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Background: Macrophages play a dual role in the tumor microenvironment(TME),

capable of secreting pro-inflammatory factors to combat tumors while also

promoting tumor growth through angiogenesis and immune suppression. This

study aims to explore the characteristics of macrophages in lung adenocarcinoma

(LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage

heterogeneity and their potential pseudotime evolutionary processes. Specifically,

we used scRNA-seq data processing, intercellular communication analysis,

pseudotime trajectory analysis, and transcription factor regulatory analysis to

reveal the complexity of macrophage subpopulations. Data from The Cancer

Genome Atlas (TCGA) was used to assess the impact of various macrophage

subtypes on LUAD prognosis. Univariate Cox regression was applied to select

prognostic-related genes from macrophage markers. We constructed a

prognostic model using Lasso regression and multivariate Cox regression,

categorizing LUAD patients into high and low-risk groups based on the median

risk score. Themodel’s performance was validated across multiple external datasets.

We also examined differences between high and low-risk groups in terms of

pathway enrichment, mutation information, tumor microenvironment(TME), and

immunotherapy efficacy. Finally, RT-PCR confirmed the expression of model genes

in LUAD, and cellular experiments explored the carcinogenicmechanismofCOL5A1.

Results: We found that signals such as SPP1 and MIF were more active in tumor

tissues, indicating potential oncogenic roles of macrophages. Using macrophage

marker genes, we developed a robust prognostic model for LUAD that effectively

predicts prognosis and immunotherapy efficacy. A nomogram was constructed to

predict LUAD prognosis based on the model’s risk score and other clinical features.

Differences between high and low-risk groups in terms of TME, enrichment analysis,

mutational landscape, and immunotherapy efficacy were systematically analyzed.

RT-PCR and cellular experiments supported the oncogenic role of COL5A1.
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Conclusion: Our study identified potential oncogenic mechanisms of

macrophages and their impact on LUAD prognosis. We developed a

prognostic model based on macrophage marker genes, demonstrating strong

performance in predicting prognosis and immunotherapy efficacy. Finally,

cellular experiments suggested COL5A1 as a potential therapeutic target

for LUAD.
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1 Introduction

Lung cancer, particularly non-small cell lung cancer (NSCLC)

and its major subtype LUAD, has consistently been one of the most

commonly diagnosed cancers worldwide and a leading cause of

cancer-related deaths (1). Over the years, the treatment of lung

cancer has evolved to include surgical interventions, radiation

therapy, chemotherapy, targeted therapy, and immunotherapy

(2). Specifically, targeted therapies focusing on specific molecular

alterations and immunotherapies that harness the immune system

to combat cancer cells herald a new era of personalized medicine,

leading to improved survival rates and reduced side effects for many

patients (2, 3). However, significant challenges persist due to the

heterogeneity of lung cancer, the emergence of treatment-resistant

mutations, and the complex interactions between the tumor and its

microenvironment (4). Furthermore, the invasiveness of the disease

and its prognostic implications remain substantial barriers, with

many individuals still unable to be accurately detected and

prognosticated early (5, 6). The dynamic landscape of lung cancer

research underscores the ongoing need for innovation, integration

of emerging technologies, and multidisciplinary collaboration to

overcome these challenges and improve patient prognoses.

TME constitutes a complex and diverse network, not only

composed of tumor cells but also encompassing various stromal

elements, including immune cells, fibroblasts, endothelial cells, and

the extracellular matrix (7). This ecosystem plays a crucial regulatory

role in tumor initiation, progression, metastasis, and treatment

response. With a deepening understanding of tumor biology,

immune-centric therapeutic strategies such as Chimeric Antigen

Receptor T-cells (CAR-T), CAR Natural Killer cells (CAR-NK), and

emerging CAR Macrophages (CAR-M) have garnered widespread

attention (8–10). These treatments utilize the power of the immune

system to target and eradicate specific malignancies with

unprecedented precision. However, different factors in the TME may

influence these innovative therapies. Tumor-associated macrophages

(TAMs), depending on their polarization states, can either promote

tumor growth or enhance tumor immune responses (11). Therefore, it

becomes particularly important to consider a comprehensive strategy

in cancer treatment, one that recognizes the immense potential of new
02
immunotherapies while also considering the complexity of the TME,

especially in the interaction between key components like TAMs and

advanced treatments like CAR-T, CAR-NK, CAR-M.

scRNA-seq sequencing technology has shown significant

advantages in cancer research. It reveals the intricate heterogeneity

within tumor cells, providing deep insights into tumor development,

progression, and treatment response (12). This technology is particularly

applicable for analyzing intercellular interactions within the TME,

helping researchers understand the relationships between tumor cells

and surrounding immune and other cell types. Moreover, scRNA-seq

sequencing can reveal mechanisms of tumor treatment resistance,

providing key information for developing personalized treatment

strategies. Combining scRNA-seq sequencing with traditional Bulk-

RNA sequencing to establish a prognostic model for LUAD captures

the tumor’s biological characteristics more comprehensively. This

integrated approach not only reveals the overall characteristics of

tumor cell populations but also precisely locates changes at the

scRNA-seq level. Such a strategy greatly enhances the accuracy and

clinical utility of the model, making prognostication more precise,

thereby guiding more effective treatment decisions and ultimately

improving treatment outcomes and quality of life for LUAD patients.

In this study, we first analyzed macrophage heterogeneity in

scRNA-seq, identifying SPP1 and MIF as potential oncogenic

pathways in macrophages through the ‘CellChat’ R package. Then

we examined the impact of different macrophage subtypes on LUAD

prognosis and established a robust prognostic model based on

macrophage marker genes. We found that patients in the low-risk

group had better prognoses, more immune cell infiltration, and were

more likely to benefit from immunotherapy. Additionally, a series of

basic experiments corroborated the accuracy of our analysis and

identified COL5A1 as a potential therapeutic target for LUAD.
2 Methods

2.1 Data acquisition

The scRNA-seq dataset (GSE131907) used for the analysis of

macrophage heterogeneity was downloaded from the Gene Expression
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Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE131907) (12). This scRNA-seq dataset comprises 58

samples, including 21 normal samples (11 normal lung tissues and

10 normal lymph node samples), and 37 tumor samples (18 LUAD

tumor tissues, 10 LUAD brain metastases, 7 LUAD metastatic

lymph node tissues, and 5 LUAD pleural effusion metastases).

The gene expression matrix, clinical information, and mutation

data of LUAD patients used for training the prognostic model were

downloaded from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/repository). Gene expression

matrices and clinical information for five independent validation

cohorts (GSE31210, GSE37745, GSE50081, GSE68465, GSE3141)

used for model prognosis and diagnostic capability validation were

obtained from the GEO database. The expression matrix and

clinical information for the bladder cancer immunotherapy

cohort IMVigor210, treated with anti-PD-1 therapy, were

downloaded from the website provided in previous literature

(http://researchpub.gene.com/IMvigor210CoreBiologies) (13). The

Immunophenoscoring (IPS) data, used for predicting immune

therapy responses, were downloaded from The Cancer

Immunome Atlas (TCIA) database (https://tcia.at/patients) (14).

A higher IPS indicates a higher likelihood of the patient benefiting

from immunotherapy. Additionally, we downloaded related data

from the TIDE (http://tide.dfci.harvard.edu) database to evaluate

the likelihood of immune escape in LUAD patients. The melanoma

cohort GSE78220, post-immunotherapy, was downloaded from the

GEO database (15).
2.2 scRNA-seq data analysis

The analysis of scRNA-seq data was primarily conducted using

the R packages “Seurat”, “SCTransform”, “SCP”, and “CellChat”.

Initially, the raw matrix files were loaded into the R environment to

create Seurat objects. Rigorous quality control was applied,

retaining cells with gene expression levels between 300 and

10,000, mitochondrial gene proportions below 20%, and

erythrocyte gene proportions below 3%. Genes expressed at levels

below 3 in individual cells were removed, resulting in 207,626 high-

quality cells. The CellCycleScoring function was used to assess the

cell cycle, and the SCTransform function for data scaling and

normalization. Principal Component Analysis (PCA) based on

3,000 highly variable genes was used for dimensionality

reduction, and the “Harmony” R package was employed to

eliminate batch effects between different samples. Using the

“FindNeighbors” and “FindClusters” functions, we identified 40

cell clusters. A combination of manual annotation and the

“SingleR” package was used for final cell sub-group annotation,

resulting in 8 distinct cell subgroups. The “CellChat” R package was

utilized to infer communication between cell subgroups. The “SCP”

package’s RunSlingshot function was used for pseudotime analysis

of four macrophage types. The “FindAllmarkers” function was

employed to calculate marker genes for each macrophage type.

Simultaneously, we inferred potential gene regulatory networks for

four types of macrophages based on the ‘SCENIC’ R package.
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We used the ‘inferCNV’ algorithm to infer copy number

variation (CNV) in epithelial cells to assess their malignant

characteristics. First, the raw count matrix of epithelial cells was

extracted from single-cell RNA sequencing data, and cells were

annotated based on tissue type, with tumor samples labeled as

“malignant_Epithelial” and normal samples as “normal.” The

‘inferCNV’ package was then used to create an analysis object by

inputting the gene expression matrix, cell annotation file, and gene

order file. During the analysis, the normal cell group was used as a

reference for CNV inference, followed by denoising and clustering.

The results and associated plots were generated. CNV features of

tumor and normal cells were compared based on the inferred CNV

data. Subsequently, the CNV value for each cell was calculated, and

Pearson correlation analysis was performed to correlate tumor cells

with the top 5% of cells exhibiting the highest CNV. Based on these

analyses, each cell was assigned a “cancer” or “normal” label.

Finally, a scatter plot was created using ‘ggplot2’ to illustrate the

correlation between CNV values and tumor cells, further evaluating

the identification and distribution of malignant cells.
2.3 Evaluation of the prognostic impact of
macrophage enrichment scores in
LUAD patients

In the TCGA database, macrophage enrichment scores for each

individual sample were computed using the Single-sample GSEA

(ssGSEA) algorithm (16), based on specific macrophage marker

genes. Initially, a comparative analysis was conducted to examine

the disparities in enrichment scores between normal and tumor

samples. Following this, the tumor samples from TCGA-LUAD

were bifurcated into two distinct groups according to the median of

their enrichment scores. Subsequently, a Kaplan-Meier survival

analysis was undertaken to elucidate the survival variances

between these groups.
2.4 Construction and validation of the
prognostic model

The process commenced with a correlation analysis to sift out

genes in the TCGA database that exhibited a correlation exceeding

0.4 with the macrophage enrichment scores. These genes were then

subjected to a univariate COX analysis, pinpointing those with a

significant bearing on the survival of LUAD patients. Following this,

Lasso regression analysis was deployed to refine the gene pool,

culminating in the development of a multivariate COX regression-

based prognostic model for LUAD, centered on macrophage-related

marker genes. Based on the model’s scoring system, patients were

categorized into high and low-risk groups. The Kaplan-Meier method

was employed to craft survival curves, while Log-rank tests were

utilized to evaluate the survival disparities. Moreover, the model’s

capacity to diagnose 1-, 3-, and 5-year survival rates was gauged using

the receiver operating characteristic (ROC) curve function of the R

package ‘TimerROC’ (17, 18).
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2.5 Nomogram development

The initial step involved performing univariate and multivariate

COX analyses on the risk scores and clinical data of TCGA-LUAD

patients, aiming to identify variables with significant prognostic

influence on LUAD. Leveraging the ‘rms’ R package (19), the final

nomogram was constructed. Its efficacy was subsequently appraised

using calibration curves and decision curve analysis (DCA).
2.6 Enrichment analysis

The analysis began with the application of the ‘GSVA’ algorithm

(20) to discern Hallmarker pathways that were significantly more

enriched in the high-risk group as opposed to the low-risk group.

This was followed by employing the ‘GSEA’ algorithm (21) to dissect

the significant Gene Ontology (GO) pathway differences between

the high and low-risk groups (22). The ssGSEA algorithm facilitated

an assessment of the correlation between enrichment scores and

tumor immunity-related scores, as well as pathways pertinent to

immunotherapy efficacy (Supplementary Table 1). Furthermore, this

algorithm was instrumental in quantifying the divergences in

immune cells and immune-related functions between the high and

low-risk groups. Lastly, the enrichment of genes involved in model

construction within the scRNA-seq data was evaluated using the

‘AUcell’ R package (23).
2.7 Tumor microenvironment assessment

Immune cell infiltration data for seven databases were

downloaded from the Timer2.0 database (http://timer.comp-

genomics.org/) (24). Subsequently, the differences in immune cell

infiltration between high and low-risk groups were assessed. The

‘estimate’ R package (25) was used to calculate stromal, immune,

TumorPurity, and ESTIMATE scores for each TCGA-

LUAD sample.
2.8 Mutation analysis

Mutation data for LUAD patients were downloaded from the

TCGA database using the R package ‘TCGAbiolinks’, and

uniformly decompressed. The ‘maftools’ R package’s read.maf

function was employed to read mutation data and clinical

information into a maf file. The plotmafSummary function

analyzed the mutation profile of TCGA-LUAD patients. The

oncoplot function generated heatmaps combining clinical and

mutation information to display mutation details in high and

low-risk groups. The somaticInteractions function was used to

analyze co-mutation scenarios between hub genes and the top 10

most frequently mutated genes in TCGA-LUAD. Additionally,

Tumor Mutation Burden (TMB) was calculated for each patient,

comparing the differences in TMB between high and low-risk

groups and the correlation between risk scores and TMB.
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2.9 Immunotherapy efficacy prediction

Initially, differences in the expression of immune checkpoint-

related genes and Major Histocompatibility Complex (MHC) genes

between high and low-risk groups were compared, and the correlations

between hub genes, risk scores, and the aforementioned genes were

calculated. Subsequently, differences in Immunophenoscoring (IPS)

between high and low-risk groups were calculated, along with the use

of The tumor immune dysfunction and exclusion (TIDE) algorithm to

assess the likelihood of immune escape (26). Finally, the prognostic and

immunotherapy predictive capabilities of the model were further

validated in two immunotherapy cohorts, IMvigor210 and GSE78220.
2.10 Cell line culture

In our experimental protocol, the BEAS-2B normal human lung

epithelial cells and LUAD cell lines (A549, H1650,H1975,H1299)

were obtained from the Cell Resource Center of the Shanghai

Institute for Biological Sciences. Subsequently, they were cultured

in RPMI-1640 medium (Gibco BRL, USA), supplemented with 10%

fetal bovine serum (FBS, Cell-Box, Hong Kong) and 1% penicillin-

streptomycin mixture (Biosharp, China). The culture conditions

were maintained at 5% CO2, 95% relative humidity, and a constant

temperature of 37°C.
2.11 RNA extraction and RT-PCR analysis

Total RNA was extracted from the cell lines using TRIzol

(15596018, Thermo) as per the provided protocol. cDNA

synthesis was performed with the PrimeScriptT-MRT kit (R232-

01, Vazyme). The subsequent quantitative RT-PCR was conducted

using SYBR Green Master Mix (Q111-02, Vazyme), with GAPDH

mRNA serving as the normalization control. The relative expression

levels were calculated employing the 2−DDCt method. Primers used

were sourced from Nanjing Sunbio Technology Co.,Ltd (Nanjing,

China), detailed in Supplementary Table 1.
2.12 Cell growth evaluation via
CCK-8 assay

Cells were seeded at 3×10³ cells/well in 96-well plates. Post-

seeding, 10 mL of CCK-8 solution (A311-01, Vazyme) was added,

and cells were incubated at 37°C in the dark for 2 hours. Cell

proliferation was monitored by measuring absorbance at 450 nm at

0, 24, 48, 72, and 96 hours using a spectrophotometer

(A33978, Thermo).
2.13 Assessment of colony formation

Cells were plated at 1×10³ cells/well in 6-well plates and

cultured for 14 days. Post-incubation, cells were washed with
frontiersin.org

http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
https://doi.org/10.3389/fimmu.2024.1491872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1491872
PBS, fixed with 4% paraformaldehyde for 15 minutes, and stained

with Crystal Violet from Solarbio, China.
2.15 Migration and invasion analysis via
transwell assays

Migration and invasion capacities were tested using 24-well

transwell inserts, with A549 and H1650 cells seeded at 1×105 cells in

the upper chamber. For invasion assays, chambers were pre-coated

with matrigel (BD Biosciences, USA), while others remained

uncoated for migration assays. Post-migration/invasion, cells on

the membrane’s underside were fixed and stained with crystal violet

(Solarbio, China).
2.16 Animal models

The subcutaneous tumor formation animal experiment was

conducted after obtaining approval from the Animal Experiment

Ethics Committee of Tianjin Chest Hospital. We implanted A549

cells, stably transfected with COL5A1, and untreated control cells

into the left and right inguinal areas of 5-week-old BALB/c nude

mice, respectively. After 30 days of cultivation, the mice were

euthanized, and the tumors were collected for weighing.
2.17 Macrophage co-culture

In this study, we employed a co-culture experimental approach

to explore the interactions between macrophages and LUAD cell

lines. Specifically, we first treated THP-1 cells with 200 nM PMA for

24 hours to induce their differentiation into macrophages. These

differentiated macrophages were then co-cultured with two different

states of LUAD cell lines: one untreated and the other with

knocked-down COL5A1 expression. After the co-culture, we

utilized RT-PCR technology to detect the expression of anti-

inflammatory Mj markers CD163 and CD206 in the

macrophages, assessing their polarization status under varying

microenvironmental conditions. This approach allowed us to gain

a deeper understanding of the role of COL5A1 in regulating

macrophage behavior and LUAD development, thereby providing

a foundation for revealing the potential value of COL5A1 as a

therapeutic target.
2.18 Statistical analysis

The statistical analyses for the bioinformatics part were

conducted in the R environment (version 4.3.1), while basic

experimental data were statistically analyzed using Graphpad and

ImageJ. When evaluating intergroup differences, the independent

sample T-test or one-way ANOVA was applied for samples

adhering to a normal distribution. For samples not following a

normal distribution, the Wilcoxon rank-sum test or Kruskal-Wallis

test was employed. Survival analysis was performed using the
Frontiers in Immunology 05
Kaplan-Meier method to construct survival curves, with Log-rank

tests assessing the survival differences. Spearman’s Rank

Correlation Coefficient was utilized to determine correlations

between data sets. A p-value of less than 0.05 was considered

statistically significant, with *P < 0.05, **P < 0.01, ***P < 0.001

indicating increasing levels of significance.
3 Results

3.1 Establishment of the scRNA-seq Atlas
of LUAD

As detailed in the Methodology section and illustrated in

Supplementary Figure 1, through stringent quality control, we

obtained 207,626 high-quality cells from 58 samples across 44

patients. Utilizing the ‘Seurat’ and ‘SCTransform’ packages, 40

distinct cell clusters were identified using UMAP (Uniform

Manifold Approximation and Projection) technology (Figure 1A).

The study combined manual annotation (based on classic marker

genes) and automatic annotation via the SingR algorithm,

successfully categorizing these cell clusters into 8 different

subgroups (Figure 1B). Additionally, the expression of these

marker genes is depicted in a bubble chart format in Figure 1C.

Next, we isolated epithelial cells and applied the inferCNV

algorithm to infer the malignancy of tumor-derived epithelial cells.

As shown in Supplementary Figure 2A, epithelial cells were

classified into 35 distinct clusters. Using the inferCNV algorithm,

chromosomal variations in normal tissue-derived epithelial cells

were used as a reference to infer the malignancy of tumor-derived

epithelial cells (Supplementary Figure 2B). Malignant epithelial cells

were identified based on a Pearson correlation coefficient greater

than 0.2 between their CNV profiles and the average CNV features

of the top 5% tumor cells, with a CNV level exceeding 0.2

(Supplementary Figure 2C). The inferCNV annotation results are

shown in Supplementary Figure 2D, and the tissue origin of the

epithelial cells is depicted in Supplementary Figure 2E. Overall, the

number of malignant cells inferred by the inferCNV algorithm was

lower than the number of tumor-derived epithelial cells, which we

attribute to the presence of normal tissue-derived cells mixed within

the tumor samples during collection.

We further evaluated the proportion of malignant versus benign

cells in each cluster (Supplementary Figure 2F). Clusters with a

higher proportion of malignant cells were annotated as tumor cells,

while clusters with a higher proportion of normal cells were

classified as normal lung epithelial cells. Normal cells were further

annotated based on marker gene expression, identifying them as

AT1, AT2, ciliated, or club cells (Supplementary Figure 2G). The

expression patterns of lung epithelial marker genes are shown in

Supplementary Figure 2H, confirming the accuracy of the

clustering. The epithelial cell annotations derived from the

inferCNV algorithm were then incorporated into the metadata

and visualized (Figure 1D). Additionally, we examined the

distribution of cells according to their sample origins, observing

an even distribution across the different cell types with no apparent

batch effects (Figure 1E).
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We further analyzed the distribution of different cell subgroups

across various tissue sources. The analysis indicated that T cells are

the most abundant in the TME, followed by epithelial cells and

macrophages (Figure 1F). Notably, macrophages were more

abundant in normal lung tissues compared to early-stage LUAD

tissues (Figure 1G). When comparing cell abundance between

tumor and normal lung tissues, it was found that epithelial cells

predominantly reside in tumor tissues (Figure 1H). In contrast, the
Frontiers in Immunology 06
distribution of macrophages showed less disparity between normal

and tumor tissues (Figure 1I).
3.2 Intercellular communication analysis

We performed intercellular communication analysis on tumor

and normal lung tissues separately using the ‘CellChat’ R package,
FIGURE 1

Visualization of scRNA-seq data. (A) The UMAP algorithm identified 40 cell clusters. (B) Eight cell types were annotated using the UMAP algorithm
based on marker genes. (C) Display of marker genes, with the left half showing results annotated by SingleR and the right half showing manually
annotated results. (D) UMAP plot showing the distribution of cells, with malignant epithelial cells inferred using the inferCNV algorithm and further
clustering of benign epithelial cells. (E) UMAP algorithm showing the patient origin of cells. (F) and proportion (G) of cells from different tissue
origins. Bar graphs illustrating the differences in cell numbers (H) and proportions (I) between LUAD and normal lung tissues.
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aiming to identify signaling pathways that are aberrantly activated

or inactivated in tumors, thereby potentially identifying therapeutic

targets for LUAD. Initially, at an overarching level, signaling

pathways in tumors were more active compared to normal

tissues, both in terms of the number and intensity of signals

(Figure 2A). Heatmaps of interaction quantity and intensity

revealed an increase in both the number and strength of

interactions involving epithelial cells, whether as target or source

cells, in tumor tissues (Figure 2B). Conversely, signaling pathways

related to macrophages were significantly reduced, an intriguing

phenomenon that may reflect how alterations in the tumor

microenvironment are associated with the inhibition of certain

normal functions and interactions of macrophages. This suggests

that modulating these pathways could offer potential strategies for

cancer treatment. Furthermore, we compared all significantly

different signaling pathways between tumor and normal samples

in detail, identifying pathways such as SPP1 and MHC-I as

particularly active in tumors (Figure 2C). Detailed analysis of

macrophage-related signaling pathways revealed an increase in

the activity of SPP1 and MIF pathways in tumors, potentially

related to macrophages promoting tumor growth, invasion, or

immune suppression (Figure 2D, left). In contrast, the activity of

pathways from macrophages, such as VEGFB to VEGFR1 and

TNFSF13B to TNFRSF13B, was reduced in tumors, possibly

reflecting adaptive changes in macrophage function under tumor

conditions, which could impact immune responses and tumor cell

regulation (Figure 2D, right). Despite an overall suppression of

macrophage-related pathways (Figure 2B), the activities of SPP1

and MIF remained more vigorous, potentially indicating a closer

association of these pathways with cancer progression. Therefore,

we presented detailed information on these two pathways and

compared the expression of key molecules in these pathways

between tumor and normal lung tissues (Figures 2E, F). Results

showed that MIF is primarily produced by macrophages and acts on

fibroblasts, epithelial cells, and other immune cells, whereas the

SPP1 pathway is highly related to macrophages.
3.3 Pseudotime analysis and transcription
factor regulatory analysis of macrophages

In order to delve deeper into the subtypes and functions of

macrophages within the TME, we conducted a detailed sub-group

analysis and pseudotime trajectory study. Drawing from existing

literature, we classified macrophages into four subtypes: Alveolar

−Mj, Interstitial Mj Perivascular, Mj Anti−inflammatory, and

Mj Pro−inflammatory (27–30). Figure 3A displays the expression

of marker genes within each macrophage subgroup. The UMAP

dimensionality reduction method was utilized to illustrate the

distribution of these macrophage subgroups in the reduced space,

underscoring their separation and specificity (Figure 3B). Next,

employing the Slingshot R package for pseudotime analysis, we

discovered two distinct trajectories of macrophage fate (Figure 3B).

Both differentiation pathways initiated from Alveolar−Mj,
proceeded through Interstitial Mj Perivascular, and finally
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diverged into either Mj Anti−inflammatory or Mj Pro

−inflammatory. Additionally, we meticulously depicted these two

differentiation pathways, with varying shades representing the order

in pseudotime (Figure 3C). Next, we analyzed the differential gene

expression and their enrichment in biological pathways during the

differentiation process of these two divergent macrophage fates. We

found that pathways related to dendritic cell antigen processing

and presentation were predominantly enriched in Alveolar Mj,
while Interstitial Mj Perivascular were associated with positive

regulation mediated by lipopolysaccharides. Moreover, high

expression of CD163 and CCL2 in anti-inflammatory

macrophages may indicate their key role in anti-inflammatory

responses (Figure 3D). To gain insight into the transcriptional

regulation of macrophages, we analyzed the activity and

expression of transcription factors across different macrophage

populations. As shown in Figure 3E, we present the top five

transcription factors with the highest expression levels across four

distinct macrophage subtypes using violin plots. These plots

provide a visual representation of the distribution and variation

in transcription factor expression within each group. In Figure 3F,

we further explore the transcriptional landscape by highlighting the

seven transcription factors with the highest and lowest expression

levels in various macrophage subtypes. This comparative analysis

allows us to identify key regulators that may play a significant role

in macrophage function and their involvement in immune

responses, inflammation, and the tumor microenvironment.
3.4 Macrophage subgroups’ impact on
LUAD prognosis

We next explored the potential impact of different macrophage

subgroups on the prognosis of lung adenocarcinoma (LUAD)

patients. Initially, marker genes for various macrophages were

identified in sc-RNAseq data using the FindAllMarkers function.

In the TCGA-LUAD cohort, we then calculated the enrichment

scores for each patient’s macrophage subgroups using the ssGSEA

algorithm based on these marker genes. Comparing the

macrophage enrichment scores between normal lung tissues and

tumor tissues (Figure 4A), we observed that the enrichment scores

of Alveolar-Mj, Interstitial-Mj Perivascular, and Mj Pro-

inflammatory were significantly higher in normal samples than in

tumor samples. Conversely, Mj Anti-inflammatory was notably

more enriched in tumor tissues, suggesting a potential association of

this macrophage subgroup with poor prognosis in LUAD. Further

Kaplan-Meier survival analysis revealed that the three macrophage

subgroups significantly enriched in normal samples correlated with

better prognosis in LUAD patients (Figures 4B–D). Specifically,

higher enrichment scores of these subgroups in patients were

associated with longer overall survival, indicating their potential

role in inhibiting tumor progression. On the other hand, patients

with higher enrichment scores of Mj Anti-inflammatory exhibited

poorer prognosis (Figure 4E), suggesting that this subgroup might

contribute to tumor growth and immune escape. In summary, all

four macrophage subgroups significantly influenced the prognosis
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of LUAD, leading us to include all macrophage marker genes in our

subsequent modeling.
3.5 Construction and validation of the
prognostic model

Developing a prognostic model can aid physicians in formulating

personalized treatment plans based on the specific tumor
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characteristics of a patient, thereby enhancing treatment efficacy and

minimizing unnecessary side effects (31). Additionally, prognostic

models assist in continuous monitoring and management of patient

health, enabling timely detection of disease recurrence or progression

(32). To better understand the prognostic factors of LUAD, we

constructed a prognostic model based on macrophage-related genes.

Initially, in the TCGA-LUAD dataset, we identified differentially

expressed genes (DEGs) with significant expression differences

between normal and tumor samples (logFC≥1, FDR<0.05)
FIGURE 2

Intercellular communication analysis. (A) Overview of the differences in the number and intensity of signaling pathways between tumor and normal
samples. (B) Heatmap showing the cellular origins of differing signaling pathways between tumor and normal samples. (C) Bar graph detailing the
specific signaling pathways that differ. (D) Heatmap displaying significantly increased and decreased macrophage-related signaling pathways in
tumor samples. (E) The role of the MIF and (F) SPP1 signaling pathways among different cells, and the expression of key genes in these pathways.
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(Figure 5A). We then selected genes correlated with macrophage

enrichment scores greater than 0.4 (p<0.05) and intersected them with

the aforementioned DEGs. Using univariate Cox regression analysis,

we identified genes significantly impacting LUAD prognosis in the
Frontiers in Immunology 09
TCGA dataset (Figure 5B). To optimize the model, we employed the

LASSO Cox regression method and selected 14 key genes at the

optimal l value of 0.0323 (Figure 5C). The prognostic model was then

constructed using multivariate Cox regression, with the formula: Risk
FIGURE 3

Identification and pseudotime analysis of macrophage subgroups. (A) Marker genes for four types of macrophages. (B) Four types of macrophages
annotated in the UMAP algorithm based on marker genes and pseudotime analysis conducted using the Slingshot R package, revealing two distinct
developmental trajectories of macrophages. (C) Detailed illustration of the two differentiation trajectories, where the depth of color indicates the
order in pseudotime, with darker colors representing later stages. (D) Heatmap depicting the differential gene expression during the differentiation
process of the two cell fates and the enrichment analysis results of these genes. (E) Violin plots show the top 5 transcription factors most strongly
associated with each type of macrophage. (F) The top 7 transcription factors with the highest and lowest expression in each type of macrophage.
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Score = -0.39*CD101 - 0.099*CPA3 - 0.118*CD79A + 0.124*COL5A1

+ 0.298*ERO1A + 0.082*GJB2. This formula estimates patient risk

scores by weighting the expression levels of each gene. Patients were

divided into high and low-risk groups based on the median score, and

the prognostic ability and diagnostic accuracy of the model were

validated in the TCGA database (Figure 5D). Kaplan-Meier survival

curves indicated poorer prognosis for patients in the high-risk group.

ROC curve analysis demonstrated that the model’s predictive AUC

values for 1-year, 3-year, and 5-year survival rates were all above 0.65,

confirming the model’s predictive efficacy. To ensure the robustness of

the model, its prognostic and diagnostic capabilities were also

validated in five independent GEO datasets (Figures 5E–I). Finally,

we merged all the datasets after correcting for batch effects using the

sva package. Survival analysis revealed that patients in the high-risk

group had significantly worse prognosis compared to those in the low-

risk group (Figure 5J). Figure 5K shows the effect of our batch effect
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correction. These external validations further confirmed the broad

applicability and reliability of our model.
3.6 Identification of independent risk
factors and construction of the nomogram

In our study, the risk score was integrated with clinical

characteristics such as gender, age, and tumor stage for a

comprehensive assessment. Through univariate and multivariate

Cox regression analyses, key prognostic factors for LUAD were

identified, including tumor stage and risk score (Supplementary

Figures 3A, B). Based on these insights, we constructed a

Nomogram that combines the risk score with clinical staging

(Supplementary Figure 3C), aimed at precisely predicting the

survival prognosis of LUAD patients. Calibration curves validated
FIGURE 4

The relationship between four types of macrophages and LUAD prognosis. (A) Differences in enrichment scores of four types of macrophages
between normal and tumor samples in TCGA-LUAD. (B) Impact of Alveolar-Mj, (C) Interstitial-Mj Perivascular, (D) Mo-Mj Pro-Inflammatory,
(E) Mo-Mj Anti-Inflammatory enrichment scores on LUAD prognosis. The optimal cut-off value was determined using the surv_cutpoint function
from the ‘survminer’ package. *P < 0.05; **P < 0.01; ***P < 0.001.
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the high accuracy of the Nomogram, demonstrating its reliability in

predicting LUAD survival rates (Supplementary Figure 3D). In

terms of prognostic effectiveness, our Nomogram surpassed

traditional clinical parameters in predictive accuracy (AUC), as

further substantiated by time-dependent ROC curve analysis

(Supplementary Figure 3E). Additionally, decision curve analysis

(DCA) also confirmed the effectiveness of our Nomogram in

identifying high-risk patients (Supplementary Figure 3F).
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3.7 Enrichment analysis

The GSVA enrichment analysis revealed that the three most

significantly enriched Hallmarker pathways in the high-risk group

were GLYCOLYSIS, E2F_TARGETS, and G2M_CHECKPOINT

(Supplementary Figure 4A). Notably, despite the presence of

oxygen, tumor cells often prefer glycolysis to generate energy for

rapid proliferation, a phenomenon known as the “Warburg effect”
FIGURE 5

Construction of the LUAD prognostic model. (A) Volcano plot displaying differential genes between tumor and normal samples in TCGA-LUAD.
(B) Volcano plot showing results of univariate Cox regression analysis. (C) Lasso regression further refines LUAD prognosis-related genes. Kaplan-
Meier survival curves and ROC curves demonstrating the model’s prognostic and diagnostic efficacy in (D) TCGA-LUAD, (E) GSE37745, (F) GSE31210,
(G) GSE3141, (H) GSE50081, (I) GSE68465, and (J) MergeData. (K) Principal component analysis (PCA) plot of six LUAD datasets after batch
effect removal.
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(33). This enhanced glycolysis is generally associated with metabolic

reprogramming of cancer cells, a strategy adopted to meet their

energy and biosynthetic demands for growth. Additionally, the E2F

family of transcription factors (E2F_TARGETS) plays a crucial role

in cell cycle regulation, especially in controlling the G1/S transition.

The enrichment of E2F targets might indicate abnormalities in cell

cycle control and accelerated cell proliferation, a hallmark of cancer

(34). The G2/M checkpoint, a critical phase in the cell cycle, ensures

cells complete DNA replication and damage repair before mitosis.

The enrichment of the G2M_CHECKPOINT pathway suggests that

in the high-risk group, cell cycle regulation and DNA damage

response mechanisms might be activated or altered, potentially

linked to rapid tumor growth and chemotherapy resistance (35).

Further GSEA enrichment analysis indicated that pathways

significantly enriched in the high-risk group included

Chromosome Segregation and DNA Dependent DNA Replication

(see Supplementary Figure 4B), while the low-risk group showed

significant enrichment in pathways like B Cell Receptor Signaling

Pathway and Immunoglobulin Complex (Supplementary

Figure 4C). Subsequently, we assessed the relationship between

the risk score, immune escape-related pathways, and tumor

immune cycle (Supplementary Figure 4D). The analysis showed a

positive correlation between the RiskScore and most immune

escape-related pathways (except IFN-Gamma signature and APM

signal), implying that patients in the high-risk group are more

prone to immune escape. Notably, there was a significant negative

correlation between the risk score and tumor immune cycle-related

pathways. This suggests that as the risk score increases, the body’s

immune system’s ability to recognize and eliminate tumor cells may

decrease. Additionally, we evaluated the differences in immune cell

infiltration and immune-related functions between high and low-

risk groups (Supplementary Figures 4E, F). The results indicated

that patients in the low-risk group had significantly better immune-

related functions and immune cell infiltration than those in the

high-risk group. Finally, the AUcell algorithm was used to assess the

enrichment of genes involved in model construction across different

cell types in the scRNA-seq dataset (Supplementary Figure 4G). The

analysis showed that these genes were mainly enriched in

macrophages and monocytes, further validating the accuracy of

our analysis.
3.8 Immune microenvironment analysis

We downloaded immune infiltration data from seven algorithms

(TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC) from the Timer2.0 database.

As shown in Supplementary Figure 4A, patients in the low-risk group

exhibited higher levels of immune infiltration, suggesting that their

tumors were more characteristic of “hot tumors” (36), known for

better immunotherapy responsiveness. In contrast, patients in the

high-risk group showed less immune cell infiltration, typically

indicating lower sensitivity to immunotherapy due to reduced

activation of the body’s immune response (37). Additionally, we

employed the ‘estimate’ algorithm to assess the differences in immune

infiltration levels between high and low-risk groups. This algorithm
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outputs four scores: stromal score representing stromal cell

infiltration, immune score indicating immune cell infiltration,

estimate score which is a combination of the two, and tumor

purity that represents the purity of tumor cells. The results

indicated that patients in the low-risk group had higher levels of

stromal and immune cell infiltration, and the risk score was

negatively correlated with stromal and immune cell infiltration

levels (see Supplementary Figures 4B–D). Conversely, the

high-risk group exhibited higher tumor purity, and the risk

score was significantly positively correlated with tumor purity

(Supplementary Figure 4E). The correlation analysis revealed a

significant positive correlation between the risk score and M0

macrophage infiltration levels, while a significant negative

correlation was observed with M2 macrophage infiltration

(Supplementary Figure 4F).
3.9 Mutation analysis

In cancer research, analyzing the mutational landscape is crucial

for uncovering tumor genesis and development mechanisms, tailoring

treatment plans based on individual genetic characteristics, developing

new targeted drugs, accurately predicting treatment responses and

resistance, and enhancing early diagnosis and risk assessment accuracy.

We first examined mutation scenarios in high and low-risk groups.

After excluding samples with missing clinical information, 446 samples

were analyzed, among which 404 exhibited gene mutations

(Figure 6A). The waterfall plot displayed the top 20 genes with the

highest mutation frequency, revealing a higher mutation frequency in

the high-risk group. As shown in Figure 6B, in LUAD, the most

common mutation type was SNP (single nucleotide polymorphism),

predominantly featuring missense mutations. SNPs, a genetic mutation

type, refer to variations at specific locations in the genome (38). These

can occur in coding (genes) or non-coding regions and don’t

necessarily lead to changes in protein sequences. Missense mutations,

a specific type of SNP, occur in gene coding areas and result in altered

amino acids, thus changing protein structure and function (39). Co-

mutation analysis showed the co-mutation scenarios between hub

genes and the top 10 most mutated genes (Figure 6C). Figure 6D

detailed hub gene mutations, with COL5A1 having the highest

mutation frequency: 30 mutations in 446 patients, primarily

deletions. Subsequently, we found a higher TMB in the high-risk

group, with a significant positive correlation between RiskScore and

TMB (Figures 6E, F).
3.10 Immunotherapy efficacy prediction

Immunotherapy has become a vital part of lung cancer treatment,

significantly improving survival rates and quality of life, especially for

advanced non-small cell lung cancer patients. We first evaluated the

expression of immune checkpoint-related genes between high and

low-risk groups, with almost all genes showing higher expression in

the low-risk group (Figure 7A). Correlation analysis revealed that hub

genes, especially CD79A and CD101, were significantly positively

correlated with immune checkpoint-related genes (Figure 7B), while
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risk scores mainly showed a negative correlation. As Figures 7C, D

depict, HLA-related genes were also significantly more expressed in

the low-risk group, with risk scores showing a negative correlation

with these genes. We then evaluated the IPS scores between high and

low-risk groups, with higher scores indicating a higher likelihood of

benefiting from immunotherapy. Results showed that IPS scores were

significantly higher in the low-risk group, irrespective of CTLA4 and

PDL1 expression levels (Figure 7E). The TIDE algorithm assessment

of immune escape likelihood found that the high-risk group was more
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prone to immune dysfunction and exclusion (Figures 7F, G). In the

IMvigor210 cohort, the prognosis of the high-risk group was

significantly worse than that of the low-risk group (Figure 7H). No

survival differences were observed between high and low-risk groups

in stages I+II (Figure 7I), but in stages III+IV, the prognosis was worse

for the high-risk group (Figure 7J), suggesting our prognostic model is

more sensitive in predicting late-stage patient outcomes. Interestingly,

the risk scores of patients in the partial response (PR) + complete

response (CR) group were significantly lower than those in the
FIGURE 6

Gene mutation analysis in high and low-risk groups. (A) Heatmap displaying the mutation landscape in high and low-risk groups, highlighting the top
20 most frequently mutated genes. (B) Mutation landscape in TCGA-LUAD. (C) Co-mutation scenarios of hub genes. (D) Mutation information of
hub genes. (E) Differences in TMB between high and low-risk groups. (F) Correlation between risk score and TMB. *P < 0.05.
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progressive disease (PD) + stable disease (SD) group (Figure 7K). To

further validate the robustness of the model, it was also tested in the

additional immunotherapy cohort GSE78220, again finding poorer

outcomes for the high-risk group (Figure 7L), with the PD group

having significantly higher risk scores compared to the PR+CR

group (Figure 7M).
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3.11 Verification experiments for
bioinformatics analysis

Acknowledging the potential for errors in our bioinformatics

analysis, we conducted a series of validation experiments to ensure

the accuracy of our results. Initially, we collected surgical resection
FIGURE 7

Relationship between risk score and immunotherapy. (A) Differential expression of immune checkpoint-related genes between high and low-risk groups.
(B) Correlation of hub genes and risk score with checkpoint-related genes. (C) Differential expression of human major histocompatibility complex genes
between high and low-risk groups. (D) Correlation of hub genes and risk score with human major histocompatibility complex genes. Differences in
(E) IPS and (F, G) TIDE scores between high and low-risk groups. Kaplan-Meier survival analysis in the IMvigor210 cohort for (H) all, (I) stages I+II, and
(J) stages III+IV patients. (K) Risk score differences between different immunotherapy outcomes. Survival analysis in the GSE78220 immunotherapy
cohort (L) between high and low-risk groups. (M) Risk score differences between different immunotherapy efficacies. *P < 0.05; **P < 0.01; ***P < 0.001.
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samples of tumor and adjacent tissues from 8 LUAD patients at Tianjin

Chest Hospital. Through these samples, we validated the differential

expression of six key genes involved in model construction. Our

findings indicated that CD79A, COL5A1, ERO1A, and GJB2 were

significantly overexpressed in tumor tissues compared to normal

tissues, while CD101 and CPA3 showed more active expression in

normal lung tissues (Figures 8A–F), aligning with our prior analysis.

Subsequently, we delved deeper into COL5A1 research. RT-PCR

analysis revealed significantly higher expression of COL5A1 in four
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LUAD cell lines (A549, H1650, H1975, H1299) compared to the

normal lung epithelial cell line (BEAS-2B) (Figure 8G). Next, we chose

to knock down the expression of COL5A1 in the A549 andH1650 cell

lines, which had the highest expression levels, using si-RNA

technology. Two days after successful transfection, RT-PCR was

used to verify the transfection efficiency, and the results showed that

the genewas significantly downregulated at theRNA level (Figure 8H).

Simultaneously, we conducted a series of cellular experiments to

validate the role of COL5A1 in the progression of LUAD. Initially,
FIGURE 8

RT-PCR validation of HUB gene expression. (A) CD79A, (B) CD101, (C) COL5A1, (D) CPA3, (E) ERO1A, (F) GJB2 expression in normal lung tissues and
LUAD. (G) COL5A1 expression in different cell lines. (H) Relative expression of COL5A1 two days post-transfection. *P < 0.05; **P < 0.01;
***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1491872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1491872
colony formation assays showed that knocking down COL5A1

significantly reduced the clonogenic ability of LUAD cells

(Figure 9A). CCK-8 assays demonstrated that knocking down

COL5A1 inhibited the proliferative capacity of LUAD cells

(Figure 9B). Transwell migration and invasion assays indicated

that knocking down COL5A1 suppressed the migration and

invasion abilities of LUAD cells (Figure 9C).

Given the focus of this study on macrophages, we further

validated the relationship between COL5A1 and macrophages.
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Initially, we conducted a correlation analysis between COL5A1

and anti-inflammatory macrophage marker genes (CD163, CD206)

in the TCGA-LUAD database (Figures 9D, E), which showed

significant correlations. Then, we utilized a co-culture system to

further validate the impact of COL5A1 on macrophage

polarization, with Figure 9F displaying our workflow diagram.

THP-1 cells were induced with 200 nM PMA for 48 hours,

followed by RT-PCR to assess the expression of macrophage

markers. The results showed that CD14 and CD11b were
FIGURE 9

Cellular experiments. (A) Colony formation assay assessing the effect of COL5A1 on cell proliferation. (B) CCK8 assay showing the impact of COL5A1
knockdown on the proliferative capabilities of A549 and H1650 cell lines. (C) Transwell assay verifying the impact of COL5A1 on cell migration and
invasion. (D) Nude mice experiments simulate the effect of COL5A1 on LUAD progression in vivo. (E) The tumor growth curves of mice in the
COL5A1 knockdown group and the control group. Correlation of COL5A1 with (F) CD163, (G) CD206. (H) Co-culture workflow diagram. (I) RT-PCR
detection of macrophage induction effect. (J) RT-PCR validation of differential expression of anti-inflammatory macrophage (M2) markers after co-
culture. *P < 0.05; **P < 0.01; ***P < 0.001.
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significantly upregulated after PMA induction, confirming the

success of the induction (Figure 9G). Finally, macrophages were

co-cultured with both normal and COL5A1-knockdown cell lines.

The results demonstrated that knocking down COL5A1

significantly decreased the expression of CD206 and CD163,

indicating that COL5A1 may promote the polarization of anti-

inflammatory macrophages (Figures 9F–J).
4 Discussion

TME is an exceedingly complex ecosystem, comprising non-

tumorous cells and their produced matrix environment that

surround and support tumor growth. The TME encompasses

various cell types, such as immune cells, stromal cells, endothelial

cells, along with abundant extracellular matrix components, and is

rich in cytokines, enzymes, and growth factors (7). A deep

understanding of the TME is crucial for overcoming the

challenges posed by cancer. ScRNA-seq, with its high-resolution

capabilities, offers us a unique perspective to observe and analyze

cellular differences and their collective compositions at the cellular

level, which is particularly important for understanding the

complex TME (12). Through scRNA-seq, we can intricately

analyze various cellular subpopulations within the TME, gaining

deeper insights into their specific roles in tumor progression. This,

in turn, facilitates the development of more personalized and

precise strategies for cancer treatment.

Macrophages are a crucial component of the Tumor TME

and play a dual role in the onset and progression of cancer. This

study initially categorized scRNA-seq data into eight cell clusters

based on classic marker genes. Enrichment analysis revealed that

macrophages are primarily involved in functions such as immune

regulation, phagocytosis, and antigen presentation. We observed a

declining trend in the number of macrophages in tumor tissues

compared to adjacent non-tumor tissues, which might be attributed

to the hypoxic environment in the TME that is unfavorable for the

growth and aggregation of macrophages (40), or due to physical

barriers formed by tumor cells and the secretion of specific

immunoregulatory factors in the TME, such as TGF-b and IL-10,

that inhibit the activation and recruitment of macrophages.

Analysis of intercellular communication identified SPP1 and MIF

as two key factors in potential carcinogenic mechanisms. The role of

the SPP1 signaling pathway is crucial in cancer, involving cell

adhesion, mobility, immune response, and inflammation (41, 42).

SPP1 plays a significant role in tumor progression, invasion,

metastatic ability, and poor prognosis. It attracts macrophages to

the TME and induces their polarization towards tumor-promoting

M2-type, thereby facilitating tumor progression and metastasis

(43). The MIF signaling pathway also plays a key role in the

TME, promoting angiogenesis, altering immune cell infiltration

and function, and regulating inflammatory responses, thus driving

tumor progression and potentially helping the tumor to evade the

immune system by forming an immunosuppressive environment

(44). Moreover, MIF can synergize with inflammatory pathways

such as SPP1 and TNF-a, regulating the TME by interfering with

macrophage polarization (45).
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Based on current literature, we categorized macrophages into

four subtypes: Alveolar-Mj, Interstitial Mj Perivascular, Mj Anti-

inflammatory, and Mj Pro-inflammatory. Alveolar-Mj, primarily

located in the alveoli, serve as a crucial defense line of the

respiratory system (28). Their anti-inflammatory properties are

essential for maintaining lung stability and balance. Interstitial

Mj and Perivascular Mj, positioned in tissue interstices and

around blood vessels, play key roles in sustaining tissue

equilibrium and responding to inflammation. However, in the

cancer milieu, these cells may transform into an anti-

inflammatory phenotype that promotes tumor progression (46).

Mj Pro-inflammatory, with pro-inflammatory characteristics, can

resist pathogens and carcinogenic cells, demonstrating significant

anti-cancer potential (47). Conversely, Mj Anti-inflammatory, by

inhibiting immune responses and facilitating tissue repair, may also

contribute to tumor growth and metastasis (13). Pseudotime

analysis was employed to determine the differentiation path of

macrophages, starting from Alveolar-Mj and transitioning to

Interstitial Mj Perivascular, eventually evolving into either Mj
Pro-inflammatory or Mj Anti-inflammatory. Analysis from the

TCGA database revealed that a high enrichment score of Mj Anti-

inflammatory is associated with a poorer prognosis in LUAD

patients, while the other three macrophage subtypes positively

impact prognosis.

Employing Lasso regression combined with multivariate COX

regression analysis, we successfully developed a precise prognostic

model for LUAD. Patients were categorized into high and low-risk

groups based on the median risk score. Analysis in both training

and validation sets indicated poorer survival outcomes for patients

in the high-risk group. Moreover, the model demonstrated

significant diagnostic efficacy in predicting the 1-, 3-, and 5-year

survival rates of patients. Enrichment analysis of high and low-risk

groups revealed that the metabolic reprogramming, aberrant cell

cycle regulation, and activation of DNA damage response

mechanisms exhibited by tumor cells in the high-risk group could

be linked to rapid tumor growth and treatment resistance. In

contrast, patients in the low-risk group exhibited stronger

immune activity.

The tumor immune cycle, encompassing the entire process

from the generation of tumor antigens to the immune cell-mediated

clearance of tumor cells, involves complex interactions between

tumor cells and the host immune system (48). Key stages of the

tumor immune cycle include the release and presentation of tumor

antigens, induction of immunogenic signals, activation and

proliferation of immune cells, migration and infiltration of

immune cells into the TME, recognition of tumor cells, and

clearance of tumor cells mediated by effector immune cells (49).

Each stage of the tumor immune cycle is crucial for immune-

mediated tumor clearance, and dysfunction at any stage can lead to

immune response failure and tumor immune escape. Our

enrichment analysis showed a significant negative correlation

between the risk score and most steps of the tumor immune

cycle, suggesting that patients with higher risk are more prone to

immune escape. Additionally, our analysis revealed a significant

association between tumor immune infiltration characteristics and

patient risk scores. Patients in the low-risk group displayed higher
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levels of immune infiltration, tending to form “hot tumors” that are

more sensitive to immunotherapy. This underscores the importance

of immune infiltration in patient prognosis and treatment response.

Finally, we validated these hypotheses in the immunotherapy

cohorts IMvigor210 and GSE78220, where results indicated that

the low-risk group benefited more from immunotherapy, and

patients with better treatment efficacy had lower risk scores.

A series of experiments were conducted to confirm the validity

and reliability of our analysis. Initially, we verified the expression of

Hub genes in LUAD tumor and adjacent non-tumor tissue samples,

aligning our experimental results with the bioinformatics analysis.

Our research then shifted focus to COL5A1, a gene located on the q

arm of chromosome 9 encoding the alpha-1 chain of type V collagen

(50), crucial for collagen fiber assembly and the structural integrity of

the ECM (51). Previous studies have indicated COL5A1’s role in

gastric cancer progression through acting as a ceRNA for miR-137-3p

to promote FSTL1 expression (52) and its association with ovarian

cancer progression, taxol resistance, and immune cell infiltration in

the tumor environment (53). Earlier bioinformatics research

suggested that reducing COL5A1 expression could inhibit glioma

cell proliferation and migration and increase sensitivity to the

chemotherapeutic drug temozolomide (54). However, COL5A1’s

role in LUAD remained unclear. To address this, we conducted

experiments on A549 and H1650 cell lines, demonstrating that

COL5A1 is significantly upregulated in LUAD. Silencing COL5A1

effectively inhibited tumor cell growth, invasion, and migration while

enhancing apoptosis, providing experimental evidence for its

potential role in LUAD treatment.

Overall, our study reveals the heterogeneity of macrophages in

LUAD and utilizes their marker genes to construct a prognostic

model, offering new insights into LUAD diagnosis and treatment.

However, our research has limitations, primarily relying on

bioinformatics analysis based on public databases, lacking

sufficient experimental validation. In the future, we plan to

conduct a series of basic and clinical trials to validate the

potential carcinogenic mechanisms of macrophages in LUAD,

hoping to offer new strategies and hope for treatment.
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