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Advances of the multifaceted
functions of PSTPIP2 in
inflammatory diseases
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Zixuan Shu 2 , Chen Li 3* and Guangrui Huang 1*

1School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China, 2School of Chinese
Materia Medica , Beijing University of Chinese Medicine, Beijing, China, 3Department of
Rheumatology, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
The complex interaction between the immune system and autoinflammatory

disorders highlights the centrality of autoimmune mechanisms in the

pathogenesis of autoinflammatory diseases. With the exploration of PSTPIP2, it

has been discovered to play an inhibitory role in immune diseases, suggesting its

potential utility in the research and treatment of rheumatic diseases. This review

outlines the mechanisms of PSTPIP2 in chronic multifocal osteomyelitis (CMO),

rheumatoid arthritis (RA), synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO)

syndrome, liver diseases, renal diseases, pressure ulcer sepsis and diabetic obesity.

The mechanisms include inhibiting the IL-1b inflammatory responses, NF-kB, ERK
phosphorylation etc., promoting Erb, and modulating the polarization of

macrophage to prevent the inflammatory diseases. This review summarized

current findings and offered perspectives on future research directions, laying a

foundation for applying of PSTPIP2 in inflammatory diseases.
KEYWORDS
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1 Introduction

As research into immune inhibitory proteins progresses, proline-serine-threonine

phosphatase-interacting protein 2 (PSTPIP2), a member of the Fes/CIP4 homology-Bin/

Amphiphysin/Rvs (F-BAR) domain family, has been identified as an adaptor protein residing

on the cell membrane (1–3). Serving as an immune suppressor, PSTPIP2 inhibits

inflammation and mitigates the damage inflicted by the immune system on the body (4–

6). Its efficacy is anchored in its modulation of mutiple signaling cascades,notablyby

inhibiting the functional activity of IL-1b, modulating the chemokine CXCL2 within

neutrophil granules, and suppressing the production of reactive oxygen species (ROS) via

the neutrophil NOX2 NADPH oxidase. Furthermore, PSTPIP2 demonstrates its role as an

immune suppressor by effectively dampening inflammation and alleviating immune-induced

tissue damage through these multifaceted mechanisms. It accomplishes this by inhibiting the

activity of IL-1b, fine-tuning CXCL2 within neutrophil granules, and suppressing the
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generation of reactive oxygen species (ROS) by neutrophil NOX2

NADPH oxidase. Additionally, PSTPIP2 exerts inhibitory effects on

osteoclastogenesis. Bymodulating these pathways, PSTPIP2 dampens

immune responses, thereby mitigating the harm inflicted on the

body (7).

The damage wrought by immune responses on the human body

poses a formidable clinical hurdle. This condition, characterized by

abnormal immune activation, often manifests as fever, joint

swelling, pain, and even deformation, along with skin redness,

rash, and itching. These impairments frequently pose significant

therapeutic challenges (8–12). Currently, there are no specific drugs

available, and most therapies aim to alleviate these symptoms by

suppressing the overall immune system of the body, which can be

highly detrimental to the patient (13–16). Consequently, research

into these immune-mediated disorders is of paramount importance.

PSTPIP2, as a relevant protein, underscores its significance value in

immune disease research by suppressing immune responses and

mitigating the damage caused by the immune system to the body

(17–19). While researchers are actively delving into the role of

PSTPIP2 in various immune disorders, the precise mechanisms

underlying its function in some of these diseases, such as its

inhibition of IL-1b, remain incompletely understood. A deeper

exploration of these mechanisms is inperative for advancing our

comprehension of PSTPIP2’s potential therapeutic applications.

This comprehensive review offers an extensive perspective on

the advancements in understanding the mechanisms of PSTPIP2 in

context of autoinflammatory diseases, as vividly depicted in

Figure 1. We systematically outline the role of PSTPIP2 in CMO,

RA, SAPHO syndrome, liver diseases, renal diseases, pressure ulcer

sepsis and diabetic obesity. We hope to provide insights and

guidance for future research directions and drug design related to

PSTPIP2 in inflammatory diseases.
2 Osteomyelitis

Osteomyelitis, characterized by infection and bone destruction,

presents with pain in the affected area, along with fever, weight loss,

localized redness and swelling, and tenderness on palpation (20–23).

This chapter delves into the pivotal role of PSTPIP2 protein in

chronic multifocal osteomyelitis (CMO). The pathogenetic role of

PSTPIP2 in osteomyelitis is shown in Figure 2. PSTPIP2, a crucial

mediator in autoinflammatory diseases, can initiate or exacerbate the

symptoms of osteomyelitis when absent or mutated. Recent research

have unveiled that PSTPIP2 collaborates with the suppression of pro-

inflammatory factors like IL-1b, the regulation of megakaryocyte and

neutrophil functions, and the interaction with proteins such as

protein tyrosine phosphatases containing a PEST domain(PEST-

PTPs) to collectively inhibit inflammatory responses. Additionally,

the emerging role of PSTPIP2 in modulating the gut microbiome in

chronic multifocal osteomyelitis presents a novel perspective for

disease treatment.

The CMO represents a distinctive subtype of osteomyelitis

primarily characterized by bone pain and pyrexia. Due to the

unclear pathogenesis, the treatment rate remains low (24–27).

Scholars had demonstrated that the absence of the PSTPIP2
Frontiers in Immunology 02
protein in animals leads to the development of autoinflammatory

manifestations, suggesting a role for PSTPIP2 in controlling the

onset of autoinflammatory diseases. These discoveries provide

novel insights into the pathogenesis of CMO and other related

autoinflammatory disorders, setting the stage for future research

endeavors in this field. Ferguson, PJ et al. (28) utilized backcross

strategies to localize the CMO gene and identified the presence of

the PSTPIP2 gene within the region. They discovered a single base

pair mutation, suggesting that mutations in PSTPIP2 may serve as a

genetic determinant contributing to the autoimmune inflammatory

phenotype observed in CMO mice. Similarly, Chen, TC (29)et al.

induced PSTPIP2 mutations in C57BL/6 J mice through N-ethyl-N-

nitrosourea mutagenesis, and these mice exhibited inflammatory

responses in areas such as claws. Furthermore, Chitu, V et al. (30)

found that asymptomatic PSTPIP2 (CMO) mice had an increased

number of macrophage precursors in their spleens. The lack of

PSTPIP2 facilitated the proliferation of macrophage progenitors

and augmented the responsiveness of mature macrophages to

activating stimuli. This combination effect predisposes the

organism to excessive and sustained inflammatory responses,

ultimately resulting in autoimmune inflammatory diseases.
2.1 IL-1b-mediated pathway

The inhibitory effect of PSTPIP2 on IL-1b also holds considerable

significance in CMO. Drobek, A et al. (31) demonstrated that the C-

terminal key tyrosine residue region of PSTPIP2 is crucial for its

inhibition of IL-1b processing in neutrophils, through its binding to the
inhibitory enzymes CSK and SHIP1. Furthermore, the inhibitory

capacity of SHIP1 enhances this process. Similarly, Gurung, P et al.

(32) revealed the combined role of IL-1b in driving the disease

progression in PSTPIP2(CMO) mice. The number of IL-1 receptors

(IL-1Ra) in PSTPIP2-deficient mice also impacts disease severity.

Cassel SL et al. (33) demonstrated that the absence of IL-1RI in

CMO mice significantly shortened the disease onset time and

reduced the degree of bone lesions, indicating that controlling the

number of IL-1R1 could be a potential therapeutic direction for CMO

caused by PSTPIP2 deficiency. In addition, Lukens, JR et al. (34, 35)

identified PSTPIP2 as a negative regulator of caspase-1-mediated

autonomous IL-1b production. This finding underscores the

mechanism by which PSTPIP2 exerts its anti-inflammatory effects by

modulating IL-1b levels, thereby preventing the unchecked activation

of inflammatory responses that could lead to autoimmune or

autoinflammatory conditions.
2.2 Neutrophil-mediated pathway

Kralova, J et al. (10) discovered that in addition to IL-1b,
PSTPIP2 negatively regulates the pathway of neutrophil NOX2

NADPH oxidase, which generates reactive oxygen species (ROS).

PSTPIP2(CMO) neutrophils exhibit extremely high superoxide

production in response to various stimuli, implicating dysregulated

NADPH oxidase activity as a pivotal mediator of autoimmune

inflammatory bone damage in PSTPIP2(CMO) mice. Furthermore,
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PSTPIP2 inhibits the exaggerated neutrophil responses to various

stimuli induced by ROS produced by neutrophil NOX2 NADPH

oxidase, thereby suppressing inflammation. Pavliuchenko, N et al.

(36) used mouse strains with disrupted PEST or SHIP1 binding sites

in PSTPIP2 to demonstrate that when PEST-PTPs cannot bind to

PSTPIP2, it leads to dysregulation of the chemokine CXCL2 in

neutrophils, causing symptomatic disease.
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2.3 Gut microbiota-mediated pathway

Lukens, JR et al. (35) investigated the characteristics of the gut

microbiota in PSTPIP2(CMO) mice and elucidated that diet-related

changes in the gut microbiota composition play a pivotal role in

regulating caspase-1 and caspase-8-mediated IL-1b maturation,

which subsequently impacts the development of osteomyelitis in
FIGURE 1

Research progress on the mechanism of action of PSTPIP2 in inflammatory diseases.
FIGURE 2

The pathogenetic role of PSTPIP2 in osteomyelitis.
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these animals. Their findings hint at the promising potential of

dietary interventions aimed at modulating the gut microbiota as a

therapeutic strategy for the treatment of chronic multifocal

osteomyelitis (CMO) arising from PSTPIP2 deficiency. However,

the specific relationship between PSTPIP2 protein and the gut

microbiota remains to be further investigated.
3 Arthritis

Arthritis represents a diverse group of inflammatory diseases

affecting human joints and their surrounding tissues, manifesting as

bone hyperplasia, and ligament tissue alterations, among other

symptoms (37–40). Emerging research has shown that PSTPIP2

can inhibit osteoclast development and thereby prevent the onset of

arthritis. The pathogenetic role of PSTPIP2 in arthritis is shown in

Figure 3. Chitu, V et al. (41) delved into the mechanism underlying

PSTPIP2’s regulation of osteoclast development by examining cmo

models unable to express PSTPIP2 and Lupo models with PSTPIP2

dysfunction. They found that PSTPIP2 acts as a negative feedback

regulator of CSF-1R signaling, inhibiting TRAP expression, and

osteoclast precursor fusion, thus suppressing inflammation and

osteoclastogenesis, where PSTPIP2 tyrosine phosphorylation and

a functional F-BAR domain played an important role. Similarly,

Tsujita, K et al. (42) discovered the complex interplay between
Frontiers in Immunology 04
PSTPIP2 and other F-BAR domain proteins in regulating cellular

processes that impact inflammation and tissue remodeling. Sztacho,

M (43) discovered that PSTPIP2 plays a role in regulating

podosome assembly within the podosome/sealed dynamics

monitoring mechanism.
3.1 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory

disease (44–48), characterized by erosive arthritis with synovitis as its

underlying pathological mechanism. Initial symptoms include

morning stiffness, swelling, and pain in the joints, which can

progressively evolve into joint deformity (49–52). Fibroblast-like

synoviocytes (FLS) play a crucial role in its pathogenesis (53–56).

Yao Y (3) conducted a study utilizing an arthritis animal model to

investigate the function of PSTPIP2 in FLS and demonstrated that

PSTPIP2 exerts inhibitory effects on FLS proliferation and

inflammatory responses. Moreover, the expression mechanism of

PSTPIP2 is closely related to the NF-kB signaling pathway. Grosse, J

et al. (57)found that PSTPIP2 has anti-inflammatory effects in

macrophages. Yao, Y (58) explored the molecular mechanism of

PSTPIP2’s anti-bone erosion effects by overexpressing PSTPIP2

protein in vivo experiments. They discovered that PSTPIP2 regulates

synovial macrophage polarization and dynamics through Estrogen
FIGURE 3

The pathogenetic role of PSTPIP2 in arthritis.
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Receptor Beta, forming an immune barrier (F4/80(+)PSTPIP2(hi) cell-

enriched zone) at the joint, thereby controlling rheumatoid arthritis

bone erosion. This suggests that locally regulating PSTPIP2 expression

in the joint microenvironment may be a potential strategy for

controlling rheumatoid arthritis bone erosion.
3.2 Diabetic osteoarthritis

Diabetic osteoarthritis (DM-OA) often affects individuals with

inadequate glycemic control despite prolonged oral hypoglycemic

medication and stands as a prominent cause of disability (59–62).

Its primary symptoms include joint pain, stiffness, and swelling

(63–65). PSTPIP2 has a mitigating effect on DM-OA and bone

damage. Li, M et al. (66) investigated the potential pathways of

PSTPIP2 influencing DM-OA progression by overexpressing

PSTPIP2 through intra-articular injection of lentiviral vectors.

They found that PSTPIP2 overexpression alleviates synovial

inflammation and bone damage in DM-OA by inhibiting ERK

phosphorylation. In addition, Liu, L et al. (67)also discovered

PSTPIP2 overexpression caused enhanced activation of Src family

kinases and subsequently reduced ERK phosphorylation, and

verified that PSTPIP2 upregulation repressed megakaryocyte

development in primary mouse bone marrow cells.
4 SAPHO syndrome

SAPHO syndrome is an uncommon condition primarily affecting

bones and skin, with its primary diagnostic feature being chronic

multifocal osteitis (68–71). The protein PSTPIP2 plays crucial roles in

macrophage activation, neutrophil migration, and osteoclast

differentiation (72). Liao HJ et al. (73) generated PSTPIP2 knockout

(Pstpip2(-/-)) mice and observed that all Pstpip2(-/-) mice developed

an inflammatory disease resembling SAPHO syndrome. Notably,

inflamed tissues exhibited significant elevations in chemokines

attracting neutrophils and IL-1b, hinting at a potential role for

PSTPIP2 in innate immunity and autoinflammatory bone diseases,

possibly linked to the pathogenesis of human SAPHO syndrome.

Marzano, AV et al. (74) summarized that in SAPHO syndrome, the

activation of PSTPIP2 inflammasomes is thought to contribute to the

induction of innate immune system dysfunction. However, there are

also different points of view, Hurtado-Nedelec M (75) analyzed the

PSTPIP2 gene in patients with SAPHO syndrome. Compared to

controls, no specific or more frequent rare variations in this gene

were observed in SAPHO patients, indicating no correlation between

PSTPIP2 variations and SAPHO syndrome. Therefore, further research

is imperative to unravel and elucidate the underlying mechanistic

connections between PSTPIP2 and SAPHO syndrome.
5 Liver system diseases

Liver system diseases, encompassing a range of disorders that

impair liver function, such as liver injury and hepatitis, represent a

complex spectrum of conditions. Liver injury is usually caused by
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external forces or viral infections (76, 77), whereas alcoholic liver

injury (ALI) is caused by chronic excessive alcohol consumption

and manifests as fatigue, anorexia, bloating, and diarrhea (78).

Figure 4 illustrates the pathogenic role of PSTPIP2 in liver system

diseases. This chapter emphasizes the multifaceted nature of

PSTPIP2 in liver disease, suggesting its potential application in

therapeutic strategies and the need for further research.
5.1 Alcoholic liver injury

Liver injury, a relatively common condition, affects the liver and is

characterized by varying degrees of hepatocyte damage induced by

external forces or viral infections (79–82). Alcoholic liver injury (ALI),

specifically, arises from prolonged and excessive alcohol consumption,

manifesting with symptoms such as fatigue, anorexia, abdominal

distension, and diarrhea (83–86). Yin, NN et al. (87) utilized an

ethanol (EtOH)-fed mouse model and an EtOH-induced AML-12

cell model to demonstrate that PSTPIP2 regulates hepatocyte apoptosis

in ALI through the signal transducer and activator of transcription 3

(STAT3) pathway. Xu, JJ et al. (88) found that in ALI, ethanol induces

aberrant methylation of PSTPIP2 and elevates the expression of

proteins such as DNMT3a. Furthermore, the silencing of DNMT3a

significantly restored ethanol-induced low PSTPIP2 expression and

inhibited ethanol-induced inflammation.
5.2 Liver fibrosis and hepatitis

Hepatitis is a diverse range of conditions caused by bacteria,

viruses, parasites, alcohol, drugs, chemicals, and autoimmune factors,

leading to impaired liver function and abnormal liver function

indicators (79, 89–91). PSTPIP2 has been implicated in alleviating

hepatic fibrosis and inflammation. For instance, Yang, Y et al. (92)

investigated the function of PSTPIP2 in hepatic fibrosis through

adeno-associated virus (AAV9)-mediated PSTPIP2 overexpression,

investigating the molecular mechanisms underlying PSTPIP2-

regulated hepatic fibrosis. They discovered that increased PSTPIP2

expression alleviates hepatic fibrosis and inflammation in mice by

modulating macrophage polarization. However, contrasting research

suggests that PSTPIP2 may promote the progression of hepatitis C.

Chao, TC et al. (93) employed a lentiviral-based RNA interference

(RNAi) screening approach to identify PSTPIP2 as a potential cellular

factor involved in HCV replication. They further demonstrated the

importance of PSTPIP2’s membrane-deforming ability in HCV

replication, proposing that PSTPIP2 facilitates membrane

alterations and participates in the formation of membrane webs,

which are crucial for HCV replication complexes. Therefore, a more

detailed investigation into the mechanisms of PSTPIP2 in different

types of hepatitis is warranted.
6 Renal system diseases

The kidney is a highly susceptible genitourinary organ prone to

damage from trauma, spontaneous rupture, iatrogenic injuries, and
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other factors, resulting in symptoms such as hematuria, pain, and

shock (94–96). The previous research has shown a close association

between PSTPIP2 and inflammatory diseases, with histone

deacetylases potentially mediating the expression of PSTPIP2. The

pathogenetic role of PSTPIP2 in renal systemic diseases is shown in

Figure 5. In the context of renal injury, Zhu, H et al. (97) conducted

a study to determine the specific role of PSTPIP2 in cisplatin-

induced acute kidney injury (AKI), discovering that cisplatin might

silence PSTPIP2 through histone acetylation. Xu, CT et al. (98)

experimentally found that histone deacetylase (HDAC)-mediated

PSTPIP2 silencing may contribute to the development of

aristolochic acid nephropathy (AAN). Du, CL et al. (99)

demonstrated that neutrophils and neutrophil extracellular traps

(NETs) play crucial roles in AAN, and proposed that therapeutic

targets targeting PSTPIP2/nuclear factor (NF)-kB/IL-19/IL-20Rb
could offer novel strategies for reducing aristolochic acid I-mediated

acute kidney injury and apoptosis.
7 Other conditions

7.1 Pressure sore sepsis

Pressure sore sepsis is a chronic condition characterized by deep

skin breakdown accompanied by pus and bleeding (100–102).

PSTPIP2 exhibits anti-inflammatory effects in pressure-sore

sepsis. Wang, XX et al. (103) compared the expression levels of
Frontiers in Immunology 06
PSTPIP2 in peripheral blood samples from 20 patients suffering

from sepsis secondary to pressure ulcers and 10 healthy controls.

They found that patients with sepsis due to pressure ulcers had

lower levels of PSTPIP2 in their peripheral blood. Further,

lipopolysaccharide (LPS)-induced THP-1 cells expressed lesser

amounts of PSTPIP2 compared to untreated control cells.

Additionally, the transfection of PSTPIP2 resulted in reduced

levels of IL-6, IL-1b, and TNF-a, while also inhibiting the

activation of the NF-kB signaling pathway. These findings

collectively suggest that PSTPIP2 is associated with the severity of

pressure sore sepsis and exerts anti-inflammatory effects, implying

potential anti-inflammatory roles of PSTPIP2 in other skin-related

inflammatory conditions that remain to be explored.
7.2 Diabetic obesity

Diabetic obesity refers to a condition where individuals have

both diabetes and obesity, often leading to increased health risks

and complications such as cardiovascular diseases, hypertension,

and metabolic disorders (104–106). In the realm of diabetic obesity,

PSTPIP2 also alleviates obesity-related tissue inflammation in

diabetic mice. Xu, J et al. (107) established a diabetic mouse

model through a high-fat diet (HFD) and discovered that

PSTPIP2 promotes M2 macrophage polarization via activation of

PPARg, thereby mitigating obesity-related adipose tissue

inflammation and insulin resistance in diabetic mice. These
FIGURE 4

The pathogenetic role of PSTPIP2 in liver system diseases.
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findings hint at the potential of PSTPIP2 as a therapeutic target for

diabetes, presenting a novel therapeutic trajectory for managing

this condition.
8 Outlook

This review comprehensively examines the mechanisms of

PSTPIP2 in diverse diseases, with a particular emphasis on its

advancements in osteomyelitis, arthritis, SAPHO syndrome, hepatic

diseases, renal diseases, and other inflammatory conditions. As a

pivotal immunomodulatory protein, PSTPIP2 exhibits broad-

spectrum immunosuppressive effects through multiple pathways,

including inhibition of IL-1b, modulation of neutrophil and

macrophage activity, and regulation of gut microbiota.

While considerable progress has been made in elucidating the

mechanisms of PSTPIP2 in various diseases, numerous challenges

persist and avenues for future research remain unexplored. Firstly,

the intricate mechanisms of PSTPIP2 in diverse diseases remain

incompletely understood, particularly its dual and sometimes

paradoxical roles in different liver disease manifestations. For

instance, while PSTPIP2 exhibits protective effects against acute

liver injury (ALI) and fibrosis, it paradoxically facilitates viral

replication in hepatitis C. A profound understanding of these

mechanisms is paramount for the development of targeted

therapeutic strategies that can harness the immunomodulatory

potential of PSTPIP2 without exacerbating undesirable effects.

Secondly, the intricate relationship between PSTPIP2 and the gut

microbiota merits thorough investigation. The gut microbiota serves

as a crucial modulator of immune responses, and its intricate
Frontiers in Immunology 07
interplay with PSTPIP2 may offer novel insights into potential

dietary interventions for disorders related to PSTPIP2 deficiency.

By exploring this interaction, there is potential to uncover dietary

interventions or probiotics that could be employed to address

PSTPIP2 deficiency-related disorders, thereby providing patients

with an alternative or adjunctive therapeutic approach. Moreover,

the development of PSTPIP2-targeted therapeutics remains a crucial

research direction. Currently, there are no commercially available

drugs specifically targeting PSTPIP2, despite its promising

therapeutic potential across a range of immune-mediated diseases.

Progress in this area will necessitate overcoming substantial scientific

and technical challenges, including the identification of specific

binding sites on PSTPIP2 and the development of molecules

capable of effectively modulating its activity without eliciting

adverse effects. Additionally, future studies should explore the

potential synergies between PSTPIP2-targeted therapies and

current treatment modalities for immune-mediated diseases.

Specifically, the integration of PSTPIP2 modulators with

conventional immunosuppressants could potentially augment

treatment efficacy and mitigate the risk of adverse events.

In conclusion, by conducting in-depth investigations into the

mechanisms underlying PSTPIP2 and addressing the associated

challenges, we can pave the way for innovative therapeutic strategies

for a diverse array of immune-mediated diseases. These endeavors

will not only elevate treatment efficacy and enhance patients’ quality

of life but also contribute significantly to a deeper understanding of

the intricate interplay between the immune system and various

diseases. This holistic approach is imperative for advancing the field

of immunomodulatory therapies and improving clinical outcomes

for patients with immune-mediated disorders.
FIGURE 5

The pathogenetic role of PSTPIP2 in renal system diseases.
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SAPHO synovitis-acne-pustulosis-hyperostosis-osteitis
Frontiers in Immunol
RA rheumatoid arthritis
ROS reactive oxygen species
PSTPIP2 proline-serine-threonine phosphatase-interacting protein 2
F-BAR Fes/CIP4 homology-Bin/Amphiphysin/Rvs
CAO chronic aseptic osteomyelitis
ENU N-ethyl-N-nitrosourea
SNP single nucleotide polymorphism
CRMO chronic recurrent multifocal osteomyelitis
MCP-1 monocyte chemoattractant protein-1
CSK C-terminal Src kinase
ERK extracellular signal-regulated kinase
PEST-PTPs protein tyrosine phosphatases containing a PEST domain
SHIP1 Src homology 2 domain-containing inositol-5'-phosphatase 1
CSK C-terminal Src kinase
ogy 11
CMO chronic multifocal osteomyelitis
FLS fibroblast-like synoviocytes
DM-OA Diabetic osteoarthritis
ALI Alcoholic liver injury
STAT3 signal transducer and activator of transcription 3
AAV9 adeno-associated virus
RNAi RNA interference
AKI acute kidney injury
HDAC histone deacetylase
AAN aristolochic acid nephropathy
NETs neutrophil extracellular traps
LPS lipopolysaccharide
HFD high-fat diet
IL-1Ra IL-1 receptors
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