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Multimodal data deep learning
method for predicting
symptomatic pneumonitis
caused by lung cancer
radiotherapy combined
with immunotherapy
Mingyu Yang1†, Jianli Ma1†, Chengcheng Zhang2, Liming Zhang1,
Jianyu Xu1, Shilong Liu1, Jian Li1, Jiabin Han1 and Songliu Hu1*

1Harbin Medical University Cancer Hospital, Harbin, China, 2Harbin Institute of Technology,
Harbin, China
Objectives: The pairing of immunotherapy and radiotherapy in the treatment of

locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By

combining radiotherapy with immunotherapy, the synergistic effects of these

modalities not only bolster antitumor efficacy but also exacerbate lung injury.

Consequently, developing a model capable of accurately predicting

radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients

is a pressing need. Depth image features extracted from deep learning,

combined with radiomics and clinical characteristics, were used to create a

deep learning model. This model was developed to forecast symptomatic

pneumonitis (SP) (≥Grade 2) in lung cancer patients undergoing thoracic

radiotherapy in combination with immunotherapy.

Methods: The prediction was based on CT scans taken prior to the start of

thoracic radiotherapy. Retrospective collection of clinical data was conducted on

261 lung cancer patients undergoing a combination of thoracic radiotherapy and

immunotherapy from January 2018 to May 2023. Imaging data in the form of

pre-RT-CT scans were obtained for all individuals included in the study. The

region of interest (ROI) in the lung parenchyma was outlined separately from the

tumor volume, and standard radiomic features were obtained through the use of

3D Slicer software. In addition, the images were cropped to a uniform size of

224x224 pixels. Data augmentation techniques, including random horizontal

flipping, were employed. The normalized image data was then input into a pre-

trained deep residual network, ResNet34, which utilized convolutional layers and

global average pooling layers for deep feature extraction. A five-fold cross-

validation approach was implemented to construct the model, automatically

splitting the dataset into training and validation sets at an 8:2 ratio. This process

was repeated five times, and the results from these iterations were aggregated to

compute the average values of performance metrics, thereby assessing the

overall performance and stability of the model.

Results: The multimodal fusion model developed in this research, which

incorporated depth image characteristics, radiomics properties, and clinical
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data, demonstrated an AUC of 0.922 (95% CI: 0.902-0.945, P value < 0.001). This

amalgamated model surpassed the performance of the radiomic feature model

(AUC 0.811, 95% CI: 0.786-0.832, P value < 0.001), the clinical information model

(AUC 0.711, 95% CI: 0.682-0.753, P value < 0.001), as well as the model that

integrated omics attributes with clinical data (AUC 0.872, 95% CI: 0.845-0.896,

P value < 0.001) utilizing deep neural networks (DNNs). Comparatively, the

radiomic feature model based on random forest (RF) yielded an AUC of 0.576,

with a 95% confidence interval of 0.523-0.628. The clinical information model

based on RF had an AUC of 0.525, with a 95% confidence interval of 0.479-0.572.

When both radiomic features and clinical information were combined in a model

based on RF, the AUC improved slightly to 0.611, with a 95% confidence interval

of 0.566-0.652.

Conclusions: In this study, a deep neural network-based multimodal fusion

model improved the prediction performance compared to traditional radiomics.

The model accurately predicted Grade 2 or higher SP in lung cancer patients

undergoing radiotherapy combined with immunotherapy.
KEYWORDS

lung cancer, radiotherapy, immunotherapy, pulmonary toxicity, radiomics,
deep learning
1 Introduction

Lung cancer is a leading contributor to cancer-related deaths

worldwide. Immunotherapy has become a revolutionary strategy

for transforming the management of lung cancer. Radiotherapy

serves as a vital local treatment modality within the comprehensive

lung cancer treatment paradigm (1). The integration of

immunotherapy with radiotherapy has become the established

treatment protocol for locally advanced, inoperable NSCLC.

Specifically, results from the PACIFIC trial have shown a

remarkable enhancement in 5-year overall survival (OS) and

progression-free survival (PFS) percentages in individuals with

stage III NSCLC who received durvalumab post simultaneous

chemoradiotherapy, exceeding results seen in the control group

(2). Consequently, immune consolidation therapy followed by

concurrent chemoradiotherapy is currently the established

treatment protocol for LA-NSCLC. The primary limitation of

thoracic radiotherapy is radiation-induced lung injury. The

administration of high-dose radiation to healthy lung tissue can

induce alveolar damage, resulting in acute radiation pneumonitis

(RP), a common radiotherapy-related adverse event with reported

incidence rates ranging from 5% to 58% (3–5). Concurrently,

immune-related pneumonia, such as checkpoint inhibitor

pneumonitis (CIP), is relatively prevalent in lung cancer patients

undergoing immunotherapy, with documented incidence rates

ranging between 3% and 19% (6, 7). When radiotherapy is

combined with immunotherapy, the synergistic effects of these

modalities not only bolster antitumor efficacy but also exacerbate
02
lung injury (8). Both RP and CIP can significantly impact patient

quality of life and, in severe cases, can impede treatment progress or

lead to fatal outcomes.

Chen et al. (9) investigated the impact of radiotherapy on

pulmonary toxicity following immunotherapy and confirmed that

lung V20 played a pivotal role as a risk factor for the development of

SP, with statistical significance (95% CI: 1.41-8.66, P value = 0.007).

This parameter is crucial for predicting pulmonary toxicity after

combined treatment in lung cancer patients. Furthermore, various

studies have highlighted that underlying lung conditions, smoking

history, and other factors serve as predictive indicators of

pulmonary toxicity in patients undergoing thoracic radiotherapy

combined with immunotherapy (10, 11). Through advanced

computational methods, radiomics extracts a number of

quantitative features from medical images that can be analyzed

with machine learning algorithms. This process significantly aids

clinical decision-making by providing detailed, actionable insights

(12, 13). Krafft et al. (14) utilized pretreatment CT images, extracted

radiomic features from the ROI and integrated clinical and

dosimetric parameters to construct a model for RP, achieving an

AUC of 0.68. Additionally, Colen et al. (15) successfully constructed

a model for predicting immune-related pneumonia with high

accuracy (AUC: 1) by extracting radiomic features from thoracic

CT images. However, these studies primarily focused on predicting

pulmonary toxicity induced only by radiotherapy or

immunotherapy. Nonetheless, the potential pulmonary toxicity

r e su l t i ng f rom rad io - immuno the rapy mus t no t b e

underestimated. Regrettably, there is a dearth of research
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dedicated to utilizing radiomics to predict pulmonary toxicity

associated with radiotherapy combined with immunotherapy.

Consequently, developing a model capable of accurately

predict ing radiotherapy- and immunotherapy-related

pneumonitis in lung cancer patients is a pressing need.

The objective of this research was to create a hybrid model

combining radiomic features, deep image characteristics, and

clinical information to forecast SP in patients with lung cancer

who received immunotherapy and thoracic radiotherapy.
2 Materials and methods

In this research project, we focused on creating a

comprehensive multimodal fusion model that combines various

types of data - including deep image features, radiomics features,

and clinical information. The goal was to use this model to

accurately predict the occurrence of SP in patients with lung

cancer who are undergoing thoracic radiotherapy in conjunction

with immunotherapy. Our project involved several key steps:

clinical information extraction module, feature extraction module

including radiomic features and deep image features, and fusion of

multimodal data prediction module.
2.1 Clinical information extraction

Retrospective data from 261 lung cancer patients who

underwent thoracic radiotherapy combined with immunotherapy

at the Harbin Medical University Cancer Hospital between January

2018 and May 2023 were collected. These data encompassed the

clinical, immunological, and dosimetric parameters of the patients.

Patients were selected based on specific criteria. The criteria for

inclusion include: (1) aged ≥18 years; (2) had primary lung cancer

confirmed by pathology; (3) received lung lesion radiotherapy

combined with immunotherapy; (4) had complete dose-volume

parameters and other information available; and (5) had a follow-

up period exceeding 3 months postradiotherapy to acquire

comprehensive pre- and posttreatment imaging data. The

criteria for exclusion include: (1) active pulmonary infection;

(2) pneumonia or abscess irrelevant to the tumor; (3) atelectasis

or pleural effusion; and (4) loss to follow-up or incomplete imaging

data. The study received approval from the hospital’s ethical review

committee. Due to this research was a retrospective study, patient

informed consent was not required.
2.2 Feature extraction

2.2.1 CT scan and treatment implementation
ACT simulation positioning system is used to scan and position

patients for radiotherapy treatment planning. The system has a

scanning layer thickness of 5 mm to ensure accurate imaging. After

the scanning process, the images are transferred to the pinnacle

radiotherapy planning system. In this system, experienced
Frontiers in Immunology 03
radiotherapists carefully delineate the target area. GTV includes

the main lung tumor and detectable metastatic lymph nodes on CT

scans. Following GTV delineation, a 6 mm external expansion is

applied for squamous cell carcinoma, while 8 mm is used for

adenocarcinoma and small cell carcinoma to create the CTV. A

5 mm three-dimensional expansion is carried out from the CTV to

create the PTV. A total irradiation dose of 50-70Gy/25-35f was

administered to the PTV, with 95% of the dose covering 95% of the

prescription volume. The maximum dose point was limited to 110%

of the prescribed dose. During this process, various organs at risk,

including the lungs, spinal cord, heart, and esophagus, are

meticulously outlined. To ensure optimal treatment delivery, a

conventional split-dose plan is utilized with the prescribed dose

covering 95% of the PTV. Dosimetric constraints include bilateral

lung V5 should be kept below 65%, V20 below 30%, V30 below

20%, with a MLD under 15 Gy. Additionally, the spinal cord’s

maximum dose should not exceed 45 Gy, the heart’s V30 should be

below 40% and V40 below 30%, with a mean dose under 26 Gy, and

the esophagus should have a maximum dose below 105% of the

prescribed dose and a V50 below 50%. Once target and organ

delineations are completed, experienced physicists develop the

treatment plan on the planning system, which is then reviewed

and approved by the clinician before implementation. Patients

undergo immunotherapy before, after, or concurrently with

radiotherapy with PD-(L)1 inhibitors such as sintilimab,

camrelizumab, pembrolizumab, toripalimab, atezolizumab,

tislelizumab, durvalumab, slulimumab, and sugalizumab. Most

patients receive a median of 4-6 cycles of immunodrug therapy, 3

weeks apart by intravenous infusion.

2.2.2 Radiomic features extraction
The region of interest (ROI) comprises bilateral normal lung

tissue, excluding the GTV, hilus, atelectasis, and thickened pleura.

The DICOM-formatted image is imported into 3D Slicer, where an

automatic segmentation algorithm is employed to identify the

parenchyma of both lungs. Subsequently, manual adjustments are

made to exclude nonlung tissues, resulting in a three-dimensional

image of both lungs as the ROI (16, 17). A radiotherapist initially

conducts the image segmentation process, which is then reviewed

by a senior radiotherapist.

The image is standardized before extracting features. Feature

extraction in radiomics is conducted using the PyRadiomics toolkit,

which is an open-source tool compatible with the Python

programming language. This toolkit facilitates the extraction of

radiomic features from ROIs (18). Through this process, a

comprehensive set of 107 radiomic features is obtained. These

features include 14 shape-based histograms, which provide

insights into the geometric properties of the ROIs, 18 first-order

statistics (FOS) that describe basic intensity information, and 75

texture features that assess various statistical textures. In deep image

feature extraction, training a deep learning (DL) model is

computationally intensive and demands a substantial image

dataset. Transfer learning facilitates DL models in transferring

knowledge effectively. In this study, the original image data are

converted to RGB format, cropped based on the label, and adjusted
frontiersin.org
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to a uniform size of 224x224. Data augmentation, such as horizontal

image flipping, is employed to enhance the model’s generalizability

and robustness. The training set’s diversity is increased by

mirroring images horizontally, allowing the model to learn

features from different perspectives and angles, enhancing its

adaptability to varying input images.

2.2.3 Deep image features extraction
The image data are normalized before deep image feature

extraction to meet the input requirements of the model. The

normalized data are fed into ResNet34 to extract dimensional

image features. ResNet, a variant of convolutional neural network

(CNN), excels in local feature representation and places greater

emphasis on image details, making it more effective than deep

neural networks (DNNs) in these aspects:

y = F(x,W) + x (1)

where x is the input, y is the output, and F (x,W) is the residual

function, which represents a nonlinear mapping involving multiple

layers (each layer using weights W). For medical images depicting

lesions, ResNet can better highlight subtle differences in malignancy.

The structural parameters of ResNet34 is shown in Table 1.
2.3 Fusion of multimodal data prediction

Univariate and multivariate regression analyses of clinical

baseline characteristics are performed to identify 12 clinical

indicators potentially associated with SP. After extracting

multimodal features, we integrate them and feed them into a

DNN-based prediction module, as illustrated in the Figure 1. The

clinical data, traditional radiomic features, and deep image features

are normalized and dimensionally reduced using principal

component analysis (PCA) to enhance computational efficiency

and reduce storage requirements. The dimensionally reduced data

are concatenated and fed into a fully connected layer for final
Frontiers in Immunology 04
prediction. The formula is as followed:

F   =   concat(Fc ,   Ft ,   Fd) (2)

z1   =  s 1(W1(F) + b1)     (3)

z2   =  s 2(W2(z1) + b2)   (4)

zL   =  s L(WL(zL−1) + bL)   (5)

where Fc is the clinical features, Ft is the radiomic features and

Fd is the deep image features. L is the number of fully connected

layers. Wi represents the weight matrix, bi is the bias vector and si is

the activation function for i-th layer. In the study, we used

LeakyReLU function as the s. The loss function we used as follows:

Loss   =  −oyilogŷ i +   (1 − yi)log(1 − ŷ i) (6)

where ŷ i is the label, yi is the prediction of our method.
3 Results

3.1 Datasets

This study included 261 lung cancer patients received a

combination of thoracic radiotherapy and immunotherapy at

Harbin Medical University Cancer Hospital between January

2018 and May 2023. Among them, 36.02% (94 patients)

experienced SP, with 6.13% (16 patients) classified as G3+

pneumonitis. Table 2 presents the baseline characteristics of the

patients. In the SP group, the median age was 61 years, with males

comprising 81.9% of the group. Additionally, 88.3% of the patients

had a PS score ranging from 0 to 1, and 53.2% had a history of

smoking. Squamous cell carcinoma was the most prevalent

histological type at 51.1%, while SCLC accounted for 25.5%. In

terms of disease staging, T2-stage disease was present in 36.2% of

patients, while N2-stage disease was noted in 63.8% of individuals.

Importantly, 71.3% of the patients received a radiotherapy dose of

60 Gy or higher, and 78.7% underwent 4 or more cycles of

chemotherapy. At the time of patient follow-up, the median

number of immune drug cycles administered was 4. The most

commonly used immunotherapy drug was camrelizumab (23.4%),

followed by tislelizumab (20.2%). Notably, 12.8% of patients

received combination immunotherapy drugs. Twelve clinical

indicators potentially linked to SP were identified, including the

ECOG PS score, T stage, N stage, radiotherapy dose, number of

immunotherapy cycles, preradiotherapy NLR, preradiotherapy

PLR, preradiotherapy LMR, preradiotherapy SII, V5, V20, and

MLD. Based on the univariate analysis, the PS score (HR: 3.556,

95% CI: 1.270-9.955, P=0.016), T-stage (HR: 1.558, 95% CI: 1.198-

2.026, P=0.001), and PLR before radiotherapy (HR: 1.003, 95% CI:

1.000-1.006, P=0.028) were significantly linked to the occurrence of

SP. The multivariate analysis indicated that PS and T-stage were

independent predictors for SP (HR: 3.322, 95% CI: 1.148-9.615,

P=0.027; HR: 1.501, 95% CI: 1.147-1.965, P=0.003). Refer to Table 3

for the results of both univariate and multivariate analyses on SP.
TABLE 1 The structural parameters of ResNet34.

Index Layer Name Parameters

1 Convolutional Layer 7 �7, 64, stride=2

2 Pooling Layer 3 �3 max pool, stride=2

3 Convolutional Layers
3 �

3� 3,   64

3� 3,   64

8<
:

4 Convolutional Layers
4 �

3� 3,   128

3� 3,   128

8<
:

5 Convolutional Layers
6 �

3� 3,   256

3� 3,   256

8<
:

6 Convolutional Layers
3 �

3� 3,   512

3� 3,   512

8<
:

7 Pooling Layer Average pool, 512-D output
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3.2 Evaluation metrics

3.2.1 SP outcome evaluation
Thoracic CT scans are recommended for regular monitoring in

conjunction with clinical indicators. The first thoracic CT scan is

scheduled when the radiotherapy dose reaches 40 Gy, followed by

another scan one month after completing radiotherapy. Monitoring

continued for a minimum of three months or until G2+ SP is

detected. Pulmonary toxicity diagnosis relies on the patient’s

clinical symptoms and imaging findings, which are confirmed

collaboratively by a senior radiotherapist and an imaging

specialist. Concerning changes seen on imaging may consist of

ground-glass opacities, as well as flaky or flocculent mixed nodules

within the radiotherapy area. Symptoms observed in clinical

settings encompass dry cough, fever, and difficulty breathing.

Pulmonary toxicity is assessed following CTCAE version 5.0

guidelines, with SP diagnosed at Grade 2 or above.

3.2.2 Model evaluation
Data analysis was conducted utilizing SPSS 26.0 software. For

analyzing categorical data, either the c2 test or Fisher’s exact test was
applied. For measurement data, the independent sample t-test or
Frontiers in Immunology 05
Mann–Whitney U test was utilized. To identify independent

predictors of SP occurrence, both univariate and multivariate

regression analyses were performed. Additionally, ROC curves were

created, and several metrics, including the AUC, sensitivity, specificity,

accuracy, positive predictive value, F1 score, MCC, and kappa value,

were calculated to evaluate and compare the predictive capabilities of

the models. Differences between the models were determined using the

DeLong test, with statistical significance set at P < 0.05.
3.3 Comparison results

To validate the predictive capability of our proposed algorithm

for symptomatic pneumonitis caused by lung cancer, we compared

it with the classical machine learning algorithm RF and the classical

deep learning algorithm. Additionally, we discussed the impact of

multimodal data on the algorithm.

3.3.1 Radiomics model predictive performance
RF is a model composed of multiple independently trained

decision trees. These trees are constructed by randomly selecting

samples and features, with predictions made through voting or
FIGURE 1

The structure of fusion of multimodal data prediction module.
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TABLE 2 Baseline characteristics.

Characteristics Non-symptomatic pneumonia
(n=167)

Symptomatic pneumonia
(n=94)

All (n=261) P value

Age, (y) 0.698

<61 77 (46.1) 41 (43.6) 118 (45.2)

≥61 90 (53.9) 53 (56.4) 143 (54.8)

Gender 0.503

Male 131 (78.4) 77 (81.9) 208 (79.7)

Female 36 (21.6) 17 (18.1) 53 (20.3)

ECOG PS 0.011

0-1 161 (96.4) 83 (88.3) 244 (93.5)

≥2 6 (3.6) 11 (11.7) 17 (6.5)

Smoker History 0.793

No 81 (48.5) 44 (46.8) 125 (47.9)

Yes 86 (51.5) 50 (53.2) 136 (52.1)

Smoking Index 0.273

<400 97 (58.1) 48 (51.1) 145 (55.6)

≥400 70 (41.9) 46 (48.9) 116 (44.4)

Tumor Histology 0.269

Squamous Cell Carcinoma 76 (45.5) 48 (51.1) 124 (47.5)

Adenocarcinoma 34 (20.4) 18 (19.1) 52 (19.9)

Small Cell Lung Cancer 55 (32.9) 24 (25.5) 79 (30.3)

Other 2 (1.2) 4 (4.3) 6 (2.3)

T Stage 0.000

1 63 (37.7) 16 (17.0) 79 (30.3)

2 54 (32.3) 34 (36.2) 88 (33.7)

3 34 (20.4) 30 (31.9) 64 (24.5)

4 16 (9.6) 14 (14.9) 30 (11.5)

N Stage 0.779

0 32 (19.2) 11 (11.7) 43 (16.5)

1 4 (2.4) 4 (4.3) 8 (3.1)

2 91 (54.5) 60 (63.8) 151 (57.9)

3 40 (24.0) 19 (20.2) 59 (22.6)

M Stage 0.937

0 104 (62.3) 59 (62.8) 163 (62.5)

1 63 (37.7) 35 (37.2) 98 (37.5)

Radiotherapy Dose 0.236

<60Gy 37 (22.2) 27 (28.7) 64 (24.5)

≥60Gy 130 (77.8) 67 (71.3) 197 (75.5)

Radiotherapy Fractions 0.356

<30f 36 (21.6) 25 (26.6) 61 (23.4)

(Continued)
F
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TABLE 2 Continued

Characteristics Non-symptomatic pneumonia
(n=167)

Symptomatic pneumonia
(n=94)

All (n=261) P value

≥30f 131 (78.4) 69 (73.4) 200 (76.6)

Chemotherapy Cycles 0.596

<4 31 (18.6) 20 (21.3) 51 (19.5)

≥4 136 (81.4) 74 (78.7) 210 (80.5)

Cycles of Immunotherapy 4.00 (2.00-6.00) 4.00 (2.00-5.00) 4.00 (2.00-6.00) 0.474

Type of immunotherapy 0.158

Sintilimab 19 (11.4) 7 (7.4) 26 (10.0)

Camrelizumab 52 (31.1) 22 (23.4) 74 (28.4)

Pembrolizumab 11 (6.6) 11 (11.7) 22 (8.4)

Toripalimab 7 (4.2) 10 (10.6) 17 (6.5)

Atezolizumab 11 (6.6) 4 (4.3) 15 (5.7)

Tislelizumab 23 (13.8) 19 (20.2) 42 (16.1)

Durvalumab 19 (11.4) 6 (6.4) 25 (9.6)

Serplulimab 6 (3.6) 3 (3.2) 9 (3.4)

Sugemalimab 2 (1.2) 0 (0.0) 2 (0.8)

Combination
immunotherapy drugs

17 (10.2) 12 (12.8) 29 (11.1)

NLR1 2.40 (1.70-3.50) 2.70 (1.80-4.35) 2.50 (1.70-3.75) 0.070

NLR2 4.30 (2.90-7.50) 4.55 (2.98-7.60) 4.50 (2.95-7.55) 0.607

NLR3 4.20 (2.60-6.60) 4.70 (3.10-7.35) 4.40 (2.90-6.95) 0.214

PLR1 122.10 (97.90-175.60) 146.10 (98.98-212.68) 126.70 (97.90-186.45) 0.078

PLR2 219.30 (163.00-310.90) 224.85 (159.65-327.30) 219.30 (160.65-315.50) 0.795

PLR3 239.80 (157.30-357.80) 253.60 (147.60-416.45) 241.80 (156.25-371.00) 0.667

LMR1 3.70 (2.60-5.00) 3.05 (2.20-4.30) 3.40 (2.40-4.60) 0.016

LMR2 1.70 (1.20-2.30) 1.70 (1.10-2.23) 1.70 (1.10-2.30) 0.550

LMR3 1.90 (1.20-2.70) 1.60 (1.20-2.60) 1.80 (1.20-2.60) 0.504

SII1 (x 109/L) 486.40 (331.30-850.70) 608.65 (372.10-1013.95) 519.70 (350.15-912.90) 0.090

SII2 (x 109/L) 806.20 (531.70-1349.40) 870.10 (540.60-1459.45) 826.10
(539.75-1371.95)

0.949

SII3 (x 109/L) 898.20 (524.00-1428.60) 944.85 (537.85-1745.35) 940.50
(533.65-1550.55)

0.417

V5 40.94 (33.37-46.00) 41.48 (33.99-49.04) 41.00 (33.69-46.75) 0.281

V20 22.17 (18.02-25.00) 22.05 (18.69-26.00) 22.10 (18.11-25.06) 0.257

V30 16.35 (12.78-19.21) 16.43 (12.98-20.05) 16.38 (12.85-19.70) 0.312

MLD (Gy) 12.07 (10.06-13.88) 12.15 (10.21-14.93) 12.13 (10.11-14.11) 0.359
F
rontiers in Immunology
 0
7
Combination immunotherapy drugs: Using more than two immunological drugs in combination; NLR1, NLR before radiotherapy; NLR2, NLR in radiotherapy; NLR3, NLR after radiotherapy;
PLR1, PLR before radiotherapy; PLR2, PLR in radiotherapy; PLR3, PLR after radiotherapy; LMR1, LMR before radiotherapy; LMR2, LMR in radiotherapy; LMR3, LMR after radiotherapy; SII1,
SII before radiotherapy; SII2, SII in radiotherapy; SII3, SII after radiotherapy; V5, Lung volume at least 5 Gy irradiated; V20, Lung volume at least 20 Gy irradiated; V30, Lung volume at least 30
Gy irradiated.
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averaging. The study found that the AUC of the RF model using

radiomic features was 0.576, indicating moderate predictive

performance. In comparison, the RF model using only clinical

information had a lower AUC of 0.525. However, when

integrating radiomics characteristics with clinical data, the AUC

of the RF model showed a notable increase to 0.611, demonstrating

better predictive accuracy. Despite the enhanced performance of the

RF model with combined features, it was noted that the overall
Frontiers in Immunology 08
predictive capability was still not optimal. The ROC curves of the

three RF models are illustrated in Figure 2.

The confusion matrix serves as a crucial tool in machine

learning to evaluate classification model effectiveness. It illustrates

the correlation between the model’s forecasts in various groups and

the true labels in matrix structure. Findings reveal that the RF model

developed with radiomic features obtained an accuracy rate of

63.5%. The RF model established with clinical data achieved an
TABLE 3 Results of both univariate and multivariate analyses on SP.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.022 (0.990-1.055) 0.185

Gender 0.803 (0.423-1.526) 0.504

ECOG PS 3.556 (1.270-9.955) 0.016 3.322 (1.148-9.615) 0.027

Smoker History 0.934 (0.563-1.550) 0.793

Smoking Index 0.753 (0.453-1.251) 0.274

Tumor Pathology 0.923 (0.701-1.215) 0.566

T-Stage 1.558 (1.198-2.026) 0.001 1.501 (1.147-1.965) 0.003

N-Stage 1.111 (0.847-1.457) 0.446

M-Stage 0.979 (0.581-1.651) 0.937

Radiotherapy Dose 1.416 (0.795-2.521) 0.238

Radiotherapy Fractions 1.318 (0.733-2.373) 0.357

Chemotherapy Cycles 1.186 (0.632-2.225) 0.596

Cycles of Immunotherapy 0.971 (0.909-1.037) 0.374

Type of immunotherapy 1.032 (0.945-1.127) 0.485

NLR1 1.071 (0.987-1.162) 0.100

NLR2 1.010 (0.952-1.072) 0.741

NLR3 1.018 (0.988-1.049) 0.238

PLR1 1.003 (1.000-1.006) 0.028 1.003 (1.000-1.006) 0.059

PLR2 1.000 (0.998-1.002) 0.924

PLR3 1.000 (0.999-1.002) 0.694

LMR1 0.920 (0.837-1.012) 0.086

LMR2 1.015 (0.834-1.234) 0.884

LMR3 0.988 (0.868-1.125) 0.856

SII1 (x 109/L) 1.000 (1.000-1.001) 0.124

SII2 (x 109/L) 1.000 (1.000-1.000) 0.653

SII3 (x 109/L) 1.000 (1.000-1.000) 0.170

V5 1.019 (0.994-1.045) 0.128

V20 1.038 (0.992-1.087) 0.106

V30 1.040 (0.989-1.094) 0.123

MLD (Gy) 1.059 (0.982-1.143) 0.139
HR, Hazard ratio; CI, Confidence interval; NLR1, NLR before radiotherapy; NLR2, NLR in radiotherapy; NLR3, NLR after radiotherapy; PLR1, PLR before radiotherapy; PLR2, PLR in
radiotherapy; PLR3, PLR after radiotherapy; LMR1, LMR before radiotherapy; LMR2, LMR in radiotherapy; LMR3, LMR after radiotherapy; SII1, SII before radiotherapy; SII2, SII in
radiotherapy; SII3, SII after radiotherapy; V5, Lung volume at least 5 Gy irradiated; V20, Lung volume at least 20 Gy irradiated; V30, Lung volume at least 30 Gy irradiated. Bold values mean P <
0.05 indicates statistical significance.
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accuracy of 59.6%. In addition, the RF model generated by merging

radiomic features and clinical information reached an accuracy rate

of 63.5%. In contrast to the radiomics feature model, the model

relying solely on clinical data displayed a slightly lower accuracy.

Interestingly, the integration of radiomic characteristics with

clinical data in the model yielded the same precision as the model

utilizing only radiomic features. This emphasizes the potential

performance enhancement gained by combining distinct feature

types, potentially due to the complementary information provided

by these two feature sets. The confusion matrices of the three RF

models are illustrated in Figure 3.

A calibration curve shows the link between the observed and

predicted probabilities. Ideally, the calibration curve should closely

align with the 45° diagonal line, indicating perfect consistency

between the model’s predicted and actual probabilities of events

occurring. The results indicate that the RF model, which integrates

radiomic features with clinical information, is highly consistent

between the predicted and observed probabilities for SP and non-

SP. In contrast, the calibration curves of the other two models

deviate significantly from the diagonal line, suggesting less accurate

predictions. Figure 4 displays the calibration curves for all three

RF models.
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3.3.2 Predictive performance of the DL model
Our approach utilizes multimodal data combined with

ResNet34 for prediction. In addition to RF, we also compared

with DNN. DNNs are specialized neural network structures

designed for processing images and visual data, typically

comprising multiple convolutional and pooling layers to create a

deep architecture. The pretrained ResNet34 encoder is utilized for

extracting deep image features, which are high-level abstract

features obtained from image data through DL techniques that

capture information such as shape and object categories.

In this study, dimensionally reduced radiomic features, clinical

data, and depth image features were entered into the fully connected

layer to construct deep neural network models based on radiomic

features (AUC 0.811), clinical information (AUC 0.711), and

combined radiomic with clinical characteristics (AUC 0.872).

Furthermore, integrating deep image features with radiomic and

clinical characteristics resulted in a multidimensional fusion model

with an AUC of 0.922. Notably, the multidimensional fusion model

superior the other three models significantly. Similarly, the model

combining radiomics features with clinical information exhibited

greater accuracy than did the individual models, with the

radiomics-based model outperforming the clinical information-
FIGURE 2

ROC curves of the three RF models. (A) An RF model using radiomic features had an average AUC of 0.58. 95%CI: 0.523-0.628. (B) An RF model
using clinical information had an average AUC of 0.53. 95%CI: 0.479-0.572. (C) An RF model integrating conventional radiomic features with clinical
data had an average AUC of 0.61. 95%CI: 0.566-0.652.
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based model. Figure 5 shows the ROC curves of the four

DNN models.

The confusion matrix revealed that the DNN model leveraging

radiomic features achieved an accuracy of 73.1%, while the DNN

model relying on clinical information attained 65.4% accuracy.

Combining radiomics features with clinical data increased the

accuracy to 75.0%. In comparison, the fusion model integrating

deep image features, radiomics features, and clinical information

achieved an accuracy of 84.6%. Clearly, our multidimensional

fusion model demonstrates the highest accuracy, demonstrating

the benefits of a comprehensive approach incorporating depth

image features, radiomics features, and clinical information.

Although models based solely on radiomic features perform well

in classification tasks, opportunities for improvement remain.

Significantly, integrating conventional radiomic features with

clinical data led to better accuracy than using each model

separately. Figure 6 illustrates the confusion matrices of the four

DNN models.
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The results from the calibration curve show a significant

correlation between the anticipated probabilities of SP and non-

SP when utilizing the integrated model that includes deep image

characteristics, radiomics features, clinical data, and the observed

probabilities. Figure 7 displays the calibration curves for the four

DNN models.

3.3.3 Comparison of the prediction performances
of different models

We conducted a comparison of seven different models and

revealed that the fusion model incorporating deep image features,

radiomics features, and clinical information significantly

outperformed the other models (AUC 0.922, sensitivity 0.879,

specificity 0.789). Combining f radiomic features with clinical

information yielded better results than did the individual models

(AUC 0.872, sensitivity 0.697, specificity 0.842) among the deep

neural network models. In contrast, the RF classifier models, whether

individual or combined, exhibited lower performance than did the
FIGURE 3

Confusion matrices of the three RF models. The rows in the matrix represent the model’s predicted outcomes, while the columns represent actual
SP occurrences. Each column/row of the matrix represents the number of patients in the actual/predicted category. (A) An RF model based on
traditional radiomic features. The accuracy of this model was 63.5%. (B) An RF model based on clinical information and the accuracy of this model
was 59.6%. (C) An RF model integrating conventional radiomic features with clinical data, which accuracy was 63.5%.
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DLmodels. Notably, both models utilizing radiomic features, DL and

RF, demonstrated superior performance comparison with models

relying solely on clinical data. This suggests that radiomic features

have the capacity to capture intricate high-level characteristics that go

beyond conventional clinical data. Additionally, the DeLong test

confirmed that the DL models significantly outperformed the RF

models (P<0.001), with the multidimensional fusion model

incorporating deep image features, radiomics features, and clinical

information showing a substantial enhancement in performance

compared to the DL model (P<0.001). Detailed results of the seven

models, including measures such as AUC, sensitivity, specificity,

accuracy, positive predictive value, F1 score, MCC, and kappa

value, can be found in Table 4.

Decision curve analysis (DCA) serves as a valuable tool for

assessing predictive models, particularly in clinical decision-making

contexts. Our utilization of DCA aimed to assess how different

models impact clinical treatment decisions. Within the DCA, the

horizontal axis delineates the threshold range, while the vertical axis

illustrates the net benefit. Notably, results of the DCA show that the

fusion model integrating deep image features, radiomics features,

and clinical information outperforms other models in terms of net
Frontiers in Immunology 11
benefits across diverse decision thresholds. Figure 8 shows the

decision curves for all the models.
4 Discussion

In our research, we effectively created a predictive model for SP by

integrating DL techniques with clinical information based on

preradiotherapy CT imaging. This research represents a novel

approach utilizing radiomics data to predict early-onset radiotherapy-

immunotherapy-induced pneumonia in lung cancer patients undergoing

combined radiotherapy and immunotherapy treatment.
4.1 SP occurrence rate analysis

The KEYNOTE-799 trial investigated the safety profile of

pembrol izumab when used together with concurrent

chemoradiotherapy for patients with inoperable LA-NSCLC.

Findings showed that the occurrence of any-grade pneumonitis in

both groups were 37.5% and 26.4%, while rates of G3+ pneumonitis
FIGURE 4

Calibration curves of the three RF models. The horizontal axis represents the predicted probabilities of the model, while the vertical axis represents
the accuracy. Ideally, the calibration curve should closely align with the 45° diagonal line, indicating perfect consistency between the model’s
predicted and actual probabilities of events occurring. (A) An RF model based on traditional radiomic features. (B) An RF model based on clinical
information. (C) An RF model integrating conventional radiomic features with clinical data.
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were 8.0% and 6.9%, respectively (19). In real-world scenarios,

patients often present complex conditions, such as undergoing

multiple treatment cycles, having underlying illnesses, or being

elderly. These individuals frequently harbor pneumonia-related

risk factors, leading to their exclusion from clinical trials. In a

retrospective study encompassing lung cancer patients receiving

durvalumab immunoconsolidation postchemoradiotherapy across

10 institutions, 63.5% of patients developed pneumonitis during

immunoconsolidation therapy, with SP accounting for 33.7% and

grade 3 pneumonitis accounting for 8% (10). A real-world Japanese

investigation of pneumonitis occurrence during durvalumab

consolidation postchemoradiotherapy in NSCLC patients revealed

an occurrence of any-grade pneumonitis of 83%, an incidence of SP

of 34%, an incidence of G3+ pneumonitis of 7%, and a

fatal pneumonitis rate of 1% (20). In this study, any-grade

pneumonitis accounted for 76.63%, SP accounted for 36.02%, and

grade 3 or above pneumonitis accounted for 6.13%, aligning closely

with Japanese real-world research data but surpassing clinical trial

outcomes. This finding indicates the critical importance of tailored

prevention and management strategies for radiotherapy-immune-
Frontiers in Immunology 12
related pulmonary toxicity in diverse patient populations. A recent

extensive meta-analysis highlighted a 20.2% incidence of

symptomatic RP postchemoradiotherapy in 24,527 patients with

LA-NSCLC. Notably, the analysis revealed a 33.6% occurrence of

G2+ pneumonitis in patients who were treated with a combination

of chemoradiotherapy and immunotherapy, indicating a higher risk

of symptomatic RP than in patients receiving radiotherapy alone

(21). Similarly, a comprehensive meta-analysis, which reviewed

data from 836 patients NSCLC who received chemoradiotherapy,

reported an overall incidence of symptomatic RP at 29.8% following

chemoradiotherapy (22), which was lower than the 36.02%

incidence of SP in this study. This suggests that incorporating

immunotherapy elevates the risk of SP beyond grade 2.
4.2 SP-related factors analysis

In this study, the occurrence of SP was found to be independently

linked to the ECOG PS score and T stage, which is consistent with

existing research findings. The evaluation of tumor size through T
FIGURE 5

ROC curves of the four DNN models. (A) A DNN model using traditional radiomic features had an average AUC of 0.81. 95%CI: 0.786-0.832.
Significance level: <0.001. (B) A DNN model using clinical information had an average AUC of 0.71. 95%CI: 0.682-0.753. Significance level: <0.001.
(C) A DNN model integrating conventional radiomic features with clinical data had an average AUC of 0.87. 95%CI: 0.845-0.896. Significance level:
<0.001. (D) A fusion model based on deep image features, radiomic features, and clinical information had an average AUC of 0.92. 95%CI: 0.902-
0.945. Significance level: <0.001.
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staging shows that T1 tumors have a reduced risk of SP compared to

T2 tumors (23), and tumors in stage I-II have an inferior risk of RP

compared to those in stage III-IV (24). In addition to reflecting

systemic immune status, immunological parameters offer insights

into the immune microenvironment within tumor tissues. Studies

indicate that these parameters correlate with lung cancer patient

prognosis postradiotherapy and chemotherapy (25, 26). Our

univariate analysis revealed a connection between the pre-RT PLR

and the occurrence of SP, which is consistent with prior research.

Shan et al. (27) indicated that the pre-treatment PLR is a predictor of

RP occurrence in patients who are receiving stereotactic body

radiation therapy (SBRT). Although dosimetric parameters did not

show an association with SP in our study, recent research underscores

their relevance to pulmonary toxicity in lung cancer patients

undergoing radiotherapy with immunotherapy. Landman et al. (28)

highlighted a significant relationship between pneumonia incidence

in radioimmunoassay-treated lung cancer patients and higher

bilateral lung V5, V20, and MLD. Additionally, Koffer et al. (29)
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reported that bilateral lung V20 and MLD can predict SP occurrence

in lung cancer patients postcombined radioimmunotherapy.

Dosimetric parameters were integrated into our model based on

these studies.
4.3 Comparisons with other studies

Radiotherapy combined with immunotherapy offers a

significant survival benefit for lung cancer patients; however, it

also intensifies pulmonary toxicity. This study represents an earlier

exploration into predicting pulmonary toxicity resulting from

combined radioimmunotherapy. Lung cancer is a complex and

heterogeneous disease, particularly in patients receiving combined

radioimmunotherapy. These individuals often exhibit diverse

baseline characteristics, such as multiple treatment cycles,

underlying illnesses, and advanced age, which are common high-

risk factors for pneumonia onset and vary widely across patient
FIGURE 6

Confusion matrices of the four DNN models. (A) A DNN model based on traditional radiomic features, which accuracy was 73.1%. (B) A DNN model
based on clinical information and the accuracy of this model was 65.4%. (C) A DNN model integrating conventional radiomic features with clinical
data. The accuracy of this model was 75%. (D) A fusion model based on deep image features, radiomic features, and clinical information, which
accuracy was 84.6%.
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FIGURE 7

Calibration curves of the four DNN models. (A) A DNN model based on traditional radiomic features. (B) A DNN model based on clinical information.
(C) A DNN model integrating conventional radiomic features with clinical data. (D) A fusion model based on deep image features, radiomic features,
and clinical information.
TABLE 4 Performances evaluation sheet for all models.

AUC (95%CI) Sensitivity Specificity Accuracy Precision F1 score MCC Kappa P value

RF_Traditional Omics 0.576 (0.523-0.628) 0.818 0.316 0.635 0.675 0.740 0.153 0.145 –

RF_Clinical
Information

0.525 (0.479-0.572) 0.818 0.211 0.596 0.643 0.720 0.035 0.032 –

RF_Traditional
Omics_Clinical
Information

0.611 (0.566-0.652) 0.788 0.368 0.635 0.684 0.732 0.170 0.165 –

DNN_Traditional
Omics

0.811 (0.786-0.832) 0.727 0.737 0.731 0.828 0.774 0.450 0.444 <0.001a

DNN_Clinical
Information

0.711 (0.682-0.753) 0.647 0.667 0.654 0.786 0.710 0.299 0.291 <0.001b

DNN_Traditional
Omics_Clinical
Information

0.872 (0.845-0.896) 0.697 0.842 0.750 0.885 0.800 0.519 0.500 <0.001c

Our Model 0.922 (0.902-0.945) 0.879 0.789 0.846 0.879 0.879 0.668 0.668 <0.001d
F
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aThe AUC of a DNN model using traditional radiomic features versus the AUC of an RF model using traditional radiomic features by Delong test, P < 0.001.
bThe AUC of a DNN model using clinical data versus the AUC of an RF model using clinical data by Delong test, P < 0.001.
cThe AUC of a DNN model integrating conventional radiomic features with clinical data versus the AUC of an RF model integrating conventional radiomic features with clinical data by Delong
test, P < 0.001.
dThe AUC of our model versus the AUC of DNN models by Delong test, P < 0.001.
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groups. Individual patient differences, and treatment sensitivities of

tumors, clinical data, immunological factors, and dosimetric

parameters derived from CT images are integrated to provide

comprehensive and personalized insights recognizing the intrinsic

heterogeneity and enhancing the accuracy of SP prediction. Krafft

et al. (14) created a model to predict RP using pretreatment whole-

lung radiomic features combined with clinical and dosimetric data,

achieving an AUC of 0.68, which was consistent with our findings.

Meanwhile, radiomics has made significant advancements in the

diagnosis and prognosis of lung cancer. Lung cancer is one of the

most prevalent and deadly malignancies globally, with a relatively

low overall five-year survival rate. Therefore, early diagnosis and

prognosis are crucial for improving patient survival rates. In recent

years, the widespread application of artificial intelligence (AI)

technologies in the field of lung cancer, particularly in natural

language processing, machine learning, deep learning, and

reinforcement learning, has significantly enhanced the accuracy of

early diagnosis and prognostic predictions (30). Furthermore, the

application of AI has propelled cancer prediction performance to

new heights, not only improving diagnostic accuracy but also

presenting new opportunities and challenges for clinical

implementation (31). In addition, Qiu et al. (32) distinguished

between CIP and RP based on pre-treatment CT images, revealing

that clinical or radiological parameters such as bilateral lesions

(p < 0.001) and sharp margins (p = 0.001) were significantly

associated with the identification of CIP and RP. In the validation

cohort, the AUC values reached 0.901 and 0.874, respectively. Yang

et al. (33) explored the ability of CT radiomics features to predict

the EGFR mutation status. The results showed that the AUC values
Frontiers in Immunology 15
of the unenhanced, arterial and venous phases in the EGFR

mutation status training group were 0.6713, 0.8194 and 0.8464,

respectively. Wen et al. (34) compared the predictive performance

of pretreatment CT-based radiomics s ignatures and

clinicopathological and CT morphological factors for PD-L1

expression level and tumor mutation burden (TMB) status.

Radiomics signatures showed good performance for predicting

PD-L1 and TMB with AUCs of 0.730 and 0.759, respectively.

Predictive models that combined radiomics signatures with

clinical and morphological factors dramatically improved the

predictive efficacy for PD-L1 (AUC = 0.839) and TMB (AUC =

0.818). Radiomics can extract numerous features but may overlook

subtle high-order characteristics. Hence, a DL approach is applied

in this study based on the ResNet34 architecture for deep image

feature extraction. Unlike manual feature extraction, DL eliminates

the need for contouring, reducing variability among different

segmentations and enhancing efficiency. Additionally, DL

provides detailed information specific to each task within the

hidden layers of the neural network. This amplifies the

performance of the model by a significant margin. The

multidimensional deep network model developed in this study

outperforms several other models, demonstrating that integrating

machine learning and clinical data can enrich image features with

additional information, markedly enhancing predictive accuracy.

Moreover, this study aims to create a decision-support tool for

clinical use, emphasizing that optimal models often require the

combination of multiple factors to enhance decision-making

capabilities (12, 35). Consequently, the results affirm that models

combining multiple indicators outperform single models. PCA is
FIGURE 8

Decision curves of all the models. Within the DCA, the horizontal axis delineates the threshold range, while the vertical axis illustrates the net benefit.
Results of the DCA show that the fusion model integrating deep image features, radiomics features, and clinical information outperforms other
models in terms of net benefits across diverse decision thresholds.
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used to diminish the complexity of image features that have been

extracted. This method allows the conversion of high-dimensional

data into lower-dimensional form, ensuring that essential

information is retained throughout the process. By selecting

representative principal components, data redundancy is

minimized, data analysis and visualization processes are

simplified, and model performance is enhanced.

The combination of radiotherapy and immunotherapy has

become the standard treatment for patients with locally advanced,

unresectable NSCLC. While this combination enhances anti-tumor

efficacy, it also increases the risk of pulmonary complications,

particularly SP. The clinical significance of our model lies in its

ability to identify independent risk factors, such as ECOG and T

stage, which underscores the model’s clinical applicability. These

factors are readily available in clinical practice, allowing for the

model to be integrated into the routine assessment of lung cancer

patients prior to initiating treatment. Moreover, our model relies on

pre-treatment CT images, which means it can be easily

implemented in clinical settings without the need for additional

invasive procedures or extensive follow-up imaging. This

convenience enhances its feasibility as a routine assessment tool.

The ability to accurately predict SP is crucial for patient

management. Our study presents a robust deep imaging

radiomics model that serves as a decision-making tool, capable of

precisely forecasting the occurrence of SP in lung cancer patients

undergoing radiotherapy and immunotherapy. By facilitating the

early identification of patients at high risk for SP, the model guides

clinicians in proactive monitoring and intervention, enabling the

selection of appropriate treatment strategies tailored to individual

patient profiles. Consequently, treatment plans can be adjusted

accordingly, mitigating the severity of pneumonitis and improving

the safety of therapeutic regimens for this vulnerable population.
4.4 Limitations of the study

There are limitations to this research. First, being retrospective,

it depends on data from solely one institution and lacks validation

from external data; therefore, additional research is necessary to

evaluate the model’s applicability. Second, the sample size was

limited, underscoring the necessity for more extensive samples in

forthcoming studies to improve model precision. Third, in addition

to radiomic features, the present study incorporated only clinical,

immunological, and dosimetric parameters, omitting biological

factors. Studies show that increased baseline levels of GM-CSF

and sIL-6R are associated with the development of pneumonitis in

lung cancer patients receiving radiochemotherapy and

immunotherapy (36), variables not included in this study.

Genomic or proteomic data can elucidate pulmonary toxic

response mechanisms, suggesting that integrating radiomic

features with such data can enhance predictive capabilities. Thus,

future research should explore new data types and incorporate

additional information to refine the prediction accuracy. Moreover,
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this study utilized only dose and volume histogram (DVH)

parameters to represent the two-dimensional dose distribution

within the target body and failed to capture spatial dose

distribution characteristics. RP primarily manifests in the locally

irradiated lung region. Multiregion-based radiomics can depict the

three-dimensional spatial dose distribution and can extract

radiomic features from multiple regions, including high-,

medium-, and low-dose areas and specific-sized 3D rings formed

around the tumor, capturing predictive indicators for the

occurrence of pulmonary toxicity better. While this study

extracted radiomics features from normal lung tissue and

combined them with two-dimensional dose parameters to

construct a model, future investigations can incorporate multi-

regional three-dimensional omics analysis for enhanced

predictive outcomes.
5 Conclusion

To summarize, the research findings indicate that an extensive

deep neural network model utilizing deep image features and

radiomics features from preradiotherapy CT images, along with

clinical data, is highly effective in forecasting the development of SP

in lung cancer patients undergoing radiotherapy in conjunction

with immunotherapy. Subsequent studies should prioritize

expanding the sample size and integrating data from multiple

centers for external validation to bolster the reliability and

precision of the model, thereby enabling healthcare providers to

make well-informed and accurate clinical judgments.
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