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Drug resistance poses a significant challenge in the treatment of breast cancer. In

recent years, a variety of nanomaterials have been discovered and synthesized

that can selectively target tumor cells and play a crucial role in the advancement

of breast cancer therapies. As our understanding of tumor heterogeneity

deepens, the emerging potential of nanomaterials in addressing drug

resistance has garnered considerable attention. These materials not only

selectively target tumor cells but also possess unique properties that make

them promising options for cancer treatment, including low toxicity, excellent

biocompatibility, ease of preparation, the ability to carry antitumor drugs, and

customizable surface functions. In this review, we will comprehensively

summarize two key developments in breast cancer treatment: the application

of antitumor drugs and nanomaterials. We will explore the mechanisms by which

nanomaterials improve drug resistance in breast cancer, targeted nanotherapy

strategies to mitigate this resistance, and recent research advancements in

anticancer nanomaterials. This overview aims to highlight the significant role of

nanomaterials in breast cancer treatment and provide a theoretical framework

for identifying optimal treatment strategies in the future.
KEYWORDS
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1 Introduction

Breast cancer has the highest mortality rate among female cancers in many countries

and regions, surpassing lung cancer to become the most commonly diagnosed cancer (1–3).

According to the American Cancer Society (1), there will be approximately 300,590 new

cases of breast cancer in 2023, resulting in an estimated 43,700 deaths.

Currently, the primary treatments for breast cancer include surgery, along with

radiotherapy, chemotherapy, hormone therapy, and other methods (4). Chemotherapy is

a widely used approach; however, its lack of selectivity for tumor tissues presents significant
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challenges (5–7). These challenges include systemic toxicity and the

accumulation of chemotherapy drugs at tumor sites, which can lead

to tumor resistance (8).

Breast cancer cells can develop drug resistance through a variety

of complex cellular and molecular mechanisms. These mechanisms

primarily include (1) drug efflux and inactivation: tumor cells may

diminish drug effectiveness by increasing drug efflux and decreasing

intracellular drug concentrations (9). (2) Enhanced DNA damage

repair: to resist DNA damage caused by chemotherapy drugs,

tumor cells may enhance their DNA repair capabilities, which

results in reduced drug efficacy (10). (3) Activation of bypass

signals or pro-survival pathways: tumor cells can also manipulate

apoptosis pathways, allowing them to evade chemotherapy-induced

apoptosis and sustain their survival. (4) Epithelial-mesenchymal

transition (EMT): this process can enhance tumor cell invasion and

metastasis, potentially leading to increased resistance to

chemotherapy drugs (11). (5) Stem-like properties: cancer stem

cells may exhibit greater drug resistance, enabling them to sustain

tumor growth and recurrence through their ability to self-renew

and differentiate into other tumor cells (12). In summary,

understanding and addressing the mechanisms of breast cancer

drug resistance is crucial for improving treatment outcomes and

enhancing patient survival rates.

In recent years, nanomaterials have shown significant potential

in both the treatment and management of breast cancer (13). As

research in nanotechnology has advanced, it has become evident

that nanomaterials offer unique advantages in terms of

biocompatibility, drug delivery (including drug release and
Frontiers in Immunology 02
localization) (14, 15), targeted therapy, antitumor effectiveness,

and the ability to kill tumor cells in vivo (16). Additionally, the

distinct properties of nanomaterials can influence breast cancer

resistance mechanisms by controlling drug release (17, 18), thereby

significantly alleviating drug resistance. Despite the variety of

available nanomaterials, further study is needed to optimize their

design, explore combined uses, and address toxicity concerns.

Therefore, this review summarizes the latest advancements in the

use of various nanomaterials for alleviating breast cancer resistance.
2 Current application status of
anti-tumor drugs in breast
cancer treatment

In the treatment of breast cancer, commonly used anti-tumor

drugs contain chemotherapy agents such as cyclophosphamide and

doxorubicin, as well as immunotherapy drugs like anti-PD-1/PD-

L1 antibodies, including pembrolizumab and teslazumab. The

selection of appropriate anti-tumor drugs is based on the

molecular classification, clinical stage, and individual

characteristics of each breast cancer case. While significant

advancements have been made with these drugs, issues of drug

resistance persist. To mitigate the impact of drug resistance and

enhance patient survival rates, combination treatment strategies

using two or three drugs are often employed to improve therapeutic

effectiveness and prolong survival (19, 20) (Table 1).
TABLE 1 Clinical trials of some anticancer drugs.

Therapeutic
drugs

Drug types Patient types Clinical
data

Trial results References

Doxorubicin
+ pembrolizumab

Chemotherapy
drugs + targeted
therapy drugs

Metastatic triple-
negative

breast cancer

Phase I
NCT02648477

Some patients achieved good clinical remission, with 67% reaching
the best remission and a 6-month clinical benefit rate of 56%.

(21)

Capivasertib Targeted
therapy drugs

Hormone
receptor-positive

advanced
breast cancer

Phase III
NCT04305496

In patients with advanced hormone receptor-positive breast cancer,
treatment with capivasertib plus fulvestrant can significantly prolong

progression-free survival (PFS).

(22)

Tamoxifen Hormone
therapy drug

Premenopausal
patients with

estrogen receptor-
positive

breast cancer

Phase III
NCT00912548

For those who remain premenopausal or regain ovarian function,
adding 2 years of ovarian function suppression (OFS) to tamoxifen
(TAM) treatment can significantly improve disease progression-free

survival (DFS) and overall survival.

(23)

Dalpiciclib plus
letrozole

or anastrozole

Hormone
therapy drugs

Hormone
receptor-positive,
human epidermal
growth factor
receptor 2

(HER2)-negative
advanced

breast cancer

Phase III Adding dalpiciclib to the therapy with letrozole or anastrozole
significantly prolongs the patient’s disease progression-free survival
(DFS). The treatment group receiving dalpiciclib showed notable
results in extending disease-free time, although they experienced

more grade 3 or 4 adverse events, mainly neutropenia
and leukopenia.

(24)

Pertuzumab Targeted
therapy drugs

HER2-positive
early breast cancer

Phase
III

NCT02586025

In patients treated with neoadjuvant pertuzumab plus trastuzumab
and docetaxel, five-year event-free survival and disease-free survival
rates were significantly better than those of the placebo group. The

safety data indicated that the safety profile of the pertuzumab

(25)

(Continued)
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3 Nanomaterials in breast
cancer treatment

Nanomaterials can be classified based on various criteria.

Common classifications include zero-dimensional (0D), one-

dimensional (1D) nanomaterials, and polymers (30), as

determined by their dimensions. Furthermore, when classified by

chemical composition, nanomaterials can be divided into organic

and inorganic categories (31). They may also be categorized

according to their origin, material properties, applications, and

morphology (32). Organic nanomaterials typically consist of
Frontiers in Immunology 03
substances found naturally in organisms or synthesized

chemically. Compared to inorganic materials, they exhibit lower

cytotoxicity and are biodegradable, making them a focal point of

research in the field of nanomedicine (33). Inorganic nanomaterials

are increasingly recognized as innovative tools for treating breast

cancer due to their controlled drug release, multifunctionality, and

excellent biocompatibility (18, 19, 34). The mechanisms by which

nanomaterials assist in breast cancer treatment will be discussed in

the following chapters. Nanomaterials used in breast cancer

treatment are often categorized according to their chemical

composition, as shown in Table 2.
TABLE 1 Continued

Therapeutic
drugs

Drug types Patient types Clinical
data

Trial results References

treatment group aligned with known expectations, with no
significant differences between the groups, except for an increase

in diarrhea.

Durvalumab
+ olaparib

Immunotherapy
drugs + targeted
therapy drugs

Triple-negative
breast cancer

Phase I/II
NCT02734004

The combination of olaparib and durvalumab demonstrated strong
antitumor activity and safety that were comparable to those seen in
monotherapy studies. Adverse events primarily included anemia,
neutropenia, and pancreatitis, with no treatment-related deaths

reported. Approximately 80% of patients achieved disease control at
12 weeks.

(26)

Trastuzumab Targeted
therapy drugs

HER2-positive
metastatic

breast cancer

Phase II T-DXd exhibited sustained antitumor activity in these patients,
evidenced by a high objective response rate of 62.0%. The safety
profile was consistent, with most patients experiencing mild to

moderate adverse events. However, there were a few severe adverse
events, including drug-related interstitial lung disease

and pneumonitis.

(27)

Pembrolizumab +
carboplatin
+ docetaxel

Targeted
therapy drugs +
chemotherapy

drugs

Triple-negative
breast cancer

Phase II
NCT03639948

This treatment regimen achieved a promising pathological complete
response rate (pCR) and a three-year event-free survival in patients
with triple-negative breast cancer. The regimen was well tolerated,
and immune enrichment from various biomarker identifications

independently predicted pCR.

(28)

Lapatinib Targeted
therapy drugs

HER2-negative
metastatic breast
cancer and HER2-
positive circulating

tumor cells

Phase III
NCT01619111

Clearance of circulating tumor cells (CTCs) at the first follow-up
was linked to improved overall survival. Furthermore, patients who
received additional lapatinib treatment experienced a significant

increase in overall survival.

(29)
TABLE 2 Advantages and disadvantages of several nanomaterials.

Nanomaterials Advantages Disadvantages References

Solid
lipid nanoparticles

Enhanced biopharmaceutical performance Low encapsulation efficiency (35)

Liposomes Good biocompatibility (36)

Polymeric
nanoparticles

Multifunctional delivery Prone to easy aggregation
and toxicity

(37)

Magnetic
nanomaterials

Controllable sustained release Toxicity and
solubility limitations

(38)

Magnetic
nanomaterials

Stability and very high encapsulation efficiency (39)

Quantum dots Tunable optical properties, a large surface-to-volume ratio, high brightness, and resistance
to photobleaching

(40, 41)
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3.1 Solid lipid nanoparticles

Solid lipid nanoparticles (SLNs) are made from safe

physiological lipid components and exhibit good biocompatibility

(42, 43). Granja et al. developed SLNs that encapsulate the

antitumor drug mitoxantrone and functionalized them with 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate

(polyethylene glycol) (DSPE-PEG-FA) ligands to enhance blood

circulation and tumor selectivity. This reduces systemic side effects

and enhances cellular uptake through processes such as

macropinocytosis and clathrin-coated pits (43). CS/Lf/PTS-SLNs,

prepared by Aly et al., improved drug solubility and bioavailability,

achieving more effective tumor cell treatment. They enhance drug

efficacy by inhibiting vascular endothelial growth factor,

downregulating cyclin D1, and upregulating caspase-3 and BAX

(44). SLN-DTX developed by da Rocha et al. enhances drug uptake

in cells, promotes cell accumulation in the G2-M phase, and induces

cell apoptosis, thereby increasing cytotoxicity. Figure 1 illustrates

the mechanisms by which SLN-DTX treatment induced tumor cell

apoptosis, reduced tumor cell proliferation and BCL-2 expression,

inhibited tumor growth, and prevented lung metastasis (45).

Figure 2 illustrates the four components of SLN-DIX: Pluronic,

span, compritol and Docetaxel. Pindiprolu et al. demonstrated that

PBA-Niclo-SLN induces G0/G1 cell cycle arrest and apoptosis,

curtails STAT3, CD44/CD24 triple-negative breast cancer

(TNBC) stem cell subsets, and markers of epithelial-mesenchymal

transition, ultimately inducing tumor cell apoptosis and curtailing
Frontiers in Immunology 04
recurrence of TNBC (46). These findings indicate that solid lipid

nanomaterials may serve as promising carriers for treating breast

cancer and preventing its metastasis and recurrence.
3.2 Liposomes

Liposomes are nanocarriers characterized by a closed spherical

vesicle structure made up of a phospholipid bilayer. With a

composition similar to that of biological membranes, they can

fuse with cell membranes to facilitate targeted intracellular drug

release. Liposomes are capable of encapsulating both hydrophilic

and hydrophobic drugs, enhancing drug loading, and providing

sustained and controlled drug release (47). Boratto et al. highlighted

the advantages of liposomes for intracellular delivery and release,

positioning them as promising carriers for breast cancer treatment.

Their pH-sensitive liposome preparation (pHSL-TS-DOX)

demonstrated improved drug delivery at the intracellular level,

greater accumulation in tumors, and sustained release of

doxorubicin (DOX). Additionally, treatment with pHSL-TS-DOX

resulted in cell cycle arrest primarily in the G1 phase, which may

contribute to slowing the proliferation of tumor cells (48).

Furthermore, APA-functionalized liposomes (EGA-EML-APA)

developed by Badr-Eldin et al. enhance cytotoxicity against

human breast cancer cells. By inducing G2/M and S phase arrest

in MCF-7 cells, this process includes upregulating the expression of

p53, bax, and casp3, downregulating bcl2, reducing NF-kB activity,
FIGURE 1

Mechanism of SLN-DTX in the treatment of breast cancer. Legend description: mechanism of SLN-DTX in the treatment of breast cancer (Created
with Figdraw).
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increasing TNFa expression, and triggering significant apoptotic

activity (49). Chen et al. created KLA-modified liposomes co-loaded

with 5-fluorouracil and paclitaxel (KLA-5-FU/PTX Lps), which

displayed enhanced cytotoxicity against MDA-MB-231 cells. The

proposed anti-tumor mechanism in Figure 3 suggests that the KLA

peptide facilitates liposome absorption into tumor cells and

selectively targets mitochondria, leading to mitochondrial

membrane disruption, the loss of membrane potential,

cytochrome C release, caspase-3 upregulation, and activation of

the apoptotic pathway in tumors (Figure 3). As such, KLA-5-FU/

PTX Lps is a promising system for treating TNBC (50). Collectively,

these studies indicate that functionalized liposomes hold significant

potential in the fight against breast cancer.
3.3 Polymer nanomaterials

Polymers possess a distinctive “core-shell” structure made up of

micelles formed from amphiphilic molecules. In recent years,

polymeric nanoparticles have emerged as significant candidate

carriers in drug delivery due to their advantages, including

biodegradability, improved encapsulation efficiency, biocompatibility,

and controlled release (51, 52). Furthermore, by modifying the surface

with ligands or targeting agents, polymers can enable multifunctional

drug delivery. Bressler et al. demonstrated that by attaching AXT050 to

polylactic acid-co-polylactic acid (PLGA)-PEG nanoparticles, they

could accurately control the surface density of the nanoparticles. This

modification allows them to serve as targeting agents for human tumor

cells while exhibiting anti-tumor and anti-angiogenic properties. Such

targeted modifications enhance the effectiveness of cancer

nanomedicines and improve their ability to combat tumor growth

(53). A study by Sharma et al. indicated that nanoparticles could

effectively deliver curcumin into MDA-MB231 breast cancer cells,

significantly enhancing both encapsulation efficiency and drug

release capabilities. These nanoparticles have also shown the ability
Frontiers in Immunology 05
to diminish cell viability and suppress cell invasion and metastasis (54).

Barkat et al. utilized PNP-loaded polymer nanoformulations that may

aid in breast cancer treatment by restoring mitochondrial function and

decreasing reactive oxygen species production and intracellular ATP

levels (55). Polymer nanoparticles are characterized by their

biodegradability, efficient encapsulation, controlled release, and

biocompatibility, showcasing promising applications in the field of

breast cancer treatment.
3.4 Magnetic nanoparticles

Magnetic nanoparticles are known for their excellent

biocompatibility, controllable sustained release, and targeting

capabilities, as well as their extremely high magnetocaloric effect.

For example, chitosan-coated iron-manganese oxide nanoparticles

(CS-MIONP) effectively conduct heat, making them an area of great

interest in the field of hyperthermia for tumor cell destruction (56).

Li et al. designed MUC1-C shRNA@Fe3O4MNPs, which can

rapidly and stably generate heat under a constant alternating

magnetic field at specific concentrations. This provides strong

technical support for hyperthermia therapy in cancer. Through

endocytosis, TNBC cells can effectively absorb these nanoparticles,

significantly dampening their proliferation and migration. After

treatment, the expression levels of key proteins in both TNBC cells

and tumor tissues were significantly reduced, while the levels of

apoptosis-related proteins were notably increased. This finding not

only reveals the mechanism by which MUC1-C shRNA@

Fe3O4MNPs impede tumor growth but also offers an important

theoretical foundation for developing future cancer treatment

strategies (57). As an advanced nanocarrier system, magnetic

nanoparticles (TMX-AG-INP) can efficiently deliver various

chemotherapy drugs, such as methotrexate and doxorubicin, to

breast cancer tissues. They can also bind to gold nanoparticles and

bovine albumin, producing potent anti-tumor effects. These INPs
FIGURE 2

SLN-DTX structure diagram (Created with Figdraw). STN-DTX is assembled from four substances Pluronic, span, compritol and Docetaxel. The
nanoparticles enhance drug uptake within breast cancer cells.
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can accurately deliver miR-29a (micro-RNA) to breast cancer tissue

after being coated with dextran, effectively diminishing the

expression of anti-apoptotic genes. This represents a new strategy

for breast cancer treatment (58). The combination of drugs with

magnetic nanosystems has shown great potential for targeted drug

delivery (59). This approach not only optimizes drug dosage to

minimize side effects but also significantly enhances the cytotoxic

effect on cancer cells, offering more effective, precise, and safer

prospects for cancer treatment (60, 61).
3.5 Quantum dots

Quantum dots are semiconductor nanocrystals with sizes ranging

from 2 to 10 nm and are versatile tools in biological imaging, diagnosis,

and combination therapy due to their fluorescence properties (62, 63).

However, one limitation of these quantum dots is their high

hydrophobicity, necessitating surface coatings with polymers or

multilayer ligand shells to enhance solubility. Typically, these quantum

dots feature a semiconductor metal core composed of elements from

groups II to VI or III to V, and their physical and chemical properties can

be modified through the addition of surface ligands or polypeptides,

which is particularly useful in targeted cancer treatments (64). Karami

et al. developed an innovative water-in-oil-in-water double
Frontiers in Immunology 06
nanoemulsion method to create hydrogel nanocarriers incorporating

chitosan and alumina (g-Al2O3) along with carbon quantum dots. This

method effectively addresses the challenges of low solubility and short

half-life of drugs such as curcumin, significantly enhancing their

effectiveness in drug release systems (65). Notably, the drug loading

capacity and encapsulation efficiency of this nanocarrier surpass those of

previously reported curcumin nanocarriers. Additionally, graphene

quantum dots, prepared by another research team (66), exhibit low

toxicity. Following exposure to cancer cells, there is a corresponding

increase in the expression levels of p21 and p27. Most impressively, cells

treated with these orthogonal graphene quantum dots demonstrated G2/

M phase arrest and specifically induced apoptosis in estrogen receptor-

positive breast cancer cell lines, opening new avenues for cancer

treatment and research.
4 Mechanism of action of
nanomaterials in alleviating drug
resistance in breast cancer

Chemotherapy is one of the most common treatments for aggressive

breast cancer, particularly TNBC. To tackle the challenge of drug

resistance in breast cancer, various strategies can be employed,

including blocking drug efflux and inactivation (8), inhibiting
FIGURE 3

Mechanism of action of KLA in breast cancer treatment. (A) KLA and the main components of the administered liposomes. (B) This diagram
illustrates the KLA peptide, which is delivered to the tumor cells through the EPR effect into the blood vessels. Mechanisms that promote tumor cells
to endocytose liposomes, take up and selectively target mitochondria, thereby disrupting mitochondrial membranes. This process results in the loss
of mitochondrial membrane potential, which in turn triggers the release of cytochrome C. The release of cytochrome C upregulates caspase-3
activity, thereby activating the apoptotic pathway in tumor cells. This mechanism provides a novel therapeutic strategy for the treatment of breast
cancer and may have potential clinical applications. (Created with Figdraw).
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alternative signaling pathways, addressing DNA repair (67), suppressing

the EMT process, and diminishing cancer stem cell characteristics.

Nanomaterials are engaged in dampening tumor cell proliferation (68),

metastasis, and invasion (69), as well as delivering chemotherapeutic

drugs, promoting angiogenesis, evading immune responses, and

remodeling the tumor microenvironment. Numerous studies have

demonstrated that nanomaterials play a crucial role in overcoming

chemotherapy resistance, the potential therapeutic mechanism of BC

resistance are summarized in Figure 4, which offering promising

therapeutic prospects for breast cancer treatment (70–72).
4.1 Inhibition of drug efflux

Cytotoxic drugs need to be fully taken up by cancer cells to

effectively treat cancer. Increasing drug uptake may help reduce

chemotherapy resistance (73, 74). One of the most common

mechanisms behind chemotherapy resistance is the drug efflux

mediated by transmembrane pumps. To combat this issue,

researchers have utilized acid-grafted poly(b-amino ester)

nanoparticles to encapsulate cleavage protein B, aiming to overcome

multidrug resistance to chemotherapy drugs. These nanoparticles have

a pH-sensitive release function, which enhances drug release as the pH

decreases. Importantly, they can also reverse multidrug resistance by

halting the expression of P-glycoprotein (P-gp) and affecting the energy

supply for drug efflux, thereby providing a new strategy for breast

cancer treatment (75). Guo’s team successfully developed folic acid-

modified nanoparticles ((DOX + CUR)-FA-NPs) based on star-shaped
Frontiers in Immunology 07
polyester (FA-TRI-CL), which are particularly effective in curbing P-gp

to counteract resistance. P-gp is a transmembrane transporter that

expels drugs from cells, leading to chemotherapy resistance. By

impeding P-gp, (DOX + CUR)-FA-NPs significantly prevent

resistant cells from excreting the drugs, thus enhancing their

accumulation in tumor cells and alleviating chemotherapy resistance

(76). Researchers also prepared D-a-tocopherol polyethylene glycol

1000 succinate-resveratrol solid lipid nanoparticles (TPGS-Res-SLNs),

which successfully reduced the expression of multidrug resistance-

related proteins such as P-gp and BCRP. This reduction diminishes the

excretion and inactivation of chemotherapy drugs in cells, increasing

both the concentration and duration of drug action. Furthermore,

TPGS-Res-SLNs curtailed the EMT of cancer cells, decreasing their

ability to invade and metastasize, while enhancing the effectiveness of

chemotherapy drugs. In summary, TPGS-Res-SLNs represent a

promising approach to alleviate drug resistance in breast cancer (77).

Figure 5 shows the composition and mechanism of tpgs-res-sln

(Figure 5). Cancer cells develop drug resistance partly by using efflux

pumps (such as P-gp and BCRP) to expel anticancer drugs, which

lowers drug concentrations in cells and weakens treatment effects. Ptx-

SLN bypasses these efflux pumps in breast cancer cells, facilitating

better drug entry and improving anticancer effects, especially in

multidrug-resistant cells, offering new hope for treating drug-

resistant breast cancer (78). Recent studies have introduced an

intelligent and multifunctional MoS2 nano-theranostic platform

(MoS2-PEI-HA) that targets CD44-overexpressing cancer cells and

decomposes in the tumor microenvironment due to hyaluronidase,

which accelerates the release of the chemotherapeutic drug DOX. The
FIGURE 4

Mechanisms of action of nanodrug delivery systems in breast cancer therapy. Nanodrug delivery systems in the treatment of breast cancer often
inhibit the proliferation of tumor cells, inhibit the metastasis and invasion of tumor cells, reduce immune escape, and promote the apoptosis of
tumor cells by DNA damage repair, remodeling of tumor microenvironment, inhibition of epithelial mesenchymal transition, regulation of signaling
pathways, and activation of B cells and T cells by nanovaccines.(Created with Figdraw).
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MoS2 also enhances near-infrared photothermal conversion,

promoting DOX release in the acidic environment of tumors

through mild laser irradiation (74). Most notably, this technology

can downregulate the expression of P-gp, which is associated with drug

resistance, thereby reducing drug efflux, increasing intracellular drug

accumulation, and effectively reversing drug resistance. Guney et al.

developed a new type of talazoparib SLN and found that the efflux of

talazoparib in TNBC cells was mediated by BCRP and MRP1 pumps.

Talazoparib-SLNs significantly improved the therapeutic effects of

talazoparib and suppressed the expression of MDR1, BCRP, and

MRP1 genes and proteins. In summary, targeting the expression of

genes related to drug efflux pumps is an effective strategy for alleviating

drug resistance in breast cancer (79).
4.2 Interference with signaling pathways

Cell signaling plays a crucial role in the key stages of hormone-

independent breast cancer tumorigenesis, including cell proliferation,

survival, angiogenesis, and metastasis (80). Understanding the

abnormalities in the signaling pathways that contribute to resistant

breast cancer cells can help identify specific peptides and modify their

properties to selectively target these pathways. This section provides a

brief overview of the role these signaling pathways play in breast cancer

chemotherapy resistance. Defects in the PI3K/AKT/mTOR signaling

pathways are known to cause multidrug resistance and promote cancer

metastasis. Yin et al. developed a pH-sensitive nanocomplex that co-

delivers paclitaxel (PTX) and siRNA to metastatic breast cancer. The

siRNA targets and silences Akt expression in 4T1 metastatic breast

cancer cells. In these cells, PTX-loaded micelle/siAkt nanocomplexes

(PMA) successfully downregulated P-gp, upregulated Caspase-3

expression, and resulted in Akt gene knockdown. Beyond promising

in vitro results, PMA demonstrated both efficacy and safety in vivo. In
Frontiers in Immunology 08
4T1 tumor-bearing mice, PMA achieved 94.1% tumor inhibition and

96.8% reduction in breast cancer lung metastasis. Furthermore, the

PMA nanocomplex is characterized by very low toxicity and does not

cause lesions in normal tissues (81). Guney et al. discovered that TNBC

cells often overexpress Notch1 receptors while underexpressing miR-

34amicroRNA. To tackle this issue, they encapsulatedmiR-34amimics

within poly(lactic-co-glycolic acid) nanoparticles (NPs), creating N1-

34a-NPs. These nanoparticles were functionalized to bind to the

overexpressed Notch1 receptors on the surface of TNBC cells,

thereby interfering with Notch signaling through the associated

signaling cascade. Their experiments showed that N1-34a-NPs could

effectively regulate Notch signaling and its downstream targets in

TNBC cells, leading to cell senescence and reduced proliferation and

migration. This study suggests that nanoparticle-mediated co-delivery

of miR-34a andNotch1 antibodies may serve as a promising alternative

treatment strategy for TNBC, warranting further optimization and in

vivo investigation (79). Additionally, studies have indicated that Dox-

HBDL nanoparticles significantly enhance therapeutic effects on drug-

resistant breast cancer cells. This nanoparticle activates the intracellular

JNK pathway, promoting apoptosis and inducing the dissipation of

mitochondrial membrane potential while increasing reactive oxygen

species levels in the cytoplasm. This mechanism further activates the

pro-apoptotic JNK signaling in drug-resistant cells, hindering drug

degradation and increasing apoptosis and cell death (82). Cheng et al.

reported similar findings in nanoparticles that co-deliver DOX and

pyrrolidine dithiocarbamate, where pyrrolidine dithiocarbamate served

as a chemosensitizer, enhancing intracellular drug levels by halting the

NF-kB pathway (83). The researchers designed pH-sensitive

nanoparticles from poly(orthoester carbamate) copolymers, which

are stable in neutral pH environments but degrade rapidly in slightly

acidic conditions (84, 85). Liang et al. identified novel functional roles

for heat shock protein beta-1 (HSPB1) in regulating chemoresistance

and ferroptotic cell death in breast cancer. HSPB1 could bind with Ikb-
FIGURE 5

Composition and mechanism of TPGS-Res-SLNs. (A) Illustration: TPGS-Res-SLNs reduce the expression of P-gp and BCRP-related proteins.
TPGS-Res-SLNs also refrain from the epithelial-mesenchymal transition of cancer cells and attenuate the invasion and metastasis of cancer cells.
(B) Characterization diagram of TPGS-Res-SLNs (Created with Figdraw).
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a and promote its ubiquitination-mediated degradation, leading to

increased nuclear translocation and activation of NF-kB signaling.

Thus, targetingHSPB1 and combinational induction of ferroptosis with

anticancer drugs would be a potential therapeutic strategy to overcome

chemoresistance in breast cancer (86).
4.3 Inhibition of epithelial-
mesenchymal transition

A recent study demonstrates that present a novel approach of

combinatorial treatment of DOX with dietary indole 3,3’-

diindolylmethane (DIM). They combined DIM with DOX and

delivered to the CSCs concomitantly by loading them in mesoporous

silica nanoparticles encapsulated in exosomes (e-DDMSNP), which

improved the specificity, stability and better homing ability of DIM and

DOX in the in vitro and in vivo CSC niche. Therefore, this novel

exosome nanopreparation has great potential to target CSC and EMT

(87).SKN@FPD NM is a novel type of nanodrug delivery system. By

leveraging the inhibitory effects of SKN, this nanomaterial can

effectively disrupt the epithelial-mesenchymal transition process,

thereby reducing the metastatic potential of breast cancer cells.

Furthermore, this combination therapy enhances tumor cell toxicity

while reducing the risk of drug resistance and treatment failure (88). In

summary, nanodrug delivery systems offer a promising strategy for

overcoming drug resistance in breast cancer.

Nanodrug-carrying systems have also demonstrated remarkable

effectiveness in addressing drug resistance across various malignant

cancers. For instance, some researchers have developed a

nanosystem based on programmed DNA self-assembly of Rab26

siRNA-loaded nanoparticles for treating drug resistance in lung

cancer (66). Additionally, miRNA and PTX can be delivered

through RAW-PANP, presenting a new method for tackling

PTX-resistant TNBC. Simultaneously, RAW-PANP can serve as

an effective drug delivery system for targeted therapy in TNBC (89).
5 Application of targeted nano-drug
delivery in breast cancer
drug resistance

5.1 Passive drug targeting

In normal tissues, the vascular structure is compact, whereas in

tumor sites, it is abnormal with wider pores. This difference allows

nanomaterials to penetrate tumor tissue more easily, a phenomenon

known as the enhanced permeability retention effect (90). Passive

targeting is a drug delivery approach that leverages these anatomical

and physiological differences in tissue. Specifically, it utilizes the

enhanced permeability retention effect, which is influenced by

certain changes in tumor tissues, such as large gaps in the blood

vessel endothelium, limited lymphatic drainage, and disrupted tissue

architecture. These factors increase the likelihood of macromolecular

particles gathering in tumor sites (91). Nanomaterials can further

enhance the enhanced permeability retention effect by adjusting their
Frontiers in Immunology 09
particle size at the tumor area, thereby increasing their effectiveness

against breast cancer (35, 92). These nanomaterials can be

categorized into various delivery methods, including liposomes,

micelles, nanogels, and nanoparticles (93). Addressing common

challenges in treating TNBC, such as chemotherapy resistance and

off-target damage, researchers led by Chen et al. developed a novel

type of nanoparticle. This formulation combines polylactic acid-co-

polylactic acid with a lipid shell, enabling it to carry drugs such as

paclitaxel and anti-miR-221, along with perfluoropropane for

ultrasound-triggered release. These nanoparticles are delivered to

the tumor site by macrophages, utilizing the innate targeting ability of

these cells to enhance treatment precision. Experimental results

demonstrate that this system significantly increases the sensitivity

of TNBC cells to chemotherapeutic agents while minimizing harm to

normal tissues (94). Additionally, Xiong et al. created DOX-TA-ICG

particles (DTIG) with a diameter of (74 ± 2) nm. Upon arrival at the

tumor site, DTIG experiences increased proton concentration,

causing them to further condense through electrostatic interactions,

which enhances their uptake by tumor cells. As proton concentration

rises in the lysosome (pH = 4.5), DTIG aggregation becomes more

pronounced, ultimately forming larger particles with a diameter of 1.5

mm that escape the lysosome. Once in the cytoplasm, the near-neutral

environment prompts DTIG to quickly transform into larger

hydrophilic particles measuring 120-200 nm (95). In summary, at

the tumor site, the high permeability and retention characteristics of

nanomaterials may improve the accumulation of chemotherapeutic

drugs, thereby mitigating breast cancer resistance and reducing off-

target damage (93).
5.2 Active drug targeting

Targeted molecular therapy enhances the precision of cancer

treatments and is one of the most effective methods in targeted

therapy. Active targeting relies on the interaction between a

targeting agent and its corresponding receptor, allowing

nanoparticles to specifically bind to antigens expressed by tumor

cells. This method improves drug delivery efficiency and specificity

(96). In breast cancer treatment, several key molecular targets have

been identified, including human epidermal growth factor receptor

2, vascular endothelial growth factor, folate receptors, somatostatin

receptors, vascular endothelial cell adhesion molecules, estrogen

receptors, and cyclooxygenase-2 (97). A study by Mamnoon et al.

developed hypoxia-responsive polymer nanoparticles (HRPs)

functionalized with 17b-estradiol (E2) for the targeted delivery of

DOX in estrogen receptor-positive breast cancer cells. They

prepared estradiol-coupled polymer-DOX complexes (E2-DOX-

HRPs), which demonstrated a higher DOX loading efficiency

compared to non-targeted preparations. Under hypoxic

conditions, E2-DOX-HRPs exhibited enhanced antiproliferative

effects, significantly reducing cell viability and causing spheroid

shrinkage in three-dimensional cultures of MCF-7 cells. These

findings indicate that the targeted HRP formulation successfully

recognized estrogen receptors on breast cancer cells and released

more DOX under tumor hypoxia, enhancing the anticancer effect of

DOX and effectively alleviating chemotherapy resistance (98).
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5.3 The physical and chemical targeting
effect of nanocarriers enhances the
targeting of breast cancer cells

Physical and chemical targeting is a method to enhance the

targeted therapeutic effects on cancers such as breast cancer by

precisely delivering drugs to specific transport sites through

external forces such as temperature, magnetic fields, and pH.

Temperature-sensitive carriers can be made into thermosensitive

agents, allowing them to release drugs in thermotherapy target

areas (99); or magnetic materials can be applied to form magnetic

guidance agents with drugs, which, guided by external magnetic fields

in vitro, reach and localize in specific target areas through the

bloodstream (100); pH-sensitive carriers can also be utilized to

prepare pH-sensitive agents, enabling drug release in specific target

areas (101). Embolic agents can block blood supply and nutrition in

target areas, serving a dual role in embolization and targeted

chemotherapy. Puluhulawa et al. used Chemical grafting of

chitosan nanoparticles with hyaluronic acid as a targeted ligand to

control drug release through ph-responsive stimulation, and the high

selectivity of hyaluronic acid for CD44 receptors allowed these

nanoparticles to accumulate more in cells that overexpress these

receptors (102). Zhang et al. developed the “cell targeting destructive”

multifunctional polymeric nanoparticles (HA-Olb-PPMNPs). Under

rotating magnetic field (RMF), HA-Olb-PPMNPs can produce

physical transfer of mechanical force through incomplete rotation,

which can cause a “two-strike” effect on cells, in which the “first

strike” is to destroy the membrane structure, and the other “second

strike” is to activate the lysosomal-mitochondrial pathway to induce

apoptosis by damaging the lysosome (103). Nasri et al. developed a

new monoclonal antibody conjugated dual stimuli lipid-coated
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mesoporous silica nanoparticles (L-MSNs) platform, first

synthesizing MSN and then using prepared pH and heat-sensitive

niosome coated to produce L-MSN. Use a key-lock interaction

between trastuzumab and HER-2 receptors on the cancer cell

membrane to deliver specifically targeted drugs to the cancer cell,

stimulating the endocytosis of particles into the cell, which then

disrupts the lipid layer at acidic pH and lysosome temperature,

leading to enhanced release of PTX and GEM (104).
6 Research progress in
anticancer nanomaterials

Chemotherapy, surgery, hormone therapy, radiotherapy, and

targeted therapy form the core strategies for breast cancer

treatment. Despite these methods, researchers continue to explore

new treatments and drugs. Patients participating in clinical trials

not only have the opportunity to try potentially advanced therapies

but also contribute to cancer research, fostering collaboration

among breast cancer patients. The U.S. Food and Drug

Administration has officially approved the use of palbociclib,

ribociclib, and everolimus in combination with hormone therapy

for the treatment of advanced or metastatic breast cancer. Clinical

studies have shown that ribociclib can effectively extend the survival

of patients with metastatic breast cancer. Additionally, Abemaciclib

is approved for use alongside or following hormone therapy,

specifically for patients with hormone receptor-positive, human

epidermal growth factor receptor 2-negative advanced or metastatic

breast cancer. Table 3 provides a list of drugs approved by the U.S.

Food and Drug Administration from 2021 to 2023.
TABLE 3 List of the drugs approved by U.S. Food and Drug Administration from 2021–2023 for advanced or metastatic breast cancer.

Drug
molecule

Brand
name/
Manufacturer

Approval
date

Remarks References

Capivasertib Truqap/
AstraZeneca
Pharmaceuticals LP

2023/11/16 Capivasertib is a novel, selective ATP-competitive pan-AKT kinase inhibitor used in
combination with fulvestrant to treat adult patients with hormone receptor (HR)-positive,
human epidermal growth factor receptor 2 (HER2)-negative, locally advanced or metastatic
breast cancer.

(fda.gova)

Elacestrant Orserdu/Stemline
Therapeutics, Inc.

2023/01/27 Elacestrant is an oral selective estrogen receptor degrader that treats postmenopausal
women or adult men with ER-positive, HER2-negative, estrogen receptor 1 (ESR1)
mutation-≥advanced or metastatic breast cancer with disease progression after first-line
endocrine therapy.

(fda.gova)

Fam-
trastuzumab
deruxtecan-
nxki

Enhertu/Daiichi
Sankyo, Inc

2022/08/05 Fam-trastuzumab deruxtecan-nxki is a HER2 antibody drug conjugate combined with
irinotecan-type chemotherapy drug, which belongs to the ADC-type drug. It is used to treat
adult patients with unresectable or metastatic HER2-positive breast cancer who have
previously received two or more anti-HER2-based regimens.

(fda.gova)

Olaparib Lynparza/
AstraZeneca
Pharmaceuticals,
LP

2022/03/11 Olaparib is an oral PARP inhibitor designed for patients with HER2-negative advanced
breast cancer who carry germinal BRCA1/2 mutations.

(fda.gova)

Abemaciclib Verzenio/Eli Lilly
and Co.

2021/10/12 Abemaciclib is an oral, continuously administered CDK4/6 inhibitor used for treating
patients with advanced breast cancer who are HR-positive and HER2-negative.

(fda.gova)

Pembrolizumab Keytruda/Merck 2021/07/26 Pembrolizumab is a humanized monoclonal anti-PD1 antibody approved for treating high-
risk, early-stage triple-negative breast cancer (TNBC) patients.

(fda.gova)
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7 Challenges and hopes

Cancer drug resistance remains a significant challenge in

current cancer treatments and is responsible for the majority of

cancer-related fatalities. However, the versatility of nanomaterials

offers a revolutionary approach to combat this issue and provides

new hope. These materials can serve both diagnostic and

therapeutic functions, allowing for precise tumor localization and

drug delivery while enhancing treatment efficacy and minimizing

harm to healthy tissues. Advancements in this technology are

expected to lead to breakthroughs in cancer therapy and offer

patients more personalized and effective treatment options. This

review begins by classifying different nanomaterials and explaining

their mechanisms of action, particularly in breast cancer research.

Nonetheless, the design, optimization, and potential biomedical

applications of these nanomaterials require further investigation.

Firstly, nanomaterials’ capability to deliver functional

substances to diseased cells makes them promising therapeutic

carriers and potential targets for overcoming drug resistance.

However, preparing nanomaterials to target specific sites

demands significant time, effort, and financial resources,

complicating their clinical application. Furthermore, identifying

the optimal target carriers to develop the most effective combined

strategies while minimizing adverse effects in treatment should be a

key focus for future research in this area. Secondly, while

nanomaterials have demonstrated good tolerance and minimal

side effects, their toxicity remains a critical concern in medical

and environmental applications. Additionally, nanomaterials can

facilitate dynamic measurement of various biological components

associated with tumor resistance, holding unique potential for

monitoring cancer’s complex dynamics and potentially serving as

candidate biomarkers for predicting and assessing treatment

outcomes in breast cancer patients. However, optimizing

detection methods and maximizing the advantages of

nanomaterials in breast cancer treatment to achieve synergistic

effects of “1 + 1>2” still requires extensive research and exploration.

Despite their many beneficial properties, nanomaterials can also

present toxic effects due to their unique physical and chemical

characteristics. For instance, their small size and high surface area

may increase the likelihood of interactions with biological systems,

leading to adverse effects such as cytotoxicity, immunotoxicity, and

genotoxicity, which can result in inflammatory responses, oxidative

stress, and cellular damage, potentially disrupting physiological

functions. Thus, careful attention to toxicity issues, along with

implementing safety measures during the design, synthesis, and

application of nanomaterials, is essential to ensure their safety

and reliability.
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Despite the substantial challenges, with ongoing advancements in

science and technology and the progress of clinical research, we

believe that nanomaterials have the potential to become vital tools in

treating breast cancer resistance and bring renewed hope to patients.
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