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Şap Institute, Türkiye

*CORRESPONDENCE

Min Ja Lee

herb12@korea.kr

RECEIVED 04 September 2024
ACCEPTED 26 November 2024

PUBLISHED 11 December 2024

CITATION

Kim HW, Shin S, Park SH, Park J-H,
Kim S-M, Lee Y-H and Lee MJ (2024)
Next-generation adjuvant systems containing
furfurman drives potent adaptive immunity
and host defense as a foot-and-mouth
disease vaccine adjuvant.
Front. Immunol. 15:1491043.
doi: 10.3389/fimmu.2024.1491043

COPYRIGHT

© 2024 Kim, Shin, Park, Park, Kim, Lee and Lee.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 December 2024

DOI 10.3389/fimmu.2024.1491043
Next-generation adjuvant
systems containing furfurman
drives potent adaptive immunity
and host defense as a foot-and-
mouth disease vaccine adjuvant
Hyeong Won Kim, Seokwon Shin, So Hui Park,
Jong-Hyeon Park, Su-Mi Kim, Yoon-Hee Lee and Min Ja Lee*

Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency,
Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
Introduction: Many countries use commercial foot-and-mouth disease (FMD)

vaccines to prevent FMD pandemics, but these vaccines have disadvantages, such

as repeated vaccinations due to the short persistence of antibody (Ab) titers and

incomplete host defense despite high Ab titers. To address these shortcomings, we

aimed to develop a novel FMD vaccine containing furfurman as an adjuvant.

Method: To demonstrate the efficacy of the test vaccine, adaptive immunity was

evaluated by measuring Ab and neutralizing Ab titers and host defense against

viral infections in experimental and target animals. In addition, the expression

levels of cytokines [interferon (IFN)a, IFNb, IFNg, interleukin (IL)-1b, IL-2, and IL-

12p40] were evaluated at the early stages of vaccination to confirm the

simultaneous induction of cellular and humoral immune responses induced by

the test vaccine.

Result: The groups that received vaccine containing furfurman showed a strong

early, mid-term, and long-term immune response and host defense against viral

infections compared to the control groups. The significant upregulation

observed in cytokine levels in the furfurman group compared to those in the

control groups strongly suggest that the test vaccine strengthens cellular

immune response and effectively induces a humoral immune response.

Conclusion: Our study demonstrated that furfurman, as an FMD vaccine

adjuvant, achieves long-lasting immunity and host defense against viral

infections by eliciting potent cellular and humoral immune responses.

Therefore, our findings contribute to the design of next-generation FMD

vaccines and highlight the potential application of furfurman as an adjuvant for

other viral diseases.
KEYWORDS

foot-and-mouth disease, furfurman, vaccine adjuvant, innate and adaptive immunity,
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1 Introduction

Foot-and-mouth disease (FMD) is a highly contagious viral

disease that affects livestock, such as pigs, goats, and cattle. FMD

spreads primarily through aerosols, and symptoms can appear two to

three days after infection in animals. Typical clinical symptoms of

FMD infection include blisters, drooling, loss of hooves, and death in

young animals (1). The FMD virus (FMDV) belongs to the

Picornaviridae family and is broadly divided into seven serotypes

with numerous subtypes. It is difficult to control FMD because cross-

protection between the seven FMDV serotypes is not possible (2).

Majority of the commercially available FMD vaccines that are

currently being used to prevent FMD pandemics are inactivated FMD

vaccines, which use inactivated whole FMDV as antigens. Commercial

FMD vaccines have major drawbacks, such as low antibody (Ab) titers

in pigs compared to those in cattle, short persistence of Ab titers, and

incomplete humoral immunity-mediated host defense (3). To

overcome these shortcomings, we used furfurman as an FMD

vaccine adjuvant. In a previous study, FMD vaccines containing

various pattern recognition receptor (PRR) ligands elicited high Ab

and virus-neutralizing (VN) titers in pigs (4). Furfurman is a dendritic

cell (DC)-associated C-type lectin-2 (dectin-2) agonist and C-type

lectin-like receptor (CTLR) that stimulates the secretion of Th17

cytokines, such as interleukin (IL)-23, IL-17A, and IL-6 (5). CTLRs

such as dectin-1, dectin-2, and Mincle stimulate the innate immune

system of host. Among the many CTLR family members, those that

are critical for stimulating innate and adaptive immunity include

dectin-1 and dectin-2 (6). The well-known function of CTLR is to

uptake antigens and present them to T cells. Another function is that it

stimulates downstream NF-kB signaling pathways and then leads to

the secretion of inflammatory cytokines, which then contributes to

innate and adaptive immunity (7–9). Dectin-2 is expressed on many

immune cells, such as neutrophils, macrophages (MFs), and DCs (10,
11). Downstream signaling of dectin-2 promotes the secretion of

cytokines (IL-1b, IL-2, IL-12, and IL-23) (12).

We hypothesized that an advanced FMD vaccine that uses

furfurman as an adjuvant could address the shortcomings of

commercial vaccines. In addition to furfurman, the test vaccine

contained various adjuvants, such as alum, Quil-A, and ISA206.

Alum is adsorbed onto the antigen, maintains its durability, and

induces long-term immunity by prolonging the interaction period

between the antigen and immune cells (13). Quil-A has the advantages

of low toxicity and a simpler formulation than crude saponin adjuvants

(14). As a viral vaccine adjuvant, Quil-A enhances the expression of

type I and type II IFNs (15). ISA206, an oil-based adjuvant, has the

advantage of inducing a long-term immune response; however, it can

cause local side effects when used at high doses in vaccines (16, 17).

ISA206 enhances humoral immunity and upregulates the production

of cytokines such as IL-2 and IFNg (18, 19). In the present study, we

assessed a vaccine containing furfurman that can mediate cell

proliferation in vitro [peritoneal exudate cells (PECs) in mice and

peripheral blood mononuclear cells (PBMCs) in pigs] and assessed

how it influences early, mid-term, and long-term immune responses

and host defense against FMDV type O and type A infections in vivo.

We also evaluated cytokine expression to verify whether the test

vaccine containing furfurman could induce cellular immune responses.
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2 Materials and methods

2.1 Animals

Mice (C57BL/6, 6–7 weeks old, female) and farm pigs (Landrace;

8–9 weeks old) were purchased from KOSA BIO Inc. (Gyeonggi-do,

Republic of Korea) and BARON BIO Inc. (Gyeongsangbuk-do,

Republic of Korea), respectively. Mice and pigs were housed in a

specific pathogen-free animal biosafety level 3 facility at the Animal

and Plant Quarantine Agency (4). This study was approved by the

Ethics Committee of the Animal and Plant Quarantine Agency

(certification nos.: IACUC-2022-670 and 2023-753).
2.2 Cells and viruses

LF-BK (fetal porcine kidney cell line), ZZR 127 (fetal goat

tongue epithelium), and BHK-21 (baby hamster kidney) cells, as

well as FMDV O PA2 (GenBank accession no. AY593829.1) and

FMDV A YC (GenBank accession no. KY766148.1) (4), were used

in this study. Viruses were cultured in Dulbecco’s Modified Eagle’s

medium (HyClone, Logan, UT, USA).
2.3 Antigen purification

BHK-21 cell line was used for antigen production. FMDV (O

PA2 and A YC) was used as a source to produce inactivated

antigens. Sixteen hours after infection, the viruses were

inactivated using two doses of binary ethyleneimine (0.003 N).

The inactivated viruses were concentrated through polyethylene

glycol 6000 (Sigma-Aldrich, Waltham, MO, USA) treatment.

Antigens were purified using the sucrose density gradient method

(15–45%) and thereafter ultracentrifuged. After ultracentrifugation,

the bottom of the centrifuge tube was punctured, and 1 mL fractions

were collected. The presence of FMDV particles in the sample of

each fraction was confirmed using a lateral flow device (BioSign

FMDV Ag; Princeton BioMeditech, NJ, USA) (20). The 146S

antigen was quantified using spectrophotometry at 259 nm. An

inactivation test using ZZR 127 and BHK-21 cells confirmed that no

live viruses were present in the inactivated supernatants (21).
2.4 Composition and preparation of
test vaccine

In the mouse experiment, the vaccine composition for the

positive control (PC) group was as follows: purified antigen types

O (O PA2; 0.375 mg/dose) and A (A YC; 0.375 mg/dose), 15 mg/dose
Quil-A (InvivoGen, San Diego, CA, USA), 10% alum, and ISA206

(Seppic, Paris, France; 50% w/w). The experimental (Exp) group

received vaccines with the same composition as that of the PC

group, with the addition of 100 mg furfurman/dose. One dose

comprised a total volume of 100 mL. The negative control (NC)

group received the same volume of phosphate-buffered saline (PBS;

Gibco, Grand Island, NY, USA).
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In the pig experiment, the vaccine formula for the PC group was as

follows: purified antigen types O (15 mg/dose) and A (15 mg/dose), 150
mg/dose Quil-A, 10% alum, and ISA206 (50% w/w). The Exp group

received test vaccines with the same formula as that of the PC group,

with the addition of 1 mg furfurman/dose. One dose comprised a total

volume of 1 mL. The NC group received the same volume of PBS.

Inactivated antigens (O PA2 and A YC) were mixed (adjuvanted)

with 10% alum in an ice and left to stand for 1 h to adsorb and create

a depot. After dispensing Quil-A and furfurman into the suspension

(aqueous phase) containing antigen and 10% alum, the weight of the

aqueous layer was adjusted with TK buffer (Tris-KCl; pH 7.4). After

dispensing ISA206 (50% w/w), homogenization was performed at

low speed (1,200 rpm) with ultrahomogenizer in an ice bath

according to the manufacturer’s instructions. Emulsification was

performed until a milky, low viscous and stable emulsion was

obtained. The prepared vaccine was stored at 4°C until vaccination

of animals and regularly monitored for stability and immunogenicity.
2.5 Peritoneal exudate and peripheral
blood mononuclear cell isolation

Naive mice (n = 10) were euthanized, following a previously

described experimental protocol (21). The abdominal cavity was

washed with PBS, and the peritoneal lavage fluid was centrifuged.

Whole blood (10 mL/donor) from pigs (n = 5–6/group) was used, as

previously described (21). PBMCs were isolated with Lymphoprep

(Stem Cell Technologies, Vancouver, Canada). Red blood cells were

removed using ammonium–chloride–potassium lysing buffer

(Gibco). The collected PECs and PBMCs were counted with a cell

counter (Bio-Rad TC20; Bio-Rad Laboratories, Hercules, CA, USA).

The isolated cells were cultured in RPMI-1640 medium (Gibco). All

cells were used immediately after isolation.
2.6 BrdU incorporation assay

The proliferation of PECs and PBMCs was assessed using a BrdU

cell proliferation assay kit (Cell Signaling Technology, Danvers, MA,

USA) (4), following the manufacturer’s guidelines. The test vaccines

(with or without furfurman) were administered to fresh PECs and

PBMCs, and the results were confirmed at 0, 6, 12, and 24 h.
2.7 Serological assays

To evaluate the structural protein (SP) Abs in sera, PrioCheck

FMDV type O and type A kits (Prionics AG, Schlieren, Switzerland)

were used, according to the manufacturer’s instructions (21).

Absorbance was measured at a wavelength of 450 nm and

converted to percentage inhibition (PI) values. For the PrioCheck

FMDV kit, a PI value ≥50% was considered Ab-positive.

VN test was performed according to the protocols specified by

the World Organization for Animal Health (22, 23). Briefly, serum

was heat-inactivated and then diluted. Thereafter, 50 mL TCID50
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FMDV (O PA2 or A YC) was added and incubated for 1 h. A 50 mL
volume of LF-BK cells (104 cells/well) was added to each well and

cultured for three days. Subsequently, cytopathic effects were

confirmed in each well (21, 24).

Enzyme linked immunosorbent assays (ELISAs) were

performed using kits for porcine IFNa, IFNb, IFNg, IL-1b, IL-2,
and IL-12p40 (DuoSet, R&D Systems, Minneapolis, MN, USA;

Cloud-Clone Corp Inc., Houston, TX, USA) according to the

manufacturer’s guidelines.
2.8 Evaluation of early, mid-term, and
long-term immunity and host defense in
mice immunized with the test vaccine

Early, mid-term, and long-term immune responses to the test

vaccine were evaluated in mice (n = 5/group) using a previously

described experimental protocol (21). Host defense against viral

infections was assessed in mice vaccinated with the test vaccine.

Mice were vaccinated via intramuscular injections (0 dpv) and

challenged with the FMDV [100 lethal dose 50% (LD50) O/VET/

2013 or 100 LD50 A/Malay/97] via intraperitoneal injections at 7,

28, 84, and 168 dpv. Survival rates and body weights were

monitored for up to 7 d post-challenge (dpc).
2.9 Evaluation of early, mid-term, and
long-term immunity in pigs immunized
with the test vaccine

Early, mid-term, and long-term immune responses to the test

vaccine were evaluated in pigs (n = 5–6/group) using a previously

described experimental protocol (21). For serological analysis, sera

were collected from the vaccinated pigs at 0, 7, 14, 28, 56, and 84

dpv. After the first vaccination, a second vaccination was performed

at 28 dpv using the same route.
2.10 Evaluation of host defense against
FMDV infection in pigs after administration
of the test vaccine

To evaluate whether the test vaccine could induce host defense, a

challenge experiment was performed (n = 3/group). At 28 dpv, all

experimental groups were infected with FMDV types O and A (105

TCID50/100 mL) via intradermal injections into the soles of the feet.

Observation of clinical symptoms and collection of oral swab samples

(BD Universal Viral Transport Kit; BD Biosciences, Franklin Lakes,

NJ, USA) were performed daily during the challenge period. Serum

(vacutainer serum tubes; BD Biosciences) was collected at 0, 2, 4, 6,

and 8 dpc. RNA was extracted from oral swabs and serum, according

to the instructions of the QIAcube HT Pathogen Kit (QIAGEN,

Leipzig, Germany). RT-PCR was conducted using the FMDV Real-

Time RT-PCR Master Mix Kit (Bioneer, Daejeon, Republic of Korea),

according to the manufacturer’s instructions (21).
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2.11 RNA extraction, cDNA synthesis, and
quantitative RT-PCR

RNA was extracted using the RNeasy Mini Kit (QIAGEN) and

TRIzol reagent (Invitrogen, Carlsbad, CA, USA), according to the

manufacturer’s guidelines. The cDNA was synthesized using the

GoScript Reverse Transcription System (Promega, Madison, WI,

USA), according to the manufacturer’s guidelines. Afterwards,

quantitative RT-PCR (qRT-PCR) was performed using SYBR

Green Supermix (Bio-Rad) (21). The qRT-PCR results were

normalized using the measured hprt (reference gene) levels. The

primers used are shown in Supplementary Table 1.
2.12 Statistical analysis

Unless otherwise specified, all data are presented as the mean ±

SEM. Survival curves were drawn using the Kaplan–Meier method,

and differences were analyzed using the log-rank sum test. Statistical

differences between groups were determined using Tukey’s or

Dunnett’s post-hoc tests and one-way or two-way analysis of

variance. Statistical significance is indicated by *p <0.05, **p <0.01,

***p <0.001, and ****p <0.0001. All data were analyzed using

GraphPad Prism 10.2.3 (GraphPad, San Diego, CA, USA).
3 Results

3.1 Test vaccine containing furfurman
stimulated the proliferation of
immune cells

To investigate the effect of test vaccine containing furfurman on

immune responses, cell proliferation via the BrdU assay was

assessed 6, 12, and 24 h after murine PECs and porcine PBMCs
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were treated with the test vaccine (Figures 1A, B). At all-time points

(6, 12, and 24 h) measured for the murine PECs, the Exp group

showed higher cell proliferation rates than the PC group

(Figure 1A). Similarly, porcine PBMCs showed a significantly

higher cell proliferation rate in the Exp group than in the PC

group at all-time points (Figure 1B). These results demonstrate that

furfurman stimulates the host innate immune response, indicating

its potential use as an adjuvant.
3.2 Test vaccine containing furfurman
elicited potent and long-lasting humoral
immune responses in mice

To evaluate long-lasting humoral immune responses of mice to

the test vaccines, experiments were conducted according to the design

depicted in Figure 2A. The Exp group had higher Ab titers specific to

the antigens (types O and A) than the PC group in all aspects,

including the rate of increase, maximum value, and sustainability of

Ab titers, as measured via SP ELISA (Figures 2B, C). VN titers for

FMDV types O and A were also significantly higher in the Exp group

than in the control group at all-time points. Notably, VN titers in the

Exp group tended to increase rapidly and remained constant for a

long period (Figures 2D, E). These results demonstrate that

furfurman elicits potent adaptive immunity as an FMD vaccine

adjuvant, leading to rapid and robust long-term immunity.
3.3 Test vaccine containing furfurman
induced broad-duration range of host
defense against viral infection in mice

To investigate the efficacy of the test vaccine in host defense

against viral infection, experiments were conducted according to

the design depicted in Figure 3A. In the challenge experiment
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FIGURE 1

Vaccine containing furfurman induces cell proliferation in murine PECs and porcine PBMCs. The level of cell proliferation, as measured using a BrdU
cell proliferation kit, was assessed 6, 12, and 24 h after murine PECs and porcine PBMCs were treated with the test vaccine (A, B). BrdU cell
proliferation in murine PECs (A) and porcine PBMCs (B). Statistical analyses were performed using one-way ANOVA, followed by Tukey’s post-hoc
test. *p<0.05; **p<0.01; ***p<0.001; and ****p<0.0001. PBMC, peripheral blood mononuclear cell; PEC, peritoneal exudate cell.
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(FMDV types O and A) at 7 dpv after immunization with the test

vaccine, the Exp group showed a 100% survival rate at 7 dpc,

whereas the PC group showed a 0% survival rate (Figures 3B, C). In

the challenge experiments conducted at 28, 84, and 168 dpv, the Exp

group showed a 100% survival rate throughout, whereas the PC

group showed a 40%, 20%, and 0% survival rate, respectively

(Figures 3D–I). There were no significant differences observed in

body weight between groups under all conditions tested

(Supplementary Figure 1). These results demonstrate that the test

vaccine elicited a robust host defense against FMDV infection
Frontiers in Immunology 05
during the early (7 dpv), mid-term (28 dpv), and long-term (84

and 168 dpv) periods.
3.4 Test vaccine containing furfurman
induced long-lasting immunity in pigs

Experiments were performed to assess how adaptive and long-

lasting immunity was affected by the test vaccine in pigs, as shown in

Figure 4A. The Exp group had higher Ab titers specific to the antigens
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Vaccine containing furfurman elicits potent cellular and humoral immunity, leading to robust long-lasting humoral immune responses. C57BL/6
mice were administered the test vaccine with (Exp group) or without (PC group) furfurman. Mice were vaccinated with the test vaccine via the
intramuscular (IM) route, and blood was then collected at 0, 7, 28, 84, and 168 d post-vaccination (dpv) for serological analysis using structural
protein (SP) O and A ELISA kits and virus-neutralizing (VN) titers for O/PKA/44/2008 (O PA2) and A/SKR/YC/2017 (A YC). (A–E) Experimental strategy
(A); antibody titers, as determined using SP O (B) and SP A (C) ELISA kits; VN titers for O PA2 (D) or A YC (E), as determined using VN tests. Data are
represented as the mean ± SEM of triplicate measurements (n = 5/group). Statistical analyses were performed using two-way ANOVA, followed by
Tukey’s post-hoc test. *p <0.05; **p <0.01; ***p <0.001; and ****p <0.0001.
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(types O and A) than the PC group for all types from 7–84 dpv, as

measured via SP ELISA (Figures 4B, C). VN titers against FMDV types

O (O PA2) and A (A YC) increased more rapidly in the Exp group than

in the PC group, and their maximumVN titers was also higher. Overall,
Frontiers in Immunology 06
the VN titers were significantly higher in the Exp group than in the PC

group from 7–84 dpv (Figures 4D, E). These results demonstrate that

the test vaccine elicited long-lasting immunity depending on the

stimulation of cellular and humoral immunity in pigs.
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FIGURE 3

Vaccine containing furfurman drives potent host defense against viral infection. C57BL/6 mice were administered test vaccine with (Exp group) or
without (PC group) furfurman. The test vaccines were injected via the intramuscular (IM) route into mice that were later challenged with foot-and-
mouth disease virus (FMDV) O (100 lethal dose 50% [LD50] O/VET/2013) or FMDV A (100 LD50 A/Malay/97) at 7, 28, 84, and 168 d post-vaccination
(dpv) via the intraperitoneal (IP) route. Survival rates and body weights were monitored for 7 d post-challenge (dpc). (A–I) Experimental strategy
(A); survival rates post-challenge with O/VET/2013 (B) and A/Malay/97 (C) at 7 dpv; survival rates post-challenge with O/VET/2013 (D) and A/Malay/
97 (E) at 28 dpv; survival rates post-challenge with O/VET/2013 (F) and A/Malay/97 (G) at 84 dpv; survival rates post-challenge with O/VET/2013
(H) and A/Malay/97 (I) at 168 dpv. Data are presented as the mean ± SEM of triplicate measurements (n = 5/group).
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3.5 Test vaccine containing furfurman
enhanced immune response through
regulation of cytokine expression

To understand the background of the test vaccine-mediated

potent immune response, RNA and protein levels of IFNa, IFNb,
IFNg, IL-1b, IL-2, and IL-12p40 were assessed via qRT-PCR and

ELISA during the early stage of post vaccination. This experiment
Frontiers in Immunology 07
was performed using PBMCs derived from whole blood and serum,

as shown in Figure 4A. Gene expression levels of cytokines were

higher in the Exp group than in the PC group (Figures 5A−F). Similar

to the results of the gene expression levels, the protein expression

levels of cytokines in the Exp group were significantly higher than

those in the PC group (Figures 5G−L). These results demonstrate that

the test vaccine rapidly stimulated immune cells and elicited potent

cellular and humoral immunity during the early stages of vaccination.
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FIGURE 4

Vaccine containing furfurman elicits potent humoral immune responses in pigs. Landrace pigs were divided into three groups (n = 5–6/group) and
administered the test vaccine with (Exp group) or without (PC group) furfurman. Vaccination was performed twice at 28-d intervals, with 1 mL
vaccine (one dose) injected via the deep intramuscular (IM) route into the necks of the animals. The NC group was injected with an equal volume of
PBS. Blood samples were collected from pigs at 0, 7, 14, 28, 56, and 84 d post-vaccination (dpv) for serological assays. (A–E) Experimental strategy
(A); antibody titers, as determined using structural protein (SP) O (B) and SP A (C) ELISA kits; virus-neutralizing (VN) titers for O PA2 (D) or A YC (E), as
determined using VN tests. Data are represented as the mean ± SEM of triplicate measurements (n = 5–6/group). Statistical analyses were
performed using two-way ANOVA, followed by Tukey’s post-hoc test. *p <0.05; ***p <0.001; and ****p <0.0001.
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3.6 Test vaccine containing furfurman
induced robust host defense against FMDV
infection in pigs

To assess host defense against FMDV (types O and A) infection

in pigs immunized with the test vaccine containing furfurman, a

target animal challenge was performed, as described in Figure 6A.

The NC group failed to achieve host defense and showed typical

clinical symptoms of FMD against both types of FMDV infections.

Additionally, high viremia was observed in the serum and oral

swabs (Figures 6B, E). The PC group showed fewer clinical

symptoms of FMD than the NC group, but high viremia was

observed in the serum and oral swabs, and this is similar to that

in the NC group, which failed to demonstrate complete host defense

against viral infection (Figures 6C, F). In contrast, in the Exp group,
Frontiers in Immunology 08
which received the test vaccine containing furfurman, no clinical

symptoms of FMD were observed, and viremia was neither

observed in the serum nor in oral swabs (Figures 6D, G). These

results highlight the strong adjuvanticity of furfurman in the test

vaccine and demonstrate that the test vaccine elicited a potent host

defense mechanism against FMDV infections.
4 Discussion

In human vaccines, various adjuvants, such as immunostimulants

(e.g., PRR ligands, cytokines, and small molecules) and antigen-delivery

systems [e.g., lipid nanoparticles, polymeric particles (poly lactic-co-

glycolic acid), caged protein nanoparticles, and inorganic nanocarriers],

have been studied, and clinical trials are in progress or partially
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FIGURE 5

Vaccine containing furfurman induces the expression of proinflammatory cytokines in pigs. Porcine peripheral blood mononuclear cells (PBMCs) and
serum isolated from the whole blood of vaccinated pigs (n = 5–6/group), as described in Figure 4A, were used for quantitative RT-PCR and ELISA. Gene
expression levels were normalized to those of hprt and presented as relative ratios when compared to the gene expression levels of the control. (A–L)
Gene expression levels of ifna (A), ifnb (B), ifng (C), il-1b (D), il-2 (E), and il-12p40 (F); protein secretion levels of IFNa (G), IFNb (H), IFNg (I), IL-1b (J), IL-2
(K), and IL-12p40 (L). Statistical analyses were performed using two-way ANOVA, followed by Tukey’s post-hoc test. ***p <0.001 and ****p <0.001.
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performed (25, 26); however, their use is limited in animal vaccines.

The FMD vaccine contains several adjuvants (e.g., oil-based emulsion,

saponin, and aluminum gel), along with an antigen, to enhance the

sustainability of vaccine efficacy through antigen stability and slow
Frontiers in Immunology 09
release. However, oil-based adjuvants have the disadvantage of causing

local side effects because the oil adjuvant clumps at the injection site. In

particular, oil-based adjuvants induce humoral immunity, making it

difficult to induce cellular immunity. It takes a certain period of time to
C
linical score

C
linica l score

C
linica l score

C
lini cal sc ore

C
linical sc ore

C
linica l score

C
linica l score

C
linica l sc ore

C
linica l score

C
linical score

C
linical score

C
linical score

C
linical sc ore

C
linica l score

C
linica l sc ore

C
linical score

C
linica l score

C
lini ca l score

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
N A

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
o f

 
vi

ra
l

R
N A

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
b e

rs
of

 
vi

r a
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
b e

rs
of

 
vi

r a
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
be

rs
of

 
vi

r a
l

R
NA

/0
.1

m
l

(L
o g

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/ 0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
v i

ra
l

R
NA

/0
. 1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
n u

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C
op

y
nu

m
be

rs
of

 
vi

ra
l

R
NA

/0
.1

m
l

(L
og

10
)

C

D

E

F

G

A

Pigs
(8–9 weeks old, FMD Ab-seronegative, n = 3/group)

Negative control group
(NC)

Vaccination
via IM

Positive control group
(PC,O PA2 Ag+A YC Ag)

Challenge with
O/BE/2017 or A/GP/2018 via ID

Experimental group
(Exp., PC+Furfurman) 

Immunostimulants

with ISA 206, Al(OH) , Quil-A

Sacrifice

-28 dpc 0 dpc 8 dpc

Monitoring of clinical score & bleeding

B
10  #16

8

6

4

2

0

Clinical Score
Serum
Oral swab 12

10
8
6
4
2
0

10  #17
8

6

4

2

0

Clinical Score
Serum
Oral swab 12

10
8
6
4
2
0

10  #30
8

6

4

2

0

Clinical Score
Serum
Oral swab 12

10
8
6
4
2
0

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

10  #18
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #19
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #31
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

10  #22
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #26
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #28
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with O/BE/2017 (dpc)

Clinical Score
Serum

10  #13
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #14
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #15
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

0  1  2  3  4 5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

10  #32
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #33
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #35
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

Clinical Score
Serum

10  #36
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #37
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

10  #42
8

6

4

2

0

Oral swab 12
10
8
6
4
2
0

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

0  1  2  3  4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

0  1  2  3 4  5  6  7  8
Days post challenge with A/GP/2018 (dpc)

FIGURE 6

Vaccine containing furfurman drives robust host defense against FMDV infection in pigs. Landrace pigs were divided into three groups (n = 3/group)
and administered the test vaccine with (Exp group) or without (PC group) furfurman. Blood samples were collected at 0 and 28 d post-vaccination
(dpv) for serological assays. Vaccinated pigs were challenged with foot-and-mouth disease virus (FMDV) types O and A (O/SKR/BE/2017, A/SKR/GP/
2018; 105 TCID50/100 mL) via intradermal injection on the heel bulb at 28 dpv. (A–G) Experimental workflow (A); clinical score and viral load (titers)
of serum samples and oral swabs from the NC (B), PC (C), and Exp groups (D) infected with FMDV type O; clinical score and viral load of serum
samples and oral swabs from the NC (E), PC (F), and Exp groups (G) infected with FMDV type (A) The left Y-axis of the graph shows the amount of
virus in the serum and oral swab samples, represented as Log10 values, whereas the right Y-axis shows the clinical index as the maximum value of 10
points. Data are presented as the mean ± SEM of triplicate measurements (n = 3/group).
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induce Ab titers to a defensive level, making initial protection difficult

(27). To overcome these shortcomings and improve vaccine efficacy,

we designed a test vaccine using furfurman as an FMD vaccine

adjuvant and evaluated its efficacy.

The importance of CTLR (dectin-1, dectin-2, Mincle, and DC-

SIGN) and cGAS-STING pathway-mediated innate immunity in

host–pathogen interactions has been emphasized previously (25, 28).

Furfurman is a dectin-2 agonist that induces a potent immune

response against invaders (pathogens including viruses and bacteria)

within the host. Dectin-2 stimulation not only elicits mucosal

immunity by inducing secretory IgA production but also promotes

phagocytosis, thereby contributing to innate immunity (5, 29). Using

an adjuvant that simultaneously induces systemic and mucosal

immunity could maximize host immune-boosting efficacy through a

synergistic effect (30). Currently, the use of PRR agonists as vaccine

adjuvants is the latest trend (28). As a vaccine adjuvant, furfurman

simultaneously induces systemic and mucosal immunity.

PECs and PBMCs contain antigen-presenting cells, such as DCs

and MFs, as well as lymphocytes (T, B, and NK cells) (31). Previous

studies have evaluated the proliferation of pig PBMCs 96 hrs after

administration of vaccines containing furfurman (4). However, in

this study, furfurman rapidly stimulated and induced proliferation

of mouse and pig immune cells within 24 hrs. Therefore, we

concluded that FMD vaccines containing furfurman could induce

a potent immune response in the early stage (Figure 1). Based on

these results, we evaluated the adjuvanticity of furfurman and

efficacy [adaptive (early, mid-term, and long-term) immunity] of

a furfurman-containing vaccine in mice. The Exp group immunized

with the test vaccine maintained significant Ab and VN titers

compared to those in the PC group until 168 dpv. During the

process of developing long-term immunity, the test vaccine not only

showed a faster rate of Ab titer accumulation than the PC group did

but also allowed the elevated Ab titers to persist for a longer period

of time (Figure 2). Ab and VN titers are key indicators of adaptive

(humoral) immunity (32). Therefore, the test vaccine likely elicited

long-term immunity by inducing adaptive immunity. During early,

mid-term, and long-term host defense in mice, the Exp group

exhibited 100% protection at all time points measured, whereas the

PC group exhibited 40% and 20% survival rates at 28 and 84 dpv,

respectively. As shown in Figure 2, the PC group had the highest Ab

and VN titers at 28 dpv but gradually decreased thereafter,

transitioning to Ab-negative levels at 168 dpv (Figure 3).

Similar to the previous results observed in mice, pigs

immunized with the test vaccine reached Ab-seropositive levels at

7 dpv. VN titers in the Exp group were significantly different from

those in the PC group. In addition, pigs in the Exp and PC groups

exhibited significant differences in both Ab and VN titers until 84

dpv (Figure 4). These results demonstrate that the test vaccine

containing furfurman addressed the limitation of the existing FMD

vaccine (short Ab titer maintenance period) (33) and elicited long-

lasting immunity based on the induction of potent cellular and

humoral immunity. Unlike the other control groups, the Ab and

VN titers of pigs immunized with the test vaccine significantly

increased in the early stages (7 dpv) (Figure 4).

To elucidate the background of this robust host immune response,

we assessed the level of key cytokines (IFNa, IFNb, IFNg, IL-1b, IL-2,
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and IL-12p40) that induce innate and adaptive immunity at the gene

and protein levels. The Exp group immunized with the test vaccine

showed significantly higher expression in all the investigated cytokines

at the gene and protein levels than the PC group. Type I IFNs (IFNa
and IFNb) are the first line of host defense produced during the viral

infection and contribute to the induction of innate immune responses

(34). Type I IFNs respond to infections by stimulating the innate and

adaptive immunity of host during pathogen infection (35, 36).

Specifically, type I IFNs not only elicit host immune responses by

stimulating NK, T, B, and myeloid cells but also induce memory

responses to prevent secondary viral infection. Therefore, during host

infection, viruses suppress the expression of type I IFNs through their

own mechanisms (37–40). IFNg is secreted by immune-related cells,

including gamma delta T, NKT, T, B, and NK cells (41–44). IFNg
regulates host innate and adaptive immunity through the induction of

potent cellular immunity (45, 46). IFNg downregulates inhibitory

cytokines (IL-10) and promotes IL-12 production in MFs (47, 48). IL-
1b, a proinflammatory cytokine, is a critical marker of the

inflammatory response that stimulates the immune response of host

(49). IL-1b is produced through cleavage of pro-IL-1b by activated

inflammasomes (50) and secreted by cells involved in innate and

adaptive immunity stimulated through inflammatory signals (51). IL-

1b contributes to enhancing innate immunity and inducing adaptive

immunity (52, 53). IL-2 stimulates T cell proliferation and memory

cell production, leading to a potent adaptive immune response in the

host (54). Moreover, IL-2 regulates the expression of transcription

factors and cytokines in CD4+ T cells, controlling their maturation

toward the Th1 and Th2 phenotypes (55–58). IL-2 also controls the

differentiation and maturation of CD8+ T cells. High IL-2 production

induces differentiation of CD8+ T cells into CD8+ cytotoxic T cells

(59). In contrast, low IL-2 production promotes the differentiation of

CD8+ memory cells (60–62). IL-12p40 secreted by DCs contributes to

T cell-mediated immunity by eliciting IL-12 secretion (63, 64). IL-12 is

mainly induced by IFNg, both of which form a positive feedback loop

that promotes their own secretion (65, 66). As with IFNg, IL-12
induces innate and adaptive immunity. Furthermore, IL-12 is

activated via TLR stimulation and secreted by MFs, monocytes,

DCs, and B cells (67, 68). The main functions of IL-12 include

activating antigen presentation and enhancing the cytolysis of NKT

and NK cells (48, 69). Overall, the results indicate that the test vaccine

stimulated immune cells during the early stages of vaccination,

eliciting robust innate and adaptive immunity based on potent

cellular and humoral immunity (Figure 5).

Finally, a challenge experiment was performed in pigs to verify

whether those immunized with the test vaccine had host defenses

against FMDV infection (types O and A). The Exp group

immunized with the test vaccine showed no clinical signs of

FMD, and viremia was not detected in oral swabs and sera.

However, the other control groups showed clinical signs of FMD,

and viremia was detected in oral swabs and sera. Therefore, the test

vaccine elicited robust host defense against FMDV infection by

modulating a potent host immune system (Figure 6).

In a previous study, D-galacto-D-mannan is a dectin-2 agonist

that was selected for use in oral vaccines as an adjuvant for FMD

vaccines (70). D-galacto-D-mannan can be used in large quantities

because it is a natural product with low cost and few side effects. We
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1491043
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2024.1491043
first evaluated the efficacy of D-galacto-D-mannan as an adjuvant

for intramuscular vaccine before evaluating its efficacy as an

adjuvant for oral vaccine. However, furfurman is also a dectin-2

agonist that elicits potent immune responses as an FMD

intramuscular vaccine adjuvant. In this study, we demonstrated

that D-galacto-D-mannan is not the only adjuvant for FMD

vaccines but that furfurman elicits potent early, mid-term, and

long-term immune responses as host defense as an FMD vaccine

adjuvant. However, in this study, only a few cytokines were

measured within a narrow vaccination period (7 dpv), and the

signaling pathways induced by furfurman were not revealed. In

future studies, we intend to overcome these limitations by

elucidating the background of the potent immune response

induced by furfurman for different vaccination periods. Our study

confirmed the efficacy of furfurman as an FMD vaccine adjuvant,

which is a milestone in the design of next-generation FMD vaccines.

Furfurman is believed to be highly useful in controlling hand-foot-

and-mouth disease in humans as well because FMD and hand-foot-

and-mouth disease, induced by coxsackievirus A 16 and enterovirus

type 71, are similar types of diseases. In addition, furfurman is

expected to be applied as an adjuvant to control other viral diseases

that require the induction of systemic and mucosal immunity.
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