.

Autophagy has recently gained attention in the field of critical

care due to its role in regulating cell apoptosis. Enhancing T cell

autophagy may alleviate sepsis-induced immunosuppression by

modulating apoptosis (102). Additionally, inhibiting NETosis

represents another potential strategy for sepsis management. A

recent study in rodent models of sepsis has shown that NET

inhibition using Cl-amidine, a PAD4 inhibitor, is effective (135).

Another study has demonstrated the inhibition of PAD4 and

NETosis in both mice and humans using YW3-56 as an inhibitor

(136). Moreover, disulfiram, an FDA-approved drug, targets

GSDMD activation, blocking pyroptosis and NETosis, thereby

improving survival in mice (137). Table 1 summarizes some

preclinical treatments against immunosuppression in sepsis.
Adverse reactions of immunotherapy

The main concern of immune therapy in sepsis is the risk of

hyper-inflammatory response that can increase the severity of the

disease, even death. An animal study reported that IL-15

immunotherapy has a toxic effect, causing liver injury and
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cachexia (115, 139). However, clinical trials of IL-7 and IFN-g
therapy showed no adverse reactions like cytokine storms or

exacerbating inflammation and were well tolerated (108, 116).

Although PD-1/PD-L1 is a promising therapy, PD-1 deficiency is

also related to the occurrence of autoimmune diseases such as

lupus-like syndromes, de novo type 1 diabetes, and dilated

cardiomyopathy (140, 141). That is why the timing and duration

of PD-1/PD-L1 blocking should be done with proper attention. In

conclusion, patients’ immune status, optimal dosage, timing, and

personalized approach should be considered before starting the

clinical application of immunotherapy to avoid adverse reactions.
Conclusions and future directions

Immune cells employ mechanisms such as autophagy in B cells

and T cells, as well as NETosis and pyroptosis in neutrophils and

macrophages, initially to protect the host. However, when

overactivated, these protective effects can become detrimental.

Dysregulated immune cell death, including apoptosis, autophagy,

NETosis, and pyroptosis, along with impaired immune status,

contributes significantly to the pathophysiology of sepsis. To

effectively address sepsis, it is imperative to explore other types of
TABLE 1 Preclinical treatments for immunosuppression during sepsis.

Immune
Modulator

Outcome Reference

IL-7 Inhibit sepsis-induced massive immune
cell apoptosis
Enhance production of CD4+ T and
CD8 T cells
Increase T-cells infiltration to sites of
infection
Boost IFN-g production

(108–111)

IL-15 Prevent sepsis-induced apoptosis of
CD8 T cells, NK cells, and DCs

(113)

IFN-g Upregulate monocyte expression of
HLA-DR, increase numbers of IL-17
producing CD4+ T cells

(116, 117)

Flt3L Promote DCs
Promote neutrophil antimicrobial
function
Suppresses PD-L1 expression on APCs
Augment IFN-g production

(119, 121, 122)

GM-CSF Increase production of neutrophils and
monocytes or macrophages and reduce
cell death
Augment the expression of HLA-DR
on monocytes

(124, 125)

PD-1/PD-L1 Protect immunosuppressive properties
of septic neutrophils, monocytes, and
macrophages
Anti-apoptotic effects to prevent loss of
protective function of NK cells
Prevent lymphocyte apoptosis and
reverse monocyte dysfunction
Initiate neutrophil apoptosis
Restore monocyte HLA-DR antigen
expression and lymphocyte count

(34, 131–134, 138)
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cell death and their underlying mechanisms. In addition, elucidating

the cross-talk among apoptosis, autophagy, pyroptosis, and NETosis

is necessary. These cell death processes augment inflammation,

deplete immune cells, and lead to immunosuppression. Targeting,

closely monitoring, and regulating these cell death mechanisms could

offer a promising approach to treating patients with sepsis, ultimately

improving survival. In this review, we have highlighted numerous

immunoadjuvant therapeutic agents that possess significant potential

to enhance suppressed immunity in sepsis. While immunotherapy

represents a promising strategy against sepsis, the broad variations

in immune status among patients must be carefully considered

for clinical applications. Biomarker-guided stratification and

a personalized approach for each patient are imperative.

Furthermore, combination therapies may offer a higher success rate

in countering immunosuppressive sepsis in the future.
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