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Machine learning based anoikis
signature predicts personalized
treatment strategy of
breast cancer
Xiao Guo1†, Jiaying Xing1†, Yuyan Cao1, Wenchuang Yang1,
Xinlin Shi1, Runhong Mu2* and Tao Wang3*

1School of Pharmacy, Beihua University, Jilin, China, 2School of Basic Medical Sciences, Beihua
University, Jilin, China, 3Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang,
Guizhou, China
Background: Breast cancer remains a leading cause of mortality among women

worldwide, emphasizing the urgent need for innovative prognostic tools to

improve treatment strategies. Anoikis, a form of programmed cell death critical

in preventing metastasis, plays a pivotal role in breast cancer progression.

Methods: This study introduces the Artificial Intelligence-Derived Anoikis

Signature (AIDAS), a novel machine learning-based prognostic tool that

identifies key anoikis-related gene patterns in breast cancer. AIDAS was

developed using multi-cohort transcriptomic data and validated through

immunohistochemistry assays on clinical samples to ensure robustness and

broad applicability.

Results: AIDAS outperformed existing prognostic models in accurately

predicting breast cancer outcomes, providing a reliable tool for personalized

treatment. Patients with low AIDAS levels were found to be more responsive to

immunotherapies, including PD-1/PD-L1 inhibitors, while high-AIDAS patients

demonstrated greater susceptibility to specific chemotherapeutic agents, such

as methotrexate.

Conclusions: These findings highlight the critical role of anoikis in breast cancer

prognosis and underscore AIDAS’s potential to guide individualized treatment

strategies. By integrating machine learning with biological insights, AIDAS offers a

promising approach for advancing personalized oncology. Its detailed

understanding of the anoikis landscape paves the way for the development of

targeted therapies, promising significant improvements in patient outcomes.
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Introduction

Breast cancer (BC) is the most common malignant tumor in

women in the world, and its incidence rate has gradually increased in

recent years (1). The diagnosis, treatment and prognosis of BC have a

great impact on the health, lifestyle and work of individuals as well as

their family life (2). With the continuous development of biomedical

technology, the research on the prognosis of BC has also made much

progress, and people’s awareness of personalized treatment is

increasing (3). Multiple sets of data have been integrated to predict

the prognosis of BC. For example, prediction models based on

genomics, transcriptomics and proteomics data can be used to

predict the survival rate and recurrence of BC patients (4). In recent

years, artificial intelligence technology has also been widely used in

predicting the prognosis of BC, and the prediction model based on

machine learning can more accurately evaluate the prognosis by

integrating a large number of clinical data and bioinformatics data (5).

Anoikis is a specialized form of programmed cell death

triggered by the loss of cellular attachment to the extracellular

matrix and neighboring cells, playing a pivotal role in tumor

development and metastasis (6). While anoikis is crucial in tumor

invasion and infiltration, there are limited studies systematically

evaluating and predicting BC prognosis based on anoikis.

We conducted a comprehensive analysis to elucidate the

importance of anoikis. Leveraging bulk and single-cell sequencing

techniques, we evaluated anoikis activity across various cell types.

Machine learning algorithms were employed to identify anoikis

genes associated with BC prognosis, allowing us to construct

predictive models. These models demonstrated the efficacy of

anoikis in predicting BC patient outcomes, immune status,

responsiveness to immune checkpoint inhibitors (ICIs) and

chemotherapy, as well as in identifying potential therapeutic

targets and drugs. Through rigorous evaluations, anoikis emerged

as a promising tool for precise prognostication and treatment

stratification in BC patients.
Methods

Data acquisition

We retrospectively collected data from 12 distinct breast cancer

cohorts derived from The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), and Metabric (7). These cohorts

included samples with comprehensive survival information,

enabling thorough analysis. Our study encompassed a total of

11,033 patients across the 12 cohorts for prognostic evaluation.

The patient distribution was as follows: TCGA-BRCA (n = 1076),

GSE202203 (n = 3206), GSE96058 (n = 3409), GSE20685 (n = 327),

GSE58812 (n = 107), GSE21653 (n = 244), GSE7390 (n = 198),

GSE11121 (n = 200), GSE86166 (n = 330), GSE88770 (n = 108),

GE48391 (n = 81), andMetabric (n = 1747). Genes implicated in the

anoikis process were obtained from the Molecular Signature

Database on the GSEA website (8).
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Machine learning derived anoikis signature

To develop a breast cancer-specific anoikis signature, we employed

the methodology established in our previous research (9). Our

approach involved utilizing ten diverse computational Survival

algorithms: Random Survival Forest (RSF), Least Absolute Shrinkage

and Selection Operator (LASSO), Gradient Boosting Machine (GBM),

Survival Support Vector Machine (Survival-SVM), Supervised

Principal Component (SuperPC), Ridge Regression, Partial Least

Squares Cox Regression (plsRcox), CoxBoost, Stepwise Cox

regression, and Elastic Net (Enet). Among these, RSF, LASSO,

CoxBoost, and Stepwise Cox were chosen for their ability to reduce

dimensionality and identify relevant variables. These techniques were

combined into 108 unique configurations to construct a predictive

signature. By evaluating all cohorts, including TCGA and other

datasets, we identified the most robust prognostic model through the

calculation of the average Concordance index (C-index). This iterative

process culminated in the creation of an anoikis-specific signature

designed to predict outcomes in breast cancer.
Genomic alteration analysis

To elucidate genetic disparities between the two AIDAS groups,

we analyzed genetic mutation levels and Copy Number Alterations

(CNA) using the TCGA-BRCA database. The Tumor Mutation

Burden (TMB) for both high- and low-AIDAS breast cancer

patients was derived from the raw mutation data. Utilizing the

maftools landscape, we depicted the most frequently mutated genes

(mutation rate > 5%). Patient-specific mutational signatures were

identified using the deconstructSigs package (10), emphasizing four

prominent mutational signatures (SBS3, SBS1, SB12, SBS11) that

exhibited elevated mutation frequencies in the TCGA-BRCA

dataset. We identified the five most common regions of

amplification and deletion, with a specific focus on the four

predominant genes in chromosomal regions 3q26.32 and 5q21.3.
Single-cell data processing

We applied Seurat (v4.0) to process the single-cell data from

GSE161529 (11). This involved filtering out genes with zero

expression and retaining those with nonzero expression levels. The

expression matrix was normalized using Seurat’s “SCTransform”

function. Dimensionality reduction was performed using principal

component analysis (PCA) and UMAP techniques. To identify

distinct cellular groupings, we employed Seurat’s “FindNeighbors”

and “FindClusters” functions. To ensure dataset integrity, the

DoubletFinder package was used to eliminate potential doublets

(12). Cells failing to meet quality standards, such as those with

mitochondrial gene content exceeding 15% or fewer than 500 genes,

were excluded. Following stringent quality control measures, 64,308

cells were retained for analysis. Cell types were determined by

manual annotation based on established marker genes.
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Inference of regulons and their activity

We utilized the Single-Cell rEgulatory Network Inference

(SCENIC) approach to construct gene regulatory networks

(GRNs) from single-cell RNA sequencing data. SCENIC involves

a three-step process: first, it identifies co-expression modules

between transcription factors (TFs) and their potential target

genes. Next, it identifies the direct target genes for each module,

prioritizing those enriched with the motif of the associated TF,

thereby defining a regulon comprising a TF and its direct targets.

Finally, the regulatory activity score (RAS) is computed for each cell

by evaluating the area under the recovery curve.

To address the conventional SCENIC protocol’s challenges with

scalability for extensive datasets and its susceptibility to sequencing

depth variations, we modified it to enhance both scalability and

robustness. This involved partitioning the data into metacells before

applying SCENIC to these gene expression profiles (13). This

adjustment significantly improved data quality and reduced

computational demands, representing a notable advancement in

the application of SCENIC to single-cell RNA-seq data analysis.
Regulon clustering

We employed a robust computational method to dissect the

regulatory relationships between transcription factors (TFs) and

their target genes, with a focus on TF clustering. The process began

by filtering TF-target interaction data to isolate pairs exceeding a

significance threshold (>1), prioritizing the most critical regulatory

interactions. We then identified key regulatory TFs by assessing

their influence on target gene regulation, highlighting them as

central nodes in the regulatory network for detailed analysis.

To visualize the intricate network of TF-target interactions, we

constructed a graph model. A force-directed algorithm was used to

refine the spatial layout of the graph, intuitively representing the

network’s structure and the interplay between TFs and their targets.

For an enhanced understanding of the network’s architecture, the

Leiden algorithm was applied for community detection. This

revealed the modular organization of TFs based on their

regulatory connections, assigning each TF to a specific cluster.

This approach allowed for a detailed analysis of the regulatory

landscape, providing insights into the functional organization of

TFs within the network.
Cell-cell communication analysis

Using the “CellChat” R package, we generated CellChat objects

from the UMI count matrices for each group (14). The

“CellChatDB.human” database was used as the reference for

ligand-receptor interactions. Intercellular communication was

interpreted using the default settings of the package. To compare

interaction counts and intensities, we merged CellChat objects from

each group with the “mergeCellChat” function. Differences in

interaction numbers and intensities among specific cell types were

visualized using the “netVisual_diffInteraction” function. Changes
Frontiers in Immunology 03
in signaling pathways were identified using the “rankNet” function,

and the distribution of signaling gene expression among groups was

displayed with the “netVisual_bubble” and “netVisual_aggregate”

functions.

Additionally, we employed the NicheNet package to analyze

intercellular communication from the perspective of ligand activity

and the expression patterns of specific downstream targets

regulated by these key ligands (15). This method provided a

detailed understanding of the signaling processes underlying cell-

cell interactions, using ligand-target relationships to infer

communication pathways within the cellular microenvironment.
Evaluation of TME disparities and
immunotherapy response

To comprehensively and accurately assess immune cell

infiltration levels, we analyzed adverse infiltrated immune cells

using multiple algorithms, including MCPcounter, EPIC, xCell,

CIBERSORT, quanTIseq, and TIMER, among patients stratified

by the AIDAS (16–22). Additionally, to precisely depict the immune

landscape and architecture within the tumor microenvironment

(TME), we evaluated the ESTIMATE and TIDE indices. These

metrics provide critical insights into the potential for

immunotherapy and offer prognostic implications for breast

cancer patients.

Moreover, we quantified immune checkpoints, which serve as

indicators of the immune state and offer preliminary predictions of

patient responsiveness to ICI therapy. This comprehensive

evaluation of the immune profile within the TME is crucial for

advancing personalized medicine and refining treatment strategies

for breast cancer patients.
Determination of therapeutic targets and
drugs for high AIDAS patients

We identified therapeutic targets and drugs for high-AIDAS

patients from the Drug Repurposing Hub and dropped out

duplicate compounds, resulting in a refined list of 6,125

compounds. We established the selection of therapeutic targets

associated with breast cancer outcomes through Spearman

correlation analysis. Specifically, we assessed the relationship

between the AIDAS and gene expression levels, selecting genes

with a correlation coefficient greater than 0.3 and a P-value less than

0.05. Additionally, genes with a correlation coefficient below -0.3

and a P-value below 0.05 were identified as linked to poor

prognosis. The significance of these genes was further evaluated

by examining the relationship between CERES scores from the

Cancer Cell Line Encyclopedia (CCLE) and model value (23).

To enhance predictions regarding drug responsiveness, we

utilized data from the Cancer Therapeutics Response Portal

(CTRP) and the PRISM project, both of which offer extensive

drug screening and molecular data across diverse cancer cell lines.

Differential expression analysis was conducted between bulk

samples and cell lines. Subsequently, we employed the
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pRRophetic package to implement a ridge regression model for

predicting drug response. This model, trained using expression data

and drug response metrics from solid Cancer Cell Lines (CCLs),

demonstrated excellent predictive accuracy, validated through 10-

fold cross-validation (24).

Furthermore, to identify the most promising therapeutic drugs

for breast cancer, we performed a Connectivity Map (CMap)

analysis. This entailed comparing gene expression profiles across

different risk subgroups and submitting the top 300 genes (150 up-

regulated and 150 down-regulated) to the CMap website. A negative

CMap score indicated a higher therapeutic potential against breast

cancer, suggesting an inverse relationship between the CMap score

and a compound’s effectiveness as a potential treatment.
Patient stratification

To evaluate gene expression in breast cancer specimens, RNA

extraction was conducted using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA). This was followed by cDNA synthesis and quantitative

reverse transcription PCR (qRT-PCR) using GoScript reverse

transcriptase and Master Mix (Promega), adhering to the

manufacturer’s instructions. Data acquisition was performed with

the CFX96 Touch Real-Time PCR Detection System (BioRad,

Hercules, CA, USA). Gene expression levels were quantified using

the 2-DDCqmethod, withGAPDH serving as the normalization control.

Patients were subsequently categorized based on their gene expression

profiles using a predefined formula derived from the AIDAS. This

stratification was crucial in identifying patients with distinct risk

profiles, thus facilitating tailored therapeutic interventions.
Immunohistochemistry experiment

Tissue samples were collected from 30 breast cancer patients

undergoing surgery at Guizhou Provincial People’s Hospital. These

samples were subjected to Hematoxylin and Eosin (H&E) staining

following established protocols (25, 26), with diagnoses

independently confirmed by two pathologists.

For immunohistochemistry (IHC) analysis, paraffin-embedded

samples were processed according to procedures outlined in

previous studies. Protein expression levels were evaluated

independently by two pathologists, adhering to standardized

protocols and scoring systems consistent with methodologies

from prior research (26).
Results

Construction of an anoikis model using
artificial intelligence

The comprehensive evaluation of the anoikis model was

conducted using a combination of 108 machine learning

algorithms with ten-fold cross-validation (Figure 1A). The
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performance of the models was assessed by calculating the

average C-index across various cohorts, with the Random

Survival Forest (RSF) algorithm demonstrating the highest

average C-index (0.632). The key anoikis genes were identified

based on the point with the lowest error rate of RSF in 1000 tests

(Figures 1B, C). These genes underwent univariate Cox regression

analysis to calculate the hazard ratio (HR) across nine enrolled

cohorts (Figure 1D). Finally, four genes (PTK2, coef = 0.278;

NOTCH1, coef = 0.145; PKD4, coef = -0.169; BCL2, coef =

-0.236) were selected to construct an artificial intelligence-derived

anoikis signature (AIDAS) (Figure 1E). The evaluation of AIDAS

across the nine cohorts revealed that the binary classification model

effectively classified patients into high and low-AIDAS groups

(Supplementary Figure S1).
Assessment of AIDAS with 83
published models

We further conducted both univariate and multivariate Cox

analysis to assess the independence of AIDAS and other clinical

indices (Supplementary Figure S2A). Three significant indices,

namely AIDAS, stage, and age, were chosen to develop a

nomogram aimed at predicting patients’ survival rates in clinical

practice (Supplementary Figure S2B). The overall survival (OS) of

breast cancer patients with different conditions was predicted, and

the OS curve demonstrated a good fit with the standard curve,

indicating the model’s accuracy (Supplementary Figures S2C, D).

Through comparisons with other factors, it was observed that

AIDAS could provide more accurate predictions of patients’

conditions (Supplementary Figure S2F).

The stability of the predictive model of the AIDAS was

evaluated by collecting and assessing 83 published signatures in

BC across 9 independent cohorts. It was demonstrated that only the

AIDAS exhibited consistent statistical significance across all cohorts

(Figure 2A). The predictive power of the AIDAS was compared with

the 83 models across the 9 cohorts using the C-index (Figure 2B).

The AIDAS showed significantly better accuracy than the others in

almost all cohorts, ranking first in seven cohorts, fifth in one cohort,

and seventh in one cohort, thereby revealing the stability of our

model (Figure 2B).
Multi-omics analysis of genomic alterations
based on AIDAS

Gene variations between the AIDAS groups were analyzed

using multi-omics integration analysis. We observed a significant

increase in TMB in high-AIDAS patients, accompanied by

multigene mutation characteristics (Figures 3A, C). When

considering 10 oncogenic signaling pathways together, classic

tumor suppressor genes like TP53, RB1, and AXIN1/2 were

found to mutate more frequently in the high-AIDAS group, while

oncogenic genes such as RET, PIK3CA/B, and RPTOR mutated less
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(Figures 3A, B). Further analysis of CNV between these subgroups

revealed that amplifications and deletions at the level of

chromosome arms were more pronounced in the high-AIDAS

group, including amplifications of 3q26.32, 6p23, 6q21, 8q24.21,

and 10p15.1, as well as deletions of 5q11.2, 5q21.3, 14q24.1,

14q32.12, and 19p13.3 (Figures 3A, D). These results suggest that

the poor prognosis for high-AIDAS patients may be related to

significant increases in the amplification of 3q26.32 and multiple

oncogenes genes (ASAP1, PVT1, TMEM75, and MYC), as well as
Frontiers in Immunology 05
deletions of multiple tumor suppressor genes of 5q21.3 (GPBP1,

RAB3C, DDX4, and ITGA1) (Figure 3A).
Deciphering the AIDAS at the single-
cell level

The expression characteristics of different immune infiltrating cells

were revealed at the single-cell level. The distribution of cells from 8 BC
FIGURE 1

Construction of an anoikis model using artificial intelligence. (A) C-indexes of the 108 machine learning algorithm combinations in the nine cohorts.
(B) Error rate of RSF after 1000 tests. (C) Key anoikis genes selected by RSF. (D) Prognostic value of key genes in nine BC cohorts. (E) Final selection
of 4 anoikis genes based on an exhaustive search, with patient risk scores calculated according to the expression levels of these genes and their
regression coefficients.
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patients was analyzed, and the distribution of tumor and normal tissues

(Supplementary Figures S3A, B), 17 cell clusters were identified and

divided into 6 cell types (Figures 4A, B). The number of cells in these 6

types was statistically analyzed, and then their proportion in the bodies

of these 8 tumor patients was calculated (Supplementary Figures S3C,

D). The representative markers in these 6 types of cells, as well as their

actual distribution in the cells (Figure 4C; Supplementary Figure S3E)

were observed. The results showed that epithelial cells and

macrophages accounted for a larger proportion of the tumor tissue,

while fibroblasts, T cells, Pericytes, and endothelial cells accounted for a

larger proportion in the normal tissue (Figure 4D).

Next, the AIDAS was incorporated into the single-cell

distribution map (Figure 4E). All cells were divided into low- and

high-AIDAS groups based on their peak of epithelial cells

(Figure 4F), and then differential gene expression analysis and

functional clustering were performed to elucidate potential

functional pathways (Supplementary Figures S3F, G).

Subsequently, copyKat analysis was performed to observe the

CNV for distinguishing the normal cells and tumor cells

(Figure 4G). We observed a higher AIDAS score in tumor-

aneuploid than in tumor-diploid, implying the significance of

AIDAS in breast cancer progression (Figure 4H).
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Specific regulons for AIDAS and
cell recognition

To comprehensively construct a GRNs of AIDAS, a SCENIC

pipeline was applied to analyze single-cell RNA seq data with cis-

regulatory sequence information (Figures 5A, B). PCA and variance

analyses were performed on different cell types and AIDAS. PCA1

explained the specific transcription factors of different cell types,

while PCA2 was associated with the regulons of AIDAS (Figures 5C,

D). The key transcription factors for cell recognition were

identified, and the regulon specificity score (RSS) of these specific

transcription factors in different types of cells was evaluated

(Figure 5E). The regulatory factors with higher RSS scores were

selected from these six types of cells, and GATA3, SPDEF, and

PITX1 were identified as the most relevant specific regulators to

epithelial cells (Figure 5F). Similarly, the most relevant specific

regulators to the other five types of cells were analyzed

(Supplementary Figure S4A).

Understanding that TFs often collaborate to modulate gene

expression, we systematically explored the combinatory patterns of

these regulatory elements. Based on the Leiden algorithm, the

similarity of RAS scores for each TF was compared, and the cluster
FIGURE 2

Assessment of AIDAS with 83 published models. (A) The stability of AIDAS was compared with 83 published models. (B) C-index values of AIDAS and
83 published models in 9 different datasets.
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analysis of TFs was conducted to find 12 clusters of transcription

factors, of which the contribution rate of transcription factor sets B

and E to the development of AIDAS was greater than that of the other

11 clusters, so only transcription factors B and E were displayed

(Figures 5G, H, Supplementary Figure S4B). We next focused on the

exact TFs that drive epithelial cells’ transcriptomic changes by

AIDAS. Multiple pathways were identified by GSEA analysis. For

example, collagen degradation was activated in epithelial cells in the

high-AIDAS cells, while interference alpha beta signaling was

inhibited (Figures 5I, J). Transcription factors contributing to these

pathways were identified by further analysis (Figure 5K). The

network diagrams of regulatory relationships among transcription

factors were shown (Figure 5L).
Intercellular communications for AIDAS

Intercellular communication among six cell types was evaluated

by CellChat analysis. We observed that the number and intensity of
Frontiers in Immunology 07
cell-cell interactions were stronger in the low-AIDAS cells, and the

intercellular communication between epithelial cells and

endothelial cells was elevated (Figures 6A, B). Some signaling

pathways involved in intercellular communication were analyzed,

and the results showed that most of them had stronger intercellular

communications in the low-AIDAS cells (Figure 6C). By comparing

changes in outgoing and incoming signals among different cells, it

was found that incoming interactions of epithelial cells were

stronger in the low-AIDAS cells, indicating that incoming

interactions of epithelial cells in the low-AIDAS group may be

enhanced after they receive signals from other cells (Figure 6D).

Potential ligands of epithelial cells in the different groups were

speculated using nichenetr analysis. We inferred potential ligands

that may regulate epithelial cells from other cells based on the

AIDAS group. The potential ligand-receptor pairs were further

evaluated (Figure 6F). A high degree of interaction between THBS1-

SDC4 and CNN1-SDC4 was observed, indicating that fibroblasts

are the main sending cells affecting changes in the epithelial cell

pathway (Figure 6G). THBS1 ligand and CNN1 ligand could reach
FIGURE 3

Multi-omics analysis of genomic alterations based on AIDAS. (A) Overview of genomic variations based on AIDAS. (B) Mutation atlas of 10 oncogenic
pathways. (C) Difference of TMB values. (D) Comparison of copy number load between the two AIDAS groups. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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the SDC4 through other receptors or transcription factors, in which

high mutation rates of transcription factors such as TP53, MYC,

and RAC1 in high-AIDAS (Figure 6H).
Personalized immunotherapy for low-
AIDAS patients

Immune microenvironment is involved in breast cancer

progression, six algorithms were applied to evaluate the immune

infiltration of different AIDAS patients. A higher proportion of

memory T cells, Tregs, M1 macrophages, and CD8+ T cells were

observed in the high-AIDAS patients (Figure 7A), and some ICIs

were also overexpressed, such as PD-L1, CTLA4, and LAG3

(Figure 7B). IHC was performed to support the above results

using the representative cell markers and clinical ICIs (Figure 7C).

Further analysis revealed that TIDE and Dysfunction values in

the low-AIDAS group were higher than those in the high-AIDAS

group, and there was no significant difference in the Exclusion value

between the two groups (Figure 8A). There was a longer survival

time in patients with a low-AIDAS and high-TIDE than in other

combinations (Figure 8B). The correlation of AIDAS with the

immune cycle and signaling showed that the anti-tumor immune

activity of low-AIDAS patients was higher than that of high-AIDAS

patients (Figure 8C).

ICIs have emerged as a transformative approach in cancer

immunotherapy over the past several decades, yet their

effectiveness in solid tumors, including breast cancer, remains
Frontiers in Immunology 08
limited. We sought to explore the predictive capability of AIDAS

levels regarding the efficacy of immune checkpoint blockade therapies

in the IMvigor210 (anti-PD-L1) and GSE78220 (anti-PD-1) cohorts.

Patients from low-AIDAS presented remarkable clinical

benefits and better survival rates than the high-AIDAS in anti-

PD-L1 response (Figures 8D–G). Prior benefits for low-AIDAS

patients were also observed in anti-PD1 response (Figures 8H–L).

Utilizing SubMap algorithms, we confirmed the response to

immunotherapy, which was significantly more likely to benefit

from treatments with anti-PD-L1 and CTLA4 treatments

(Figure 8M). Based on the above research results, patients with

the low-AIDAS can achieve better results in the treatment with ICIs.
Identification of therapeutic drugs for
high-AIDAS patients

Chemotherapy is the standard treatment for anti-cancer, and

data from multiple datasets have been used to develop potential

drugs for BC patients with high-AIDAS. Seven therapeutic targets

were identified using Spearman correlation analysis, and the results

showed that high-AIDAS patients were positively correlated with

the abundance of seven genes (MDH2, LIMK1, S100A2, TYRO3,

COX7B, and ESRRA), and significantly negatively correlated with

their CERES scores, suggesting that these seven genes can serve as a

potential therapeutic target (Figure 9A). Potential drug targets were

further analyzed based on drug sensitivity ratios, and it was revealed

that these 7 genes had a high sensitivity to the drugs, so they were
FIGURE 4

Deciphering the AIDAS at the single-cell level. (A) Distribution of 20 cell clusters. (B) Seven cell types identified by the established marker genes. (C)
Representative markers of each cell type. (D) Proportion of seven types of cells between tumor patients and normal tissues; (E) Distribution of AIDAS
value. (F) AIDAS value across cell types. (G) CNV evaluation using copyKat algorithm. (H) Comparison of the AIDAS value between diploid and
aneuploid cells within the epithelial cells. ****P<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1491508
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2024.1491508
considered the key therapeutic targets for high-AIDAS patients

(Figure 9B). Thirteen compounds were screened out from CTPR

(CR-1-31B, SB-743921, BI2536, GSK461364, methotrexate,

vincristine, paclitaxel, and leptomycin B) and PRISM datasets

(docetaxel, vincristine, ispinesib, gemcitabine, and LY2606368),

for evaluating candidate therapeutic drugs. The AUC values of
Frontiers in Immunology 09
the different compounds in the two groups were compared, and the

results showed that lower AUC values were identified in high-

AIDAS patients, indicating that these compounds may be suitable

for the drug treatment of high-AIDAS patients (Figures 9C, D). The

promising therapeutic agents were identified by CMap analysis, in

which methotrexate, with a CMAP value of -99.82, was ultimately
FIGURE 5

Specific regulons for AIDAS and cell recognition. (A) Distribution of cell types based on RAS. (B) Distribution of AIDAS value based on RAS. (C)
Variance analysis highlights the impact of cell types and AIDAS on transcription factor activity, using color mapping to PC1 to emphasize the primary
variance influenced by these factors. (D) Variance analysis with color mapped to PC2. (E) Scores of specific transcription factors in different types of
cells. (F) Specific distribution of the most relevant specific regulators in epithelial cells. (G) Network of each transcription factor based on Leiden
algorithm. (H) Specific transcription factor groups with higher scores in AIDAS. (I) GSEA identifies pathway variations linked to AIDAS in epithelial
cells. (K) Transcription factors that could contribute to the collagen degradation. (L) Network of the regulatory relationship related to
collagen degradation.
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identified as the best potential therapeutic drug for high-AIDAS

patients (Figure 9E).
Discussion

Considering the unique clinical characteristics of BC patients, it

is necessary to customize specialized prognostic plans for these
Frontiers in Immunology 10
patients, and it is crucial to develop an accurate prognostic model.

Anoikis is a specific form of programmed apoptosis caused by the

disruption of cell-cell or cell-extracellular matrix attachment, and

eliminating displaced or displaced cells can help maintain the

dynamic balance of tissues (27), Anoikis is a term that describes

the process of apoptosis that triggered by the detachment of cells

from the extracellular matrix (28). It has been confirmed that

anoikis is the first line of defense against cancer cell metastasis
FIGURE 6

Intercellular communications for AIDAS. (A) Comparison of the number and intensity of cell interactions between two AIDAS groups. (B) Detail of
cell communications among each cell type. (C) Differences of signaling pathways involved in the intercellular communication. (D) Intensity of
incoming and outgoing interactions among different cells. (E) Specificity of incoming and outgoing signals of different signaling pathways.
(F) Specific regulatory of ligands and receptors in cells. (G) Expression levels of ligands and receptors in different cells. (H) Route diagram of reaching
target receptor SDC4 of CCN1 and THBS1 ligands through other receptors or transcription factors.
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and an early intervention measure for preventing cancer metastasis

(29). However, there is a limited prognostic model based on anoikis

for predicting the prognosis and personalized treatment of BC.

By focusing on the process of anoikis—programmed cell death

triggered by cellular detachment—AIDAS provides novel insights
Frontiers in Immunology 11
into how resistance to anoikis is linked to cancer aggressiveness and

metastasis. Here, we discuss the clinical implications, biological

rationale, and limitations of AIDAS, and outline directions for

future research that could further enhance its utility as a

personalized medicine tool.
FIGURE 7

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between AIDAS subgroups. (A) Heatmap
provides a comparative view of immune cell infiltration in tumor samples with low and high AIDAS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. (B) Box plots illustrate
the distribution of gene expression levels for ICIs across low vs. high AIDAS conditions, with statistical significance denoted by ns for not significant;
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcase the staining intensity of various
immune markers between high and low expression conditions, visually depicting the differential expression of these markers in correlation with
AIDAS levels.
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By focusing on the process of anoikis—programmed cell death

triggered by cellular detachment—AIDAS provides novel insights

into how resistance to anoikis is linked to cancer aggressiveness and

metastasis. Here, we discuss the clinical implications, biological
Frontiers in Immunology 12
rationale, and limitations of AIDAS, and outline directions for

future research that could further enhance its utility as a

personalized medicine tool. AIDAS leverages machine learning to

capture complex interactions among anoikis-related genes, enabling
FIGURE 8

Personalized immunotherapy for low-AIDAS patients. (A) Differences in TIDE, Dysfunction, and Exclusion between patients in the low- and high-
AIDAS groups. (B) Comparison of the survival probability of four combinations. (C) Correlation analysis of AIDAS with tumor immune cycle and ten
immune pathways. (D) Correlation analysis of AIDAS value with anti-PD-L1 response. (E) KM survival curves of AIDAS after anti-PD-L1 treatment.
(F) Accuracy of AIDAS and TMB in anti-PD-L1 treatment. (G) Proportion of CR/PR and SD/PD of anti-PD-L1 in ADIAS subgroups. (H) Correlation
analysis of AIDAS value with anti-PD-1 response. (I) KM survival curves of AIDAS after anti-PD-1 treatment. (J) Accuracy of AIDAS and TMB in
anti-PD-1 treatment. (K) Proportion of CR/PR and SD/PD of anti-PD-1 in ADIAS subgroups. (L) Distribution of ADIAS score of different patients after
anti-PD-1 treatment. (M) Heatmap demonstrating the predictive power of ADIAS for responsiveness to different ICIs treatment.
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us to explore how gene expression patterns associated with anoikis

resistance influence breast cancer prognosis. Anoikis resistance is a

critical step in metastasis, and understanding its molecular

underpinnings could provide pathways for intervention in cancer

progression. By identifying gene clusters and pathways linked to

anoikis resistance, AIDAS deepens our understanding of this
Frontiers in Immunology 13
biological process and its role in breast cancer outcomes,

highlighting potential targets for future therapeutic strategies that

could re-sensitize tumor cells to anoikis. This mechanistic insight

underscores the value of combining molecular biology with

advanced computational techniques to address complex questions

in cancer biology.
FIGURE 9

Identification of therapeutic drugs for high-AIDAS patients. (A) Spearman correlation of 7 potential therapeutic targets, where red and blue represent
positive and negative correlations, respectively. (B) Network analysis highlighting the connections between the 7 therapeutic targets and their related
drug action pathways. (C) AUC values of identified compounds from CTRP database. (D) AUC values of identified compounds from PRISM database.
(E) Analysis from multiple perspectives based on the clinical status, experimental evidence, mRNA expression, and CMap score of 13 compounds.
***P < 0.001.
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Immunotherapy is found to be more beneficial for low-AIDAS

patients by studying the immune cell infiltration score and immune

checkpoint count of patients in two AIDAS subgroups. To effectively

examine which patient would be more sensitive to immunotherapy,

multiple analyses were utilized, and it was concluded that low-AIDAS

populations have greater advantages in the treatment of ICIs,

especially in response to PD-1, PD-L1, and CTLA4 drugs. For

aggressive subtypes like triple-negative breast cancer (TNBC), which

frequently exhibit poor responses to chemotherapy, AIDAS could be a

valuable tool for tailoring immunotherapy. By stratifying TNBC

patients based on AIDAS and PD-L1 expression, clinicians may be

able to identify those more likely to benefit from PD-1-targeted

therapies, potentially improving outcomes in this difficult-to-treat

population. Enhancing the patient’s immune response to tumors by

blocking the inhibitory signals of the human anti-tumor response is

recognized as the most promising new cancer immunotherapy

currently. CTLA-4 and PD-1 are considered two important

checkpoints of the immune system, playing a negative regulatory

role in the immune response of T cells. In vivo mouse experiments

indicate that CTLA-4-dependent antibodies bind to Fc receptors

rather than blocking the action of CTLA-4/B7, demonstrating the

anti-tumor effect of CTLA-4 antibodies (30). Nikhil Joshi stated that

PD-1 plays a crucial role in preventing T cells from attacking normal

tissues in healthy individuals, and this finding may help look for a way

to reduce or prevent the side effects of immunotherapy (31). Our study

observed that patients in the low-AIDAS group tend to have lower

PD-L1 expression, correlating with a less immunosuppressive tumor

microenvironment. This reduced immune suppression may explain

their improved responses to PD-1/PD-L1 inhibitors, as these therapies

rely on reactivating the immune system to recognize and target cancer

cells. Beyond PD-L1 expression levels, differences in the immune cell

landscape and functional activity within the tumor microenvironment

likely contribute to these divergent responses. Studies have shown that

functional characteristics, such as T-cell activation and the presence of

regulatory T-cells, can significantly impact immunotherapy

effectiveness (32). Techniques such as leukosome isolation and

single-cell profiling could further elucidate the immune cell

dynamics within AIDAS groups, providing deeper insights into how

these functional immune variations drive therapeutic responses.

Chemotherapy plays an important role in the treatment of

tumors in the clinic. To study the chemotherapy efficacy among

different patients, therapeutic targets and drugs were screened. After

a series of analyses, it was found that BC patients with high-AIDAS

are more suitable for chemotherapy. Finally, seven therapeutic

targets and one drug were identified to improve the prognosis.

These studies have demonstrated the effectiveness of methotrexate.

For example, Methotrexate chemotherapy can induce the

dysregulation of three types of glial cells, which forms the basis

for chemotherapy-related cognitive impairment (33). Shen Y et al.

reported that patients showed a good prognosis after they received

four courses of methotrexate chemotherapy (34). Thomas S et al.

believe that methotrexate is a promising drug for treating

myeloproliferative tumors (35). Overall, the therapeutic potential

of methotrexate has been repeatedly verified.

The genomic alterations identified in high-AIDAS tumors provide

a biologically plausible explanation for the poorer prognosis associated
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with high anoikis resistance. High-AIDAS tumors frequently exhibit

amplification of known oncogenes, such as MYC, and deletions in

tumor suppressor genes, linking AIDAS with oncogenic pathways that

drive tumor progression and therapeutic resistance. These findings add

credibility to AIDAS as a prognostic tool, as they align with established

mechanisms of cancer progression. Further exploration of these genetic

drivers, within the context of AIDAS, could yield new insights into

specific molecular targets, particularly for therapies aimed at reversing

anoikis resistance.

Compared to other prognostic models, AIDAS offers a unique

focus on anoikis-related gene expression patterns, which are

particularly relevant in the context of metastasis and therapeutic

resistance. Existing models tend to emphasize overall survival

predictors or molecular subtypes without specifically addressing

the role of anoikis and immune markers in treatment selection.

AIDAS fills this gap by providing actionable insights that could

directly influence treatment planning, such as recommending

chemotherapy for high-AIDAS patients and immunotherapy for

low-AIDAS patients. This targeted approach enhances the

individualization of breast cancer treatment, which could improve

outcomes by reducing unnecessary treatments and optimizing

therapeutic choices based on tumor biology.

Despite the potential of AIDAS, several limitations need to be

addressed. Firstly, the study’s retrospective and observational design

restricts our findings to associations, without the ability to infer

causality. Prospective studies with standardized, long-term follow-

up would be essential to confirm AIDAS’s clinical relevance over

time. Additionally, our IHC validation was conducted on a limited

sample size of 30 tissue samples, which, although consistent with

broader dataset findings, may not fully capture population-level

heterogeneity. Expanding IHC validation to larger, multi-cohort

studies would strengthen the generalizability of our results.

Our study also integrated data from multiple cohorts, each with

potential variations in sample processing. Although we applied

normalization and batch correction, residual technical variability

may influence the findings. Future studies with harmonized, single-

cohort data could provide a more uniform validation. Finally, while

our bioinformatics analysis identified potential therapeutic targets

through in silico drug screening, wet lab validation is essential to

confirm these findings. Future research should incorporate in vitro

and in vivo experiments to validate AIDAS-predicted drug responses

and explore the efficacy of novel anoikis-targeting therapies.

Furthermore, the integration of AIDAS with PD-L1 expression

and other immune markers offers a promising approach for precision

oncology. For instance, stratifying TNBC patients by AIDAS and PD-

L1 levels could help personalize immunotherapy choices, optimizing

patient selection for anti-PD-1/L1 treatments. By combining

molecular and immune landscape data, AIDAS represents a step

towards fully personalized breast cancer management, offering a

comprehensive molecular profile to guide treatment.

AIDAS exemplifies the potential of combining mechanistic

understanding with machine learning to advance personalized

medicine. By linking anoikis resistance with breast cancer

prognosis and therapy response, AIDAS provides an actionable

framework for individualized treatment selection in clinical settings.

Future studies integrating multi-omics data, single-cell immune
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profiling, and in vivo validation will be crucial to refine AIDAS and

maximize its clinical impact. These steps could ultimately lead to

new therapeutic avenues, including anoikis-targeting agents and

immunotherapy combinations, further expanding the clinical utility

of AIDAS in breast cancer care.
Conclusion

In conclusion, this study advocates for a more nuanced

understanding of the TME, suggesting that the interrelationships and

functional states of different immune components can significantly

influence the efficacy of immunotherapy. It underscores the potential of

integrating comprehensive immune profiling into clinical decision-

making to tailor immunotherapeutic strategies more precisely. The

differential response to immunotherapy in breast cancer groups

highlights the importance of considering qualitative and functional

aspects of immune cells, beyond their numerical abundance. This

approach could lead to more personalized and effective therapeutic

interventions, particularly in the realm of immunotherapy.
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