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Small-cell lung cancer (SCLC) is a refractory cancer with rapid growth and high

aggressiveness. Extensive-stage SCLC is initially sensitive to chemotherapy;

however, drug resistance and recurrence occur rapidly, resulting in a poor

survival outcome due to lack of subsequently efficient therapy. The emergence

of immune checkpoint inhibitors (ICIs) generated a new landscape of SCLC

treatment and significantly prolonged the survival of patients. However, the

unselected immunotherapy restrains both beneficiary population and

responsive period in SCLC compared to the other tumors. The complex tumor

origin, high heterogeneity, and immunosuppressive microenvironment may

disturb the value of conventional biomarkers in SCLC including programmed

cell death 1 ligand 1 and tumormutation burden. Transcriptional regulator–based

subtypes of SCLC are current research hotspot, revealing that Y (I) subtype can

benefit from ICIs. Additionally, molecules related to immune microenvironment,

immunogenicity, epigenetics, and SCLC itself also indicated the therapeutic

benefits of ICIs, becoming potential predictive biomarkers. In this review, we

discussed the advances of biomarkers for prediction and prognosis of

immunotherapy, promising directions in the future, and provide reference and

options for precision immunotherapy and survival improvement in patients

with SCLC.
KEYWORDS
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1 Introduction

Small-cell lung cancer (SCLC) accounts for 13%–15% of all lung cancers and is one of

the deadliest refractory tumors with a 5-year survival rate of less than 7% (1, 2). On the

basis of recent evidence, most common SCLC occurs in pulmonary neuroendocrine cells

(PNECs), but, in some cases, it also occurs in lung epithelial cells, such as basal or club cells,
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and alveolar type 2 cells. Tuft cells, which are defined as

chemosensory cells of the lung epithelial lining (3), also act as

possible progenitor cells in a specific subtype of SCLC (4). Loss-of-

function mutations including tumor protein 53 (TP53) and

retinoblastoma 1 (RB1) in PNECs, tuft, club, or AT2 cells

evidently evoke SCLC development. Moreover, SCLC may also

transdifferentiate from lung adenocarcinoma following loss-of-

driver mutations such as epidermal growth factor receptor (EGFR).

SCLC is characterized by early metastatic spread, and two-

thirds of patients showed tumor spreading beyond the chest at the

time of initial diagnosis (2, 5). SCLC is sensitive to chemotherapy at

first (6, 7) but relapses rapidly, making it an extremely challenging

tumor type for oncologists (8). IMpower133 and CASPIAN set up a

new milestone of immunochemotherapy in first-line extensive-

stage SCLC (ES-SCLC) with prolonged progress-free survival

(PFS) and overall survival (OS) (9–11). Food and Drug

Administration (FDA) and National Medical Products

Administration approved Atezolizumab and Durvalumab

combination for first-line ES-SCLC treatment (9, 10, 12, 13).

Subsequently, CAPSTONE-1 and ASTRUM-005 study refreshed

the median OS (mOS) of ES-SCLC to more than 15 months by

programmed cell death 1 ligand 1 (PD-L1) inhibitor Adebrelimab

combined with chemotherapy (14) or programmed cell death

protein 1 (PD-1) inhibitor Serplulimab combined with Etoposide

and Carboplatin (EC) (15). Recently, combination of the PD-L1

inhibitor Benmelstobart, the angiogenesis inhibitor Anlotinib, and

the chemotherapies significantly improved mOS up to 19.32

months (16). Innovative treatments for patients with SCLC are
Frontiers in Immunology 02
emerging (Table 1, Figure 1), but immunotherapy is still the first-

line standard of care, which emphasizes the need of progress in

immunotherapy for SCLC.

Although numerous studies have focused on biomarkers of

immunotherapy in SCLC, the clinically applicable biomarkers in

SCLC are still absence, partly due to the complexity of both tumor

and microenvironment, lack of tumor specimens, etc. (2). With the

understanding of the immune microenvironment and the rise of

liquid biopsy, biomarker studies in SCLC immunotherapy may

usher in new advances (Figure 2). Herein, we reviewed the

progression, unmet clinical need, and future direction of

biomarker studies to provide the conceptions for both SCLC

clinical and translational research.
2 Tissue-derived biomarkers

2.1 Traditional biomarkers

2.1.1 PD-L1
PD-L1 serves as a potential predictive marker for immune

checkpoint inhibitors (ICIs) in patients with several solid cancers

(21, 22), but it is lowly expressed in SCLC (23, 24). In CheckMate

032, the objective response rate (ORR) of the patients with tumor

proportion score (TPS) of PD-L1 ≥1% was not significantly

different from patients with TPS <1% (9.1% vs. 14.1% and 10%

vs. 32.3%, respectively) in either Nivolumab group or Nivolumab +

Ipilimumab group, revealing an irrelevance between PD-L1
TABLE 1 Innovative therapeutic approaches for patients with SCLC.

Therapeutic
approaches

Study name Study
phase

Mechanism
of action

N Outcomes

Benmelstobart, anlotinib,
and etoposide/carboplatin

NCT04234607
Cheng et al. (17)

III PD-L1 inhibitor,
multitargeted anti-
angiogenic agent,
and chemotherapy

246 Benmelstobart and anlotinib plus EC vs. EC: mOS of 19.3 vs. 11.9
months (P = 0.0002), mPFS of 6.9 vs. 4.2 months (P < 0.0001),
ORR of 81.3%, and mDoR of 5.8 months

Surufatinib plus
toripalimab combined
with etoposide
and cisplatin

NCT04996771
Zhang et al. (18)

Ib/II PD-L1 inhibitor,
antiangiogenic therapy,
and chemotherapy

35 ORR of 97.1%, DCR of 100%, mPFS of 6.9 months, and mOS
of 21.1months

Durvalumab NCT03703297
Cheng et al. (19)

III PD-L1 inhibitor 264 mOS of 55.9 vs. 33.4 months and mPFS of 16.6 vs. 9.2 months

DS-7300 (I-DXd) NCT05280470 I/II B7-H3-targeted ADC 21 ORR of 52.4%, mDoR of 5.9 months, mPFS of 5.6, and mOS of
12.2 months

ABBV-706 NCT05599984 I SEZ6-targeted ADC 23 ORR of 60.9%

PM8002 combined
with paclitaxel

NCT05844150 II PD-L1 and VEGF-
A inhibitors

27 DCR of 81.8%, ORR of 72.7%, and mPFS of up to 5.5 months

Tarlatamab NCT03319940
Paz-Ares et al. (20)

I DLL3/CD3 BiTE 107 ORR of 23.4% and mDoR of 12.3 months

Lurbinectedin
plus pembrolizumab

NCT04358237 I/II Chemotherapy plus PD-
1 inhibitor

28 ORR of 46.4%, mDoR of 11.4 months, mPFS of 5.3 months, and
mOS of 11.1 months

Lurbinectedin
plus atezolizumab

NCT04253145 I/II Chemotherapy plus PD-
L1 inhibitor

24 ORR of 57.69%, DCR of 84.61%, and mPFS of 4.93 months
PD-L1, programmed cell death-ligand 1; EC, etoposide and carboplatin; mOS, median overall survival; mPFS, median progression-free survival; ORR, objective response rate; mDOR, median
duration of response; DCR, disease control rate; ADC, targeted antibody-drug conjugate; BiTE, bispecific T-cell bonding agent; PD-1, programmed cell death protein 1.
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expression and ORR (25). KEYNOTE-028 (n = 19) and KEYNOTE-

158 (n = 64) showed that Pembrolizumab exhibited durable

antitumor activity in a subset of patients with recurrent or

metastatic SCLC, regardless of PD-L1 combined positive score
Frontiers in Immunology 03
(CPS) (26, 27), revealing that PD-L1 expression cannot predict

the efficacy of ICIs in the ES-SCLC, whether assessed by TPS or

CPS. Notably, a single-arm phase II study using Pembrolizumab as

maintenance therapy after chemotherapy in patients with ES-SCLC
FIGURE 2

The biomarkers associated with the efficacy of immunotherapy in SCLC.
FIGURE 1

Signaling pathways and therapeutic targets relevant to SCLC.
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showed that patients with positive stromal PD-L1 had higher partial

response (PR) (37.5% vs. 8.3%), longer mPFS (6.5 vs. 1.3 months),

and mOS (12.8 vs. 7.6 months) compared to those with negative

PD-L1. Mechanistically, the expression of stromal PD-L1 might

represent presence of restricted effector T cells in tumor

microenvironment (TME), which was released by Pembrolizumab

treatment, suggesting that stromal PD-L1 might be predictive for

ICI response in patients with SCLC (28).

Similarly, in studies of the ICI + chemotherapy (ICI-combo)

treatment in SCLC, PD-L1 has also been demonstrated to be an

unpredictable biomarker (22, 29). IMpower133 reported that there

was no significant difference in patients with positive PD-L1

expression (TPS ≥ 1% or CPS ≥ 1%) between the Atezolizumab +

EC group and the EC group [9.7 vs.10.6 months; hazard ratio (HR),

0.87] with regard to mOS. Notably, in patients with negative

expression of PD-L1, mOS was longer in the combination group

than that in the EC group (10.2 vs. 8.3 months; HR, 0.51; P =

0.0150). Paradoxically, in patients with PD-L1 expression ≥5%,

longer survival benefit was observed in the combination group than

that in the EC group (21.6 vs. 9.2 months; HR, 0.60; P = 0.2527)

(30). However, CASPIAN showed that negative PD-L1 impacted

the OS neither in the Durvalumab combined with Etoposide plus

Cisplatin (EP) nor EP group (P = 0.54 and P = 0.23, respectively)

(31). Similarly, ASTRUM-005 found that PD-L1 expression was not

related to mOS both the Serplulimab group and the placebo group

(P = 0.44) (15). The reason why TPS or CPS could not reliably

predict the efficacy of ICI-combo for SCLC treatment was partly

attributed to the limitations such as substantial heterogeneity

among patients with SCLC (Table 2). A more comprehensive

understanding of the TME is warranted to develop a composite

scoring system to evaluate PD-L1 expression across multiple

components of the TME in SCLC.

2.1.2 TMB
The genetic landscape of tumor serves as the primary factors

affecting tumor response to ICIs (34). Several studies identified the

frequently altered genes in SCLC (35, 36) (Table 3), and gene losses

and mutations, including the deletion of TP53 and RB1 and

amplification of SOX2 and MYC in SCLC, lead to the high tumor

mutation burden (TMB) in SCLC (37). A study of American Society

of Clinical Oncology (ASCO) 2017 revealed that the median SCLC

TMB was 9 mut/Mb, and the 90th percentile TMB was 19.6 mut/

Mb (38). High TMB of SCLC contributes to a large number of

potential tumor-specific antigens, which may imply the

effectiveness of immunotherapy in SCLC (39).

The predictive significance of TMB for immunotherapy varied

widely across different clinical trials (Table 2). CheckMate 032

firstly investigated the predictive value of TMB for SCLC

immunotherapy. Patients with SCLC (n = 211) receiving

Nivolumab or Nivolumab + Ipilimumab were divided into three

groups according to the TMB cutoff values of 143 mut/Mb and 247

mut/Mb. The mOS and mPFS in low-, medium-, and high-TMB

groups were 3.1 vs. 3.9 vs. 5.4 months and 1.3 vs. 1.3 vs. 1.4 months,

respectively (25), suggesting the predictive effect of high TMB for

immunotherapy benefit. KEYNOTE-028 (40) retrospectively
Frontiers in Immunology 04
discovered that higher TMB was significantly correlated with

ORR and longer PFS (P = 0.018 and P = 0.051) in patients (n =

77) treated with Pembrolizumab. Similarly, KEYNOTE-158 (41)

retrospectively found that patients with high TMB (≥10 mut/Mb)

treated with ICIs had higher ORR (28.3%; 95% CI, 20.5–37.3) and

improved survival time, also suggesting that TMB may serve as a

potential biomarker for ICI therapy in SCLC.

Controversially, CASPIAN study retrospectively approved no

correlation between TMB and clinical efficacy (OS, PFS, or ORR)

(32) detected by FoundationOne CDx assay from 805 tumor tissue

derived from patients with ES-SCLC treated with Etoposide and

Cisplat in (EP), Durvalumab + EP, or Durvalumab +

Tremelimumab + EP, presenting a challenge for TMB as a

predictive biomarker of ICI-combo in SCLC.

Considering the difficulty of acquiring tumor tissue from

patients with ES-SCLC and high tumor heterogeneity, researchers

proposed to assess blood TMB (bTMB). In IMpower133, bTMB was

evaluated in 346 patients, and the cutoff was determined as 10 mut/

Mb and 16 mut/Mb, respectively. There was no significant

difference in mOS between the ICI-combo and chemotherapy

groups regardless of different cutoff (30), possibly due to changes

in the nucleotide pool of tumor cells caused by chemotherapy,

which would weaken the predictive effect of TMB on the outcome of

ICIs (42). The application of bTMB was limited by timeliness of

sample testing and sensitivity of testing technology. Based on the

above, neither tissue TMB nor bTMB could accurately predict the

efficacy of ICI-combo in SCLC. Complex detection technology, high

cost, and unclear definition of thresholds limit the utilization of

TMB as a reliable predictive biomarker; thus, prospective clinical

studies are needed to verify its feasibility for predicting the efficacy

of ICI-combo in SCLC in the future.
2.2 Biomarkers in exploration

Because traditional immunotherapy biomarkers, such as PD-L1

and TMB, cannot predict the efficacy of SCLC immunotherapy,

researchers are exploring more new biomarkers that can be used.

Some studies have demonstrated that alterations in a single gene or

protein in SCLC may be associated with the benefit of

immunotherapy in SCLC (Table 4). However, with the rise of

omics or even multi-omics studies, it seems more reasonable to

use scores composed of multiple gene or protein signatures to

predict efficacy, representing more characteristics of SCLC, which

has become the main direction of the biomarker studies in SCLC

immunotherapy (Table 5).

2.2.1 Single biomarker
2.2.1.1 RB1

RB1 inactivation is obligatory in SCLC (5) and loss of RB1 not

only can cause tissue cancerous but also can lead to impaired

immune response and significant attenuation of genes related to

immune function, suggesting the relationship between RB1 and

immune characteristics (57), whereas wild-type (WT) RB1 was a

surrogate marker for yes-associated protein 1 (YAP1) expression in
frontiersin.org
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/116)

PD-L1 ≥
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TPS <
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Nivo:

9.1% vs.
14.1%;
Nivo +
Ipi: 10%
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32.3%

NA NA (25)

A NA
1.3 vs. 1.3

vs.
1.4 months

3.1 vs. 3.9 vs.
5.4 months

(25)

.7%
/145)

PD-L1
positive:
33.3%

PD-L1
positive:

1.9 months

PD-L1 positive:
9.7 months

(26, 27)

9%
/107)

18.7%
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35.7%

1.9 vs.
2.1 months

5.9 vs.
14.9 months

(26)

(3/30)
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(8/20)
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sue)

PR rate:
37.5%
vs. 8.3%

6.5 vs.
1.3 months

12.8 vs.
7.6 months

(28)

.8% (8/
7)
0.4%
/137)

NA NA

PD-L1 ≥ 1%: 9.7
vs.10.6 months
PD-L1<1%: 10.2
vs. 8.3 months

PD-L1 ≥ 5%: 21.6
vs. 9.2 months

(30)

A NA NA

bTMB<10: 11.8
vs. 9.4 months;
bTMB ≥ 10: 14.9
vs. 11.2 months;
bTMB<16: 12.5

(30)
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PD-L1 TPS ≥ 1%
Dako 28-8

mAb
1

(21

TMB
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mutations;

medium: 143–
247

mutations;
high: ≥248
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Tissue,
WES
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KEYNOTE-
028

Phase 1 19
Third or
later line

Pembrolizumab ORR PD-L1 TPS ≥ 1%
Dako

22C3mAb
31
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KEYNOTE-
158

Phase 2 64
Third or
later line

Pembrolizumab ORR PD-L1 CPS ≥ 1%
Dako

22C3mAb
3
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treatment

after
chemotherapy
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TMB was not predictive of Durvalumab ±
Tremelimumab + EP vs. EP

(32)

Dako
22C3mAb

40.8%
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HR, 0.67;
95% CI,
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negative
HR, 0.72;
95% CI,
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PD-L1<negative:
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0.58; 95% CI,
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EP; Placebo + EP

PFS and OS PD-L1 CPS ≥ 1%

ASTRUM-
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Phase 3 585 First-line
Serplulimab + EC;
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OS PD-L1 TPS ≥ 1%
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SCLC and related to the survival and chemotherapy responsiveness

of patients (58). Moreover, the effect of RB1 alterations on the

immune microenvironment in SCLC was verified when adding high

expression of YAP1 and enriched interferon gamma (IFN-g), T-cell
response, and human leukocyte antigen (HLA)-related genes (59).

In a retrospective cohort of 42 patients receiving ICIs or ICI

combination therapy, patients with RB1 WT had significantly

longer mOS (5 vs. 23.1 months, P = 0.04) and enriched immune-

related genes and immune rejection phenotypes, compared to

patients with RB1 mutation. In CheckMate 032, patients (n =

460) with RB1 WT after Nivolumab treatment had significantly

improved prognosis, compared with those with RB1 mutation (HR,
Frontiers in Immunology 07
1.41; P = 0.041) and longer OS in patients with low RB1 loss of

function feature scores (43), suggesting RB1 mutation status as a

potential biomarker for SCLC immunotherapy.

2.2.1.2 MYC

MYC is involved in the recruitment of elements in TME,

including making the stroma more suitable for tumor cell

progression, facilitating immune evasion and promoting tumor to

a more aggressive and metastatic phenotype (60–63). In SCLC,

MYC activated Notch to dedifferentiate neuroendocrine (NE)

tumor cells and promoted the temporal evolution of SCLC from

ASCL1+ state to NEUROD1+ state to YAP1+ state (64). Considering
TABLE 3 Frequently altered genes in SCLC.

Gene Main function Alteration Frequency in SCLC (%)

TP53 Tumor suppressor; stress response; transcription regulation
Inactivation

mutation; deletion
95

RB1 Tumor suppressor; cell cycle regulation; transcription repression
Inactivation

mutation; deletion
80

MYC
paralogs

Cell proliferation; metabolism Amplification; overexpression 6–25

KMT2D Tumor suppressor; histone modification; chromatin remodeling
Inactivation

mutation; deletion
13

PTEN Tumor suppressor; PTEN-mTOR signaling pathway
Inactivating

mutation; deletion
7

PIK3CA Oncogene; PTEN-mTOR signaling pathway; PI3K signaling pathway Activating mutation 7

NOTCH1 Tumor suppressor; cell-cell signaling Inactivating mutation 6

RICTOR PTEN-mTOR signaling pathway Amplification 5.6

CREBBP
Tumor suppressor; acetyltransferase; chromatin remodeling;

transcription regulation
Inactivating

mutation; deletion
5

APC Tumor suppressor; WNT signaling pathway
Inactivating

mutation; deletion
4

EGFR Oncogene; RAS signaling pathway Activating mutation 4

FAT1 Tumor suppressor; cell-cell signaling
Inactivating

mutation; deletion
4

NF1 Tumor suppressor; RAS signaling pathway
Inactivating

mutation; deletion
4

ARID1A Tumor suppressor; chromatin remodeling; transcription regulation
Inactivating

mutation; deletion
3

KEAP1 Tumor suppressor; tumorigenesis
Inactivating

mutation; deletion
3

KRAS Oncogene; RAS signaling pathway Activating mutation 3

NOTCH3 Tumor suppressor; cell-cell signaling
Inactivating

mutation; deletion
3

PTPRD Tumor suppressor; chromatin remodeling
Inactivating

mutation; deletion
3

EP300 Tumor suppressor; chromatin remodeling
Inactivating

mutation; deletion
2

STK11 Tumor suppressor; immunotherapy; genetic correlation
Inactivating

mutation; deletion
1.7
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TABLE 4 Tissue-derived biomarkers in exploration for immunotherapy in SCLC.

Biomarker Detection
method

Treatment N Cutoff ORR Median OS Median
PFS

Reference

RB1 WES ICI or
ICI-combo

42 NA NA RB1-mu vs. RB1-wt: 5 vs. 23.1
months, P = 0.04

NA (43)

RB1 WES Nivolumab 460 NA NA RB1-wt patients had longer OS
(HR, 1.41; P = 0.041)

NA (43)

MYC RNA
targeted
sequencing

Chemo alone or
ICI-combo

135 Median
value for
MYC
expression

NA NA MYC-low vs.
MYC high
ICI-combo:
5.3 vs. 4.0
months, P =
0.028; HR,
2.18
Chemo: P =
0.77; HR, 1.09

(44)

SLFN11 IHC Atezoluma±
Talazoparib as
maintenance
therapy

106 H-score ≥ 1 NA NA 4.2 vs. 2.8
months, P
= 0.056

(45)

MHC-I IHC ICI 31 Median H-
score + 2.5
interquartile
ranges

NA MHC-I-high had longer OS, P
< 0.01)

NA (46)

MHC-II FoundationOne
CDx

Durvalumab +
Tremelimumab
+ EP

142 NA NA 14.9 months (95% CI, 10.4–21.2)
vs. 10.5 months (95% CI, 7.6–
12.9); HR, 0.59

NA (47)

APM-
related genes

RNA
sequencing

Nivolumab 286 NA NA High APM expression was
significantly associated with the
OS benefit (P = 0.000032)

NA (48)

Neoantigen
load

WES ICI-combo 135 Median NA High neoantigen load had higher
12-month PFS rate, 16.1% vs. 0%

NA (44)

LSD1 RNA
sequencing

Nivolumab
combination or
Nivolumab
alone

286 NA NA High expression of LSD1 was
significantly associated with worse
OS (P = 0.02)

NA (48)

CD8+ TIL IHC 286 ≥1% NA Patients with CD8-positive (≥1%)
tumors showed improved OS
(HR, 0.51) in the Nivolumab
group
Nivolumab + Ipilimumab group
(HR, 0.7; 95% CI)

NA (48)

MDSCs RNA-
sequencing

Pembrolizumab/
placebo
+ chemotherapy

158 <Median
value
corrected for
GEP genes

NA Monocyte MDSCs: 15.5 vs. 8.3
months
Granulocyte MDSCs: 16.3 vs.
8.3 months

NA (33)

GBP5 IHC ICI 35 NA GBP5-high
had higher
proportion of
responders (P
< 0.05)

NA NA (49)

CCL5 RNA
sequencing data

Immunotherapy 159 4.77 NA High CCL5 expression indicated
longer OS in patients with SCLC
(P < 0.0001) accepting
immunotherapy (P = 0.032)

NA (50)
F
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WES, whole-exome sequencing; ORR, objective response rate; PFS, progression-free survival; OS, overall survival; IHC, immunohistochemistry; ICI, immune checkpoint inhibitor; ICI-combo,
ICI + chemotherapy; chemo, chemotherapy; HR, hazard ratio; tumor-infiltrating lymphocyte (TIL); GEP, gene expression profile; APM, antigen processing and presenting machinery; MDSC,
myeloid-derived suppressor cells.
NA, not applicable.
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the immune infiltration profile and the potential benefit

of YAP1+ subtype, MYC may be a predictive biomarker for

SCLC immunotherapy.

Kazuhiko et al. (44) retrospectively studied the efficacy of

chemotherapy alone or ICI-combo in 135 patients with ES-SCLC,

who were stratified into “inflamed tumor” and “non-inflamed

tumor” groups based on both PD-L1 (≥1%), positive score (CPS),

and CD8+ tumor-infiltrating lymphocyte (TIL) density (≥85/mm2)

and found that MYC (P = 0.02) and SOX11 (P < 0.001) were the two

most upregulated genes in “non-inflamed tumors” compared to

those in “inflamed tumors,” suggesting that MYC has weak

immunoreactivity in SCLC. Furthermore, in the ICI-combo

cohort (n = 39), the patients with low MYC expression had

longer mPFS (5.3 vs. 4.0 months; P = 0.028; HR, 2.18) and higher

12-month PFS rates (23.5% vs. 4.6%) than that with high MYC

expression, whereas no difference was found in chemotherapy

cohort (n = 50; P = 0.77; HR, 1.09), indicating MYC expression

as a predictive biomarker. Mechanistically, the study revealed that

oncogenic activation of MYC impaired IFN-g–mediated
Frontiers in Immunology 09
transcriptional activation by downregulating JAK2 (65),

suggesting the potential of MYC as a predictive biomarker of

SCLC immunotherapy, which needed to be supported by more

studies on the mechanism of MYC regulating SCLC immunity.

2.2.1.3 SLFN11

SLFN11 is a DNA/RNA helicase and can be recruited to DNA

damage sites and regulates replication stress (66). Pietanza et al.

reported that SLFN11 is predictive for both improved PFS and OS

for Veliparib in SCLC; patients with SLFN11-positive tumors

treated with TMZ/Veliparib had significantly prolonged PFS (5.7

vs. 3.6 months, P = 0.009) and OS (12.2 vs. 7.5 months, P = 0.014)

(67, 68); thus, it is considered as a biomarker for poly ADP-ribose

polymerase (PARP) inhibitor (PARPi). In 2023, SWOG S1929

reported at ASCO that 79% of SCLC tumor tissues were SLFN11-

positive, and, in patients with SFN11-positive (H-score ≥ 1) ES-

SCLC, addition of PARPi Talazoparib to Atezolumab as

maintenance therapy following first-line chemotherapy +

Atezolumab improved mPFS (4.2 vs. 2.8 months, P = 0.056) (45),
TABLE 5 Biomarkers based on multi-omics profiling for SCLC immunotherapy.

Biomarker Detection
method

Treatment N Cutoff ORR Median OS Median
PFS

Reference

SCLC-I RNA
sequencing

Atezolizumab/
placebo + EP

276 NA NA Achieved the longest
median OS after
Atezolizumab + EP
treatment (18.2 vs.
10.9 vs. 10.6 vs.
9.6 months)

NA (51)

T-eff–high/
TAM-low
NE tumors

RNA
sequencing

Atezolizumab
plus EC

271 Median
cohort-
wide
expression

NA HR, 0.26 (95% CI,
0.12–0.57)

NA (52)

SCLC-Y/I RNA
sequencing

Durvalumab +
EP; EP

104 Higher
expression
level than
other
Transcription
factor

NA 10.4 vs. 0.8 vs. 2.4
months vs. no
benefit
6.3 vs. 1.2 vs. 4.1
months vs.
no benefit

NA (53)

POU2F3
expression

IHC ICI treatment 28 H-score > 90 Increased ORR (AUC
= 0.813)

Prolonged OS (P
= 0.022)

NA (54)

ZFHX3
mutation

WES PD-1/PD-L1
blockade
combined
with
chemotherapy

12 NA All three patients with
ZFHX3 mutation (100%)
belonged to MPR, whereas
only two patients (22%) had
MPR in wild-type patients
(P = 0.045)

NA NA (55)

GEP
expression

RNA
sequencing

Pembrolizumab
combined
chemotherapy

159 >1st
tertile values

NA Combination: P =
0.003
Chemo: P = 0.0002

Combination:
P = 0.002
Chemo: P
= 0.001

(33)

Immune
hot/cold

Targeted
transcriptomic
sequencing

Anti–PD-
1 treatment

14 Expression of
53 DEGs

Patients with “immune hot”
features tended to benefit
more from ICI than the
other patients with
“immune cold” SCLC

NA NA (56)
ORR, objective response rate; PFS, progression-free survival; OS, overall survival; HR, hazard ratio; EP, Etoposide plus Cisplatin; EC, Etoposide plus Carboplatin; ICI, immune checkpoint
inhibitor; IHC, immunohistochemistry; T-eff, effector T cell; TAM, tumor-associated macrophage; NE, neuroendocrine; WES, whole-exome sequencing; PD-1, programmed cell death protein 1;
PD-L1, programmed cell death-ligand 1; MPR, major pathologic response; DEG, differentially expressed genes. NA, not applicable.
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demonstrating that SLFN11 might be a predictive biomarker for the

efficacy of ICIs combined with PARPi treatment.

2.2.1.4 Major histocompatibility complex molecules

Major histocompatibility complex (MHC) molecules present

antigen fragments to the immune system and also are expressed on

tumor cells (69). MHC class I (MHC-I) is an important component

of adaptive immune system, indiscriminately presenting tumor

antigens to cytotoxic T lymphocytes recognition (69, 70).

However, in SCLC, low expression of MHC-I (71, 72) was

correlated with less immune infiltration (56), suggesting the

relationship between MHC-I and immune characteristics.

Moreover, multiplexed immunofluorescence detection of SCLC

samples revealed that more CD3+ T cells and CD45+/PD-L1+

immune cells in the intra-tumoral region in high–MHC-I

expression SCLC tissue and low-NE differentiation, compared to

that with low MHC-I expression. Patients with high MHC-I

expression (n = 7) had long-term response to ICI treatment and

longer OS than patients with low expression level (n = 24, P <

0.01) (46).

MHC-II molecules are mainly presented on CD4+ T cell (73).

CASPIAN study found that the incidence of MHC-II allele HLA-

DQB1*03:01 was 37%, and the mOS of allele-positive patients was

significantly longer than that of negative patients in Durvalumab

(D) + Tremelimumab (T) + EP treatment cohort [14.9 months

(95% CI, 10.4–21.2) vs. 10.5 months (95% CI, 7.6–12.9); HR, 0.59],

which was not found in D + EP (HR, 0.93) and EP cohorts (HR,

0.94) (47). Consistently, highly heterozygous MHC sites were

correlated with significantly improved OS after ICI treatment (P

= 0.003; HR, 2.03) (74), demonstrating the potential of MHC

expression as a predictive biomarker for ICI treatment in SCLC.

Antigen presentation was known to be inhibited in most

patients with SCLC, which may account for the low ICI response

rate of SCLC with high TMB (71, 75). Checkmate-032

demonstrated that the expression of antigen-processing and

-presenting machinery (APM)–related gene, including HLA-A,

HLA-B, HLA-C, B2M, TAP1, and TAP2, was evaluated to predict

benefit of ICI. High APM expression was significantly associated

with the OS benefit of Nivolumab treatment (P = 0.000032) but not

associated with that of Nivolumab + Ipilimumab treatment (48, 76).

2.2.1.5 Neoantigens

Neoantigens are novel antigens generated by tumor cells due to

various tumor-specific alterations, including genomic mutations,

dysregulated RNA splicing, disrupted post-translational

modifications, and integrated viral open reading frames (77). As

non-self antigens, neoantigens are likely to trigger responses of T

and B cells and ultimately identified by calculating the frameshift

mutation, splicing variants, gene fusion, gene expression, and other

variants of MHC through next-generation sequencing (NGS)

combined with proteomic sequencing. Above all, frameshift

mutations by insertion or deletion (fsindels) were considered to

generate more immunogenic tumor-specific neoantigens, resulting

in a better response to ICIs (78), in several cancers (79). Recently,

Shen et al. (80) analyzed the pre-treatment blood samples by
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microarrays of frameshift peptides assay from 57 patients with

NSCLC and nine patients with SCLC receiving ICIs and ICI-combo

and found high predictive accuracy of 97.8% for disease progression

(80). In a retrospective study based on the whole-exome sequencing

(WES), Kanemura et al. found that, among 135 patients with ES-

SCLC, patients with high neoantigen load (n = 26) had higher 12-

month PFS rate than those with low neoantigen load (n = 18)

(16.1% vs. 0%) in the ICI-combo cohort, and there was a correlation

between high frameshift neoantigen load with antigen presentation

and co-stimulatory signaling (44). Therefore, neoantigens with high

immunogenicity and tumor specificity may serve as predictive

biomarkers of ICI response in SCLC.

2.2.1.6 Epigenetic characteristic

SCLC tissues or cell lines exhibited a diversity of epigenetic

abnormalities (81). Histone demethylase LSD1, a key determinant

of MHC-I expression and antigen presentation in SCLC, could

remove monomethylation and dimethylation of H3K4 and H3K9 to

promote gene expression (82, 83). Enhancer of zeste homolog

(EZH2), an enzymatic subunit of Polycomb Repressive Complex

2, could catalyze trimethylation of H3K27 to silence genes, whereas

the inhibition of EZH2 induced MHC-I expression and immune

responses in preclinical models of advanced NE tumors, including

SCLC (46, 84, 85). In CheckMate 032, for both Nivolumab and

combination cohort, a high expression of LSD1 was significantly

associated with worse OS (P = 0.02), and same trend was found for

EZH2 (P = 0.27) (48), opening up the understanding of epigenetic

modification predicting the efficacy of immunotherapy in SCLC.

2.2.1.7 Immune cell infiltration

SCLC was characterized as an immune cold tumor, with

infiltrating immune cells comprising only one-fifth of those in

NSCLC (86), particularly cytotoxic T cells, leading to lower

response rate to ICI therapy in SCLC compared to that in

NSCLC (87).

Survival of patients with SCLC is correlated with higher

expression levels of classical surface biomarkers including CD3,

CD20, and CD45 on TIL (88) but negatively related with Foxp3+

cells (89). CTLA-4 and PD-1/PD-L1–based immunotherapy

primarily exerted anti-tumor effects by modulating the activation

and proliferation of T cells (90), especially regulatory T cells (Tregs).

The lack of reporting of the proportion of infiltrating Tregs in SCLC

tumor tissues led to the inability to determine whether Tregs

disrupted the efficacy of ICI therapy in SCLC. However, the

proportion of Tregs in the peripheral blood of patients with SCLC

was lower than that of patients with NSCLC (9.0 ± 1.2 vs. 15.0 ± 3.9),

and the combination of chemoradiotherapy and biological therapy

significantly reduced the proportion of Tregs in peripheral blood (9.0

± 1.2 vs. 7.6 ± 1.1) (91), confirming the relationship between Tregs

and immunotherapy in SCLC, which is worthy of further exploration.

Moreover, a subtype of SCLC with non-NE features had heightened

inflammatory gene signatures and immune cell infiltration,

potentially suggesting better response to ICIs (56).

CheckMate 032 revealed that patients with SCLC with CD8-

positive (≥1%) tumors showed improved OS (HR, 0.51) in the
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Nivolumab group, and a similar trend was observed in the

Nivolumab + Ipilimumab group (HR, 0.7; 95% CI) (48). Myeloid-

derived suppressor cells (MDSCs) are generally recognized as

suppressor cells involved in self-tolerance and immune

homeostasis, leading to an immunosuppressive microenvironment

and tumor progression. KEYNOTE-604 explored that patients with

low infiltration level of monocyte and granulocyte MDSCs who

received Pembrolizumab + chemotherapy exhibited longer OS than

patients with high infiltration levels (15.5 vs. 8.3 months and 16.3

vs. 8.3 months, respectively) (33). This discovery presents a novel

perspective, and future studies might focus on exploring the

infiltration patterns of diverse immune cells and non-immune cell

components of SCLC.

2.2.1.8 GBP5

Guanylate-binding protein-5 (GBP5), the IFN-inducible

guanine nucleotide triphosphate hydrolysis (GTPases) (92),

played a key role in innate immune system inflammation and

macrophage activation (93). Patients with GBP5-high SCLC had

highly expressed cytotoxicity, chemokines, antigen-presenting, and

TNF family–related genes and higher proportion of responders to

immunotherapy than those in the GBP5-low group (P < 0.05),

indicating the potential of CBP5 to predict ICI efficacy for patients

with SCLC (49).

2.2.1.9 CCL5

CC chemokine ligand 5 (CCL5) and CC chemokine receptor 5

(CCR5) were not only the leading players in tumor progression (94,

95) but also exerted anti-tumor immunity by recruiting T cells and

dendritic cells, enhancing immunotherapy responses of multiple

tumors (94). In SCLC mouse models, increased CCL5 enhanced

response to ICI (96). Moreover, high CCL5 expression indicated

longer OS in patients with SCLC (P < 0.0001), accepting

immunotherapy (P = 0.032) (50). Up to now, studies on

inflammatory factors as biomarkers of immunotherapy efficacy or

stratified therapy are still limited and require further investigation

in SCLC.

2.2.2 Biomarkers based on multi-omics profiling
2.2.2.1 Transcriptional subtypes

In SCLC, the dysregulation of prevalent transcriptional factors,

as revealed in genomics studies, underscores the pivotal role of

transcriptional regulation (5, 97, 98). Rudin et al. initially classified

SCLC into four transcriptional subtypes based on the expression of

key transcription factors, achaete-scute homolog 1 (ASCL1),

neurogenic differentiation factor 1 (NEUROD1), POU class 2

homeobox 3 (POU2F3), and YAP1, using RNA-seq data (98).

Then, Gay et al. utilized non-negative matrix factorization to

cluster RNA-seq data from SCLC tissues and identified a distinct

SCLC-I subtype with lower expression of ASCL1, NEUROD1, and

POU2F3, which possessed inflammatory/interstitial properties (51).

Both SCLC-Y and -I subtypes exhibit a non-NE phenotype, which

has been defined as “immune oasis” for the greater immune cell

infiltration and checkpoint molecule expression (99). Owonikoko

et al. (59) distinguished the inflammatory characteristics of SCLC-Y

subtype, including high expression of IFN-g response genes, HLA
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genes, T-cell receptor genes, and increased T-cell inflamed gene

expression profile (GEP) score compared to other subtypes. Patients

with SCLC-Y subtype displayed trends toward prolonged mOS

compared to patients with other three subtypes (20.1 vs. 14 vs. 16.7

vs. 8.1 months). Moreover, the higher rate of YAP1-positive

expression detected by immunohistochemistry (IHC) in ES-SCLC

than that in LS-SCLC (30.6% vs. 8.5%, P = 0.0058) in the validation

cohort might suggest a correlation between YAP1 expression and

improved prognosis.

On the basis of the discovery of transcriptional subtypes of

SCLC, the therapeutic vulnerability of different subtypes has also

been intensively studied. SCLC-A subtype was found to highly

express MYCL and DLL3 (100). Although the DLL3-targeting

antibody-drug conjugate (ADC) drug rovalpituzumab tesirine

(Rova-T) has not been shown to be superior to topotecan in OS

in patients with relapsed and/or recurrent SCLC (101), the DLL3-

targeting bispecific T-cell engager Tarlatamab effectively promoted

regression of SCLC tumors and liver metastases in mouse models

(102). In addition, a phase I trial showed that Tarlatamab had an

ORR of 23.4% and a median duration of response (mDOR) of 12.3

months in patients with relapsed and/or recurrent SCLC who had

received a median of two prior therapies, making it a promising

option with an acceptable safety profile (20). In DeLLphi-301 study,

ORR was 40% or 32%, and mPFS was 4.9 or 3.9 months for patients

with SCLC who had received a median of two prior therapies in the

10-mg or 100-mg Tarlatamab groups, respectively (103). On the

basis of these promising results, FDA granted accelerated approval

of Tarlatamab (10 mg) for patients with ES-SCLC with disease

progression during or after platinum-based chemotherapy in May

2024. Other DLL3-targeting bispecific T-cell engagers, such as BI-

764532 and HPN328, that enhanced the activity of CD4+ and CD8+

T cells against DLL3-expressing SCLC in mice (104, 105), are being

studied. BCL-2 is a direct transcriptional target of ASCL1 and

overexpressed in SCLC-A. In preclinical models of SCLC, combined

inhibition of BCL-2 or BCL-XL and MCL1 showed synergistic

activity (106, 107), but BCL-2 inhibition failed to improve the

clinical efficacy of standard chemotherapy (108, 109).

Studies showed that SCLC-N subtype is associated with MYC

overexpression, and patients with SCLC-N may benefit from

therapies such as CHK1 inhibitors (110), pegylated arginine

deiminase (111) and Aurora A kinase inhibitors (112). A subset

of patients with MYC expression showed significantly improved

PFS with Aurora A kinase inhibitor, alisertib plus paclitaxel,

revealing that MYC expression may be potential predictive

biomarkers of alisertib efficacy (112). Currently, a trial of MRT-

2359 in patients with SCLC harboring MYCN or MYCL alterations

(NCT05546268) is ongoing (113). MRT-2359 is an effective oral G1

to S phase transition 1 (GSPT1) degrader that indirectly targets

MYC with preferential antiproliferative activity against MYC-

driven lung cancer.

SCLC cells overexpressing POU2F3 rely on the lineage

transcription factors SOX9, ASCL2, and insulin-like growth factor

1 receptor (IGF-1R), suggesting potential vulnerability to tyrosine

kinase inhibitors (4). Patients with SCLC-P subtype tumors showed

the worst OS and drug response data in subgroup analysis of

IMpower133, implying that SCLC-P cells were sensitive to
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PARPis (51). While neither PARPis (67, 114) nor IGF-1R inhibitors

(115, 116) have shown clinical benefit in patients with ES-SCLC, it

may be worthwhile to test these drugs in patients with SCLC-P.

YAP1 is a key molecule in Hippo signaling pathway, and SCLC-

Y cells were found to be resistant to Irinotecan and BCL-2

inhibitors. A preclinical study showed that SCLC-Y subtype cells

were sensitive to mTOR and PLK inhibitors (117). Several

preclinical and clinical studies identified that SCLC-Y was rich in

genetic signatures associated with cytotoxic T cells, NK cells, and

interferon signaling, suggesting a potential benefit for ICIs (59, 118).

Nevertheless, molecular subtypes have limitations in predicting

the clinical effectiveness of ICI monotherapy for SCLC. In

CheckMate 032, Rudin et al. reported that no statistically

significant differences in PFS and OS were observed among 286

patients with advanced or metastatic SCLC divided into SCLC-A,

SCLC-N, SCLC-P, and SCLC-Y subtypes based on baseline tumor

tissues, whether in the Nivolumab or Nivolumab + Ipilimumab

treatment group (48). Conversely, in the ICI-combo, SCLC-Y or -I

subtype displayed efficacy-predicting potential. In IMpower133,

Gay et al. (51) found that patients with SCLC-I subtype achieved

the longest mOS after Atezolizumab + EP treatment (18.2 vs. 10.9

vs. 10.6 vs. 9.6 months) and obtain the best survival benefit from

Atezolizumab + EP treatment compared with placebo + EP

treatment (7.8 vs. 0.3 vs. 1.5 vs. 3.6 months). However, no

significant difference in survival time among the four subtypes

was observed in the placebo + EP arm, accentuating SCLC-I as an

efficacy-predictive biomarker for ICI-combo, rather than a

prognostic marker. Interestingly, patients with SCLC-P subtype

had the shortest mOS in both Atezolizumab + EP arm and placebo

+ EP arm, indicating an association between SCLC-P subtype and

poor prognosis. IMpower133 reported recently that transcriptomic

analyses and non-negative matrix factorization of 271 pre-

treatment patient tumor samples identified four subsets with

general concordance to previously reported SCLC subtypes

(SCLC-A, -N, -P, and -I). In particular, the authors uncovered

two subsets with NE versus non-NE phenotypes and different

clinical outcomes. Atezolizumab combined with Etoposide plus

Carboplatin (EC)–treated tumors showed similar OS compared to

placebo plus EC [HR, 0.85 (95% CI, 0.53–1.37)] in the effector T-cell

(T-eff)–high/tumor-associated macrophage (TAM)–high non-NE

tumors but markedly longer OS than placebo plus EC [HR, 0.26

(95% CI, 0.12–0.57)] in the T-eff–high/TAM-low NE tumors (52).

Consistently, CASPIAN identified that both SCLC-Y and SCLC-I

subtypes achieved the longest mOS benefit from Durvalumab + EP

treatment than A, N, and P subtypes (10.4 vs. 0.8 vs. 2.4 months vs.

no benefit, 6.3 vs. 1.2 vs. 4.1 months vs. no benefit, respectively)

(119). Furthermore, patients with SCLC-P subtype consistently had

the lowest mOS in the Durvalumab + EP treatment arm and the

placebo + EP treatment arm. These results further validated the

potential effectiveness of SCLC-I or SCLC-Y in predicting the

efficacy of ICI-combo and SCLC-P in predicting poor prognosis

in SCLC.

To overcome the difficulty of tumor tissue acquisition, long

experimental period and high costs, studies explored IHC for SCLC

subtyping and yielded inconsistent results. Baine et al. (53) analyzed

174 SCLC samples using IHC and found that ASCL1 was
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dominantly expressed in 69% samples, NEUROD1 in 17%, and

POU2F3 in 7%, whereas no sample exhibited positive expression of

YAP1 (H-score > 10), which was conflict to RNA-seq analysis. In a

retrospective study in 28 patients with relapsed SCLC receiving ICI

treatment, high POU2F3 expression (H-score > 90) was related to

an increased ORR (AUC = 0.813) and prolonged OS (P = 0.022)

(54), differing from findings of IMpower133 and CASPIAN, in

which POU2F3 was a potential biomarker of poor prognosis after

ICI-combo. This inconsistency may be attributed to the difference

of therapeutic regimen. Additionally, inconsistency might lie in

predicting efficacy of ICI-combo. Shirasawa et al. (120)

retrospectively identified no significant difference in mPFS among

pSCLC-A (n = 20), pSCLC-N (n = 8), and pSCLC-P (n = 5) using

IHC in 34 patients with ES-SCLC with Atezolizumab +

chemotherapy treatment. Furthermore, four of the six cases

identified as SCLC-I based on RNA-seq were classified as pSCLC-

A by IHC, and the other two cases as pSCLC-N and pSCLC-P,

respectively, underscoring the discrepancies between IHC

subtyping and RNA-seq subtyping.

Whether transcriptional subtype is a potential biomarker for

immunotherapy in SCLC remains elusive. Firstly, methodology

needs to be settled down because IHC data are conflicting with

those via RNA-seq. Secondly, high heterogeneity of SCLC limits the

predictive role of subtypes such as multiple subtypes coexisting

within the same case (56, 121). Notably, previous results steamed

from post-hoc analyses and further prospective clinical trials are

urgently needed.

2.2.2.2 Multi-omics integration

A major obstacle in SCLC is the lack of tumor samples that can

be used for detailed molecular characterization, especially the multi-

omics analysis of genomic, transcriptome, and proteome

integration. Also, SCLC tumors are highly heterogeneous, and

multi-omics at spatial resolution or single-cell analysis of the

whole tumor tissues overcome the heterogeneity of tumors

and tumor microenvironment. Recently, Liu et al. (55) performed

an integrated genomic, transcriptomic, proteomic, and

phosphoproteomic analysis of 112 treatment-naïve primary SCLC

tumors and paired normal adjacent tissues from surgical resection.

Unsupervised clustering divided SCLC tumors into four subtypes

with biological differences and various therapeutic vulnerabilities.

Protein genomics analysis enabled the immune landscape of SCLC

to be characterized and revealed three immune clusters, including

hot-tumor–enriched, cold-tumor–enriched, and normal adjacent

tissue (NAT)–enriched subtypes. A total of 84.8% (84/99) of tumors

belonged to immune-cold subtype tumor and were associated with

worse prognosis (P = 0.0057). The frequency of ZFHX3 mutation

was 19%, which was enriched in immune hot tumors and associated

with immunogenicity. Patients with ZFHX3 mutation appeared to

have better survival than patients with ZFHX3-WT (P = 0.073).

ZFHX3 mutation was linked with immune activation behavior and

the benefit for immunotherapy. Of the 12 patients with SCLC from

two ongoing phase II trials (NCT04539977 and NCT04542369)

who received neoadjuvant PD-1/PD-L1 blockade combined with

chemotherapy, five had major pathologic response (MPR) and

seven had non-MPR. The results of WES on the pre-treatment
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tissues showed that all three patients with ZFHX3 mutation (100%)

belonged to MPR, whereas only two patients (22%) had MPR in

WT patients (P = 0.045). The number of residual tumor cells in the

ZFHX3 mutation group was significantly lower than that in the

ZFHX3-WT group (P < 0.05). ZFHX3 mutation was associated with

higher immune response and might be a potential predictive

biomarker in patients with SCLC receiving immunotherapy.

Similarly, the exploratory analysis of NSCLC treated with

immunotherapy cohorts also demonstrated that ZFHX3

mutations are an independent predictive biomarker (122).

At present, the multi-omics study of SCLC is relatively limited,

and only the integrated analysis of large samples by surgical

resection has been reported. More exploration of advanced

tumors is needed for SCLC, most of which are extensive stage at

the time of diagnosis (123). Likewise, the lack of clinical treatment

data limits the study of the correlation between multi-omics

subtyping and treatment sensitivity.

2.2.2.3 Inflammatory features of tumor-associated
immune cells

T-cell inflamed GEP consisted of 18 inflammation-related

genes, which involved in key downstream signaling molecules

activated by IFN-g (signal transducer and activator of

transcription 1 (STAT1) and chemokine-like receptor 1

(CMKLR1)), chemokines (CXCR6, CCL5, and CXCL9),

costimulatory receptors (CD27), HLA molecules induced by IFN-

g (HLA.DQA1 and HLA.DRB1), antigen-presenting machinery

(PSMB10), checkpoint inhibitors upregulated by T-cell activation

and IFN-g signaling (PD-L1, PD-L2, IDO1, TIGIT, CD276, and

LAG3), NK cell biology (HLA-E and NKG7), and CD8+ T cells

(CD8A), providing a more comprehensive gene-level

characterization of TME (124) and predicting the efficacy of

immunotherapy in 22 cancer types (125). KEYNOTE-028

confirmed higher GEP score in patients including 24 patients

with SCLC achieving prolonged PFS; regression meta-analysis on

14 cohorts showed that the GEP score was significantly associated

with ORR (P = 0.012, n = 203) and PFS (P = 0.017, n = 203) (40).

KEYNOTE-604 showed that patients with high GEP expression

(>1st tertile values) receiving Pembrolizumab combined

chemotherapy had longer mDOR than those receiving

chemotherapy alone (5.55 vs. 4.11 months). Nevertheless, the

mOS and mPFS of patients with high GEP expression were

significantly longer than those with low GEP expression in both

combination (P = 0.003 and P = 0.002, respectively) and

chemotherapy group (P = 0.0002 and P = 0.001, respectively)

(33). However, GEP as an efficacy-predicting marker for ICI

alone or ICI-combo remains further verification in patients

with SCLC.

2.2.2.4 Single-cell transcriptional profiling

Single-cell omics technology can draw a comprehensive picture

of tumor cells, immune cells, and stromal cells; elucidate the

dynamic plasticity of a single cell; reveal the action network of

cells with different phenotypes coexisting; and finally achieve the

breakdown of tumor cells (126). It was found that chemotherapy
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promoted the remodeling of the extracellular matrix by fibroblasts

and regulated the anti-tumor immune response of interferon-

mediated B cells and T cells in the tissues of five patients with

SCLC with chemotherapy (127), suggesting that the characteristics

of the immune microenvironment may be used as a biomarker for

predicting treatment efficacy. Analysis of scRNA-seq data of seven

patients with treatment-naïve SCLC and 10 patients with SCLC

treated with chemotherapy and ICI (Ipilimumab or Atezolizumab)

revealed that the treated SCLC cells contained 14.2% non-NE cells,

whereas the treatment-naïve cells contained 1.1% non-NE cells.

Compared with NE cells expressing ASCL1 and TFF3,

heterogeneous non-NE cells showed the overexpression of

IFITM3, B2M, ANXA4, VIM, CD74, S100A11, and YAP1 and the

activation of interferon signaling, cell cycle, and antigen processing

(128), providing clues that scRNA-seq indicated the benefit

of immunotherapy.

The high-precision single-cell transcriptomic analysis of ~5,000

individual cells from primary tumors (PTs) and matched NATs

from 11 patients with SCLC revealed that the differentially

expressed genes (DEGs) of immune expression patterns not only

showed more pronounced intra-tumor heterogeneity (ITH) but also

were associated with different immune checkpoint blockade

responses. These DEGs containing 53 known genes that reflect

immune signature, including HLA-related genes, antigen-

presentation–related genes, DNA repair genes, and chemokines,

which can represent the immune status of tumors. Among which,

HLA genes, including HLA-A, HLA-B, HLA-C, HLA-DMA, and

HLA-DRB1, have vital functions in the immune system and

immune response, such as antigen presentation (129), immune

surveillance (130), and immune regulation (129). The targeted gene

expression analysis of the above DEGs in 14 tumors of patients with

SCLC who received anti–PD-1 treatment improved that four

patients with “immune hot” features tended to benefit more from

ICI than the other patients (n = 10) with “immune cold” SCLC (56).

A few existing articles on single-cell sequencing of patients with

SCLC suggest that immune-related differences from single-cell

resolution may be used to help select patients who might benefit

from these promising strategies, which is worthy of validation in

large cohorts.

2.2.3 Tumor ITH
ITH is defined as an uneven distribution, spatially or

temporally, of genomic diversification in an individual tumor,

fostered by accumulated genetic mutations (131), which was

associated with the poor prognosis in solid tumors (132, 133). It

has recently been reported that ITH, manifested by the distribution

of clonal versus sub-clonal mutations and neoantigens (134), may

influence immune surveillance (135–137).

In SCLC, Wang et al. (56) performed high-precision scRNA-seq

and low-pass WGS of PTs and matched normal adjacent tissues

from 11 patients with SCLC and revealed that patients with ITH

had shorter disease-free survival (log-rank P = 0.0489) and a higher

risk of recurrence (log-rank P = 0.0371). The IHC of tissue

microarray also demonstrated that heterogeneous subtypes were

associated with poor OS (log-rank P = 0.0455), suggesting that ITH
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may also be an immunotherapy biomarker in SCLC worthy of

investigation, but its association with immunotherapy needs to be

determined first.
3 Liquid biomarkers

Tissue limitation has been one of the main reasons limiting

translational studies in SCLC. SCLC is often associated with high

level of circulating tumor DNA (ctDNA) and CTC. Therefore,

liquid biopsy strategies have been extensively researched in this

setting (Table 6).
3.1 CTCs

Another study indicated that, in a cohort of 82 patients with

breast cancer receiving ICI plus chemotherapy, continuous

sampling of CTCs was conducted, and it was found that the

patients with ≥2 CTCs per 7.5 mL at baseline were positively

correlated with the tumor inflammation signature, and the CTC

status was most significantly correlated with the treatment outcome

4 weeks after treatment, suggesting a potential of using CTCs as an

accessible biomarker source in patients with breast cancer treated

with immunotherapy (146). Patients with SCLC with a higher

baseline aneuploid CTC score (ACS) (ACS > 1.115) had longer

mPFS (7.7 months, P = 0.007) and mOS (16.3 months, P = 0.033) in

immunotherapy combined with chemotherapy than those with

chemotherapy alone (mPFS, 4.9 months; mOS, 13.6 months),

demonstrating the utility of CTC detection in SCLC risk

stratification and treatment response monitoring (138). In the

future, larger-scale prospective randomized or controlled trials

need to be designed and elucidate the role of liquid samples from

patients with SCLC in the benefit of immunotherapy efficacy.
3.2 Ratios of cells in the blood

The lung immune prognostic index (LIPI) consists of derived

neutrophil-to-lymphocyte ratio (dNLR) and lactate dehydrogenase

(LDH) (147). Li et al. (139) divided LIPI in patients with SCLC into

two groups (good and moderate/poor), those with dNLR < 4.0 and

LDH < 283 U/L were evaluated as good LIPI group, those with

dNLR < 4.0 and LDH ≥ 283 U/L or dNLR ≥ 4.0 and LDH < 283 U/L

were evaluated as moderate LIPI group, and those with dNLR ≥ 4.0

and LDH ≥ 283 U/L were evaluated as poor LIPI group. The results

showed that the mPFS and mOS of patients in the good LIPI group

were better than those in the medium/poor LIPI group (mPFS: 8.4

vs. 4.7 months, P = 0.02; mOS: 23.8 vs. 13.3 months, P = 0.0006).

Multivariate Cox regression analysis showed that pretreatment LIPI

was an independent prognostic indicator for OS in patients with ES-

SCLC treated with first-line PD-1/PD-L1 inhibitors combined

with chemotherapy.

Multivariate Cox regression analysis (140) revealed that

neutrophil-to-lymphocyte ratio (NLR) was an independent

predictor of PFS in patients [HR = 0.45, 95% CI (0.22, 0.92), P =
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0.028]; lymphocyte-to-monocyte ratio (LMR) was an independent

predictor of OS in patients [HR = 0.54, 95% CI (0.30, 0.99), P =

0.049]; whereas LIPI, systemic immune-inflammatory index (SII),

platelet-to-lymphocyte ratio (PLR), systemic inflammatory

response index (SIRI), and prognostic nutritional index (PNI)

were not independent predictors of PFS and OS in patients with

ES-SCLC. QI et al. (141) found that patients with baseline PLR >

119.23 had significantly shorter OS than patients with PLR ≤ 119.23

in patients with ES-SCLC receiving first-line atezolizumab

combined with chemotherapy, and multivariate analysis indicated

that PLR was the only independent prognostic factor for OS [HR =

4.63, 95% CI (1.00, 21.46), P = 0.05], whereas LMR, NLR, PNI, SII,

and SIRI were not independent predictors of PFS and OS in patients

with ES-SCLC (Table 2).
3.3 ctDNA

The limited availability of tumor tissue and strong

heterogeneity in SCLC present challenges for the clinical

application of tissue-derived biomarkers (148). Liquid biopsies,

particularly those utilizing ctDNA harboring cancer-specific

genetic information and are considered as a surrogate for tumor

DNA (149), offer a non-invasive, spatially homogeneous, and real-

time approach in various cancer types (150, 151).

Herbreteau et al. observed that patients with ctDNA levels

exceeding the median variant allele fraction (VAF) had poorer OS

(5.3 vs. 10 months) and PFS (2.1 vs. 12.5 months), suggesting the

prognostic potential of ctDNA (142). A prospective study by Smith

et al. collected 75 serial plasma samples from 25 patients with SCLC

and demonstrated a significant positive correlation between mean

VAF and total body tumor volume, particularly in treatment-naive

and pretreatment samples (152). For the immunotherapy, the

authors retrospectively examined five genes in baseline ctDNA by

NGS from 46 patients with SCLC receiving Atezolizumab or

chemotherapy (142) and found that patients with detectable

ctDNA (at least one somatic mutation) exhibited a significantly

lower disease control rate compared to those without detectable

ctDNA in immunotherapy group but not in chemotherapy group

(13.3% vs. 50%, P = 0.0145). A similar data were identified in a

recent retrospective study on 171 serial plasma samples from 33

patients with metastatic SCLC treated with chemotherapy or

immunotherapy regimens by targeted error-correction sequencing

(Tec-seq) of 58 genes (143). Patients who achieved sustained

complete elimination of total cell-free tumor load (cfTL), assessed

through a combination of mutant allele fraction of tumor-derived

mutations and plasma aneuploidy, had longer mOS and mPFS

compared with patients who had recrudescence or persistent cfTL

(OS not reached vs. 12.35 vs. 6.48 months, P = 0.0006; PFS not

reached vs. 6.18 vs. 1.74 months, P < 0.00001). In addition, Macıá

et al. evaluated ctDNA levels by detecting the telomerase reverse

transcriptase single-copy gene of 111 plasma samples from 46

patients with SCLC treated with chemotherapy or ICI-combo.

Patients with baseline and 3-week log ctDNA levels below cutoff

value achieved longer OS and PFS (144). It is worth noting that,

whereas Herbreteau et al. found the ability of ctDNA to predict
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1490590
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1490590
TABLE 6 Studies of possible liquid biomarkers for immunotherapy in SCLC.

Biomarker N Setting Cutoff Treatment DCR
Median
PFS

Median
OS

Reference

ACS 126 First-line 1.115

Immunotherapy
combined with

chemo or
chemo alone

NA

ACS high vs.
low: 7.7 vs. 4.9
months, P
= 0.007

ACS high vs.
low: 16.3 vs.
13.6 months,
P = 0.033

(138)

LIPI 100 First-line

dNLR: 4.0 U/L;
LDH: 283 U/L

LIPI good: dNLR < 4.0 and
LDH < 283 U/L

LIPI intermediate: dNLR <
4.0 and LDH ≥ 283 U/L, or
dNLR ≥ 4.0 and LDH <

283 U/L;
LIPI poor: dNLR ≥ 4.0 and

LDH ≥ 283 U/L

PD-1/PD-L1
inhibitors
plus chemo

NA

LIPI good vs.
intermediate/
poor: 8.4 vs.
4.7 months, p

= 0.02

LIPI good vs.
intermediate/
poor: 23.8 vs.
13.3 months,
p = 0.0006

(139)

LMR

236 First-line

3.26

ICI + EP; EP NA

NA

Independent
prognostic

factors for OS
(HR, 0.54; P
= 0.049)

(140)

NLR 3.1

Independent
prognostic

factors for PFS
(HR, 0.45; P
= 0.028)

NA

PLR 53 First-line 119.23
Chemotherapy

and
Atezolizumab.

NA

Low vs. high:
6 months of
PFS: 50% vs.

22%, P
= 0.014,

Low vs. high:
1-year OS:

87% vs. 42%,
P = 0.0004
independent
prognostic

factors for OS
(HR 4.63, P

= 0.05

(141)

ctDNA
(5 genes)

68 First-line
At least one

somatic mutation
Atezolizumab
or chemo

Detectable vs.
undetectable in
immunotherapy
group: 13.3% vs.
50%, P = 0.0145

NA NA (142)

ctDNA
(58 genes)

33
First-

Third lines

Mutant allele fraction of
tumor-derived mutations
and plasma aneuploidy

Chemotherapy ±
Atezolizumab or
Durvalumab
+ Ipilimumab

NA

Elimination of
total cfTL vs.
recrudescence
or persistent
cfTL: not
reached vs.
6.18 vs. 1.74
months, P
< 0.00001

Elimination of
total cfTL vs.
recrudescence
or persistent
cfTL: not
reached vs.
12.35 vs. 6.48
months, P
= 0.0006

(143)

ctDNA
(hTERT)

46 First-line
Log cfDNA levels 7.650 for

PFS and 8.077 for
OS analyses

Chemo
±

Immunotherapy
NA

HR, 5.06; 95%
CI (1.89–13.6),

P = 0.001

HR, 3.32; 95%
CI (1.50–7.37),

P = 0.003
(144)

IL-2

84 First-line

≥ median value Chemo alone or
combined

with Ipilimumab
NA NA

ICI-combo:
30.5 vs. 8

months, P =
0.015

Chemo: 12.2
vs. 12.6

months, P
= 0.273

(145)

IL-6 < median value
ICI-combo:
18.5 vs. 9.5

(Continued)
F
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immunotherapy efficacy but not chemotherapy, other studies

reported ctDNA’s predictive value for therapeutic response

independently of the treatment regimen (153, 154).

Although these studies provide new perspectives for ctDNA as a

biomarker of clinical efficacy in SCLC (Table 3), ctDNA monitoring

still faces challenges such as the lack of a definitive gene panel, the

criteria to determine ctDNA levels, and the superior method,

including NGS and droplet digital PCR (153, 155, 156). In

conclusion, further research is necessary to address these salient

issues in order to demonstrate the immense promise of ctDNA as a

predictive biomarker of immunotherapy efficacy in SCLC.
3.4 Exosomal miRNAs

Exosomes are endocytosis-derived vesicles with 30–150 nm in

size that play important role in cell-to-cell communication, as well

as transporting various cell-derived molecules including proteins,

lipids, DNA, mRNA, and microRNAs (miRNAs) (157, 158).

Previous data explored that exosomes were involved in various

stages of tumor progression, including immunomodulation,

angiogenesis, metastasis, drug resistance, and cell proliferation

(159, 160). The significantly differential exosomal miRNAs in

patients with lung cancer were identified in a study using serum

samples including 11 patients with NSCLC, nine patients with

SCLC, and 10 healthy controls. The content of exosomal miRNA

not only can accurately distinguish patients with SCLC and NSCLC

but also aid in monitoring the progress treatment (161). Three-

miRNA panel (miR-200b-3p, miR-3124-5p, and miR-92b-5p) in

serum was significantly associated with a poorer prognosis (P =

0.0029) and may serve as a diagnostic and prognostic marker for

SCLC (162). Notably, both exosomal miR-1290 and miR-29c-3p

displayed substantial discriminatory capacity in distinguishing

between NSCLC and SCLC, as indicated by their respective area

under curve (AUC) values of 0.810 and 0.842 (163). Further studies

reported that exosomal miR-1228-5p and miR-375-3p in SCLC can

promote the proliferation and migration of SCLC cells by targeting
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DUSP22 or claudin-1, respectively (164, 165). Exosomal miR-15a-

5p/CCNE1 axis and miR-92b-3p also involved in chemoresistance

of SCLC (166, 167). Moreover, exosomal miRNAs may be related to

the therapeutic efficacy of SCLC immunotherapy or immune

combination therapy with regard to the occurrence, development

and chemoresistance, immunotherapy resistance (168), and the

formation of immunosuppressive microenvironment (169, 170).

Overall studies demonstrated that 43% of the RNA in exosomes

contain miRNA, emphasizing the importance of miRNA in

exosome function (171). Exosomal miRNAs in blood have the

potent ial to be a breakthrough biomarker for SCLC

immunotherapy, but more studies are needed to correlate blood

exosomal miRNAs with the efficacy of SCLC immunotherapy, and

identifying generalized panel-based miRNA detection methodology

is a critical point in achieving practical application.
3.5 Proteins in blood

Plasma proteins and metabolites also have potential predictive

value. In two independent prospective tumor cohorts treated with

ICIs (discovery cohort, n = 95; validation cohort, n = 292), it was

found through the Olink® plasma proteome that the level of

leukemia inhibitory factor (LIF) in baseline blood had a good

predictive value for therapeutic benefit (training set, AUC =

0.735; validation set, AUC = 0.622) (172). Karlsson et al. analyzed

the plasma proteins of 109 patients with melanoma receiving

targeted therapy or immunotherapy before and during treatment

through plasma untargeted proteomics platform and constructed a

panel of inflammation and apolipoproteins as prognostic and

predictive biomarker, to improve the treatment options for

patients with cutaneous melanoma (173). The plasma proteins of

patients with SCLC are still in the initial exploration stage (174,

175), and the above studies provide ideas for the research direction

of SCLC.

Increasing studies showed the role of cytokines in response to

varied treatment in SCLC (51, 176, 177). Welbin et al. (145)
TABLE 6 Continued

Biomarker N Setting Cutoff Treatment DCR
Median
PFS

Median
OS

Reference

months, P =
0.026

Chemo: P
= 0.073

TNF-a

ICI-combo:
18.5 vs. 7.8
months, P =

0.004
Chemo: P
= 0.222
DCR, disease control rate; PFS, progression-free survival; OS, overall survival; ACS, aneuploid CTC score; LIPI, lung immune prognostic index; dNLR, derived neutrophil-to-lymphocyte ratio;
LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil‐to-lymphocyte ratio; PD-1, programmed cell death protein 1; PD-L1, programmed cell death-ligand 1; ICI, immune checkpoint inhibitor;
EP, Etoposide plus Cisplatin; HR, hazard ratio; PLR, platelet-to-lymphocyte ratio; ctDNA, circulating tumor DNA; cfDNA, circulating free DNA; cfTL, cell-free tumor load; ICI-combo, ICI +
chemotherapy; chemo, chemotherapy.
NA, not applicable.
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evaluated the level of several cytokines in the baseline serum of

patients with SCLC receiving chemotherapy alone (n = 47) or

combined with Ipilimumab (n = 37) and found that mOS of

patients with high baseline IL-2 expression (≥ 1.65 pg/mL) (n =

15) was significantly longer than patients with low-expression (n =

20) (30.5 vs. 8 months, P = 0.015) in the ICI-combo cohort but not

the chemotherapy cohort (12.2 vs. 12.6 months, P = 0.273),

suggesting that the baseline IL-2 level in patients with SCLC can

predict the benefit of ICI-combo. Interestingly, patients with low

expression levels of IL-6 or TNF-a had longer mOS than those with

high expression levels (18.5 vs. 9.5 months, P = 0.026; 18.5 vs. 7.8

months, P = 0.004, respectively) in the ICI-combo cohort but not in

the chemotherapy cohort (P = 0.073 and P = 0.222, respectively),

suggesting the predictive role of low IL-6 and TNF-a ICI-combo

benefits in SCLC.

Serum PD-L1 (sPD-L1) is involved in immunosuppression and

resistance to ICI therapy and shows higher levels in the serum of

cancer patients (178). Although sPD-L1 was considered as a

potential marker for poor prognosis in patients with SCLC

treated with chemotherapy (179), the analysis of sPD-L1 levels in

patients with various solid tumors treated with ICI (Ipilimumab)

revealed no relevant differences in sPD-L1 levels before and after

immunotherapy in patients with SCLC, excluding sPD-L1 as a

predictive biomarker of response to therapy with Ipilimumab (178).

Exosomes in blood samples are also indispensable exploration

directions as biomarkers related to immunotherapy in tumors.

The expression of PD-L1 in blood exosomes has been reported to

have predictive value for immunotherapy. In patients with

metastatic melanoma, the level of circulating exosome PD-L1

could serve as an indicator of the adaptive response of tumor

cells to T-cell activation, stratifying clinical responders and non-

responders (180). The combination of radiomics and PD-L1

detection in plasma extracellular vesicle (EV) had high sensitivity

and specificity in identifying patients with NSCLC with non-

response to ICIs and outperformed tissue PD-L1 (181), which

could more effectively predict the efficacy and prognosis of

patients with immunotherapy. Current studies have shown the

role of EVs in the diagnosis and prognosis of SCLC (182, 183),

chemotherapy resistance (184), and the cross-talk mechanism

between EV and immune microenvironment in SCLC (185, 186),

but the research on EV as a biomarker related to the

immunotherapy response in SCLC is relatively blank.
4 Discussion

Immunotherapy, as another revolution after targeted therapy,

has opened a new chapter in the treatment of ES-SCLC.

IMpower133 and CASPIAN firstly demonstrated the efficacy of

PD-L1 inhibitors combined with chemotherapy, followed by

CAPSTONE-1 and PD-1 inhibitors in SCLC demonstrated by

ASTRUM-005, RATIONALE-312, and EXTENTORCH, to the

innovative four-drug model of ETER701, which further refreshed

the OS survival of first-line treatment of ES-SCLC to 19.3

months (17).
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Novel targeted drugs and new combination strategies are

important direction of SCLC translational and clinical research.

Lurbinectedin breakthrough past 20 years obstacle of only

chemotherapy in second-line SCLC and enhance the anti-tumor

immune response by regulating the tumor microenvironment.

Therefore, the hypothesis of combination of immunotherapy and

Lurbinectedin after first-line therapy as a strategy to improve the

efficacy of SCLC was tested in numbers of clinical studies, including

LUPER and 2SMAL. Immune cell–based strategies are also

ongoing, including a phase II study of Monalizumab in

combination with Durvalumab and chemotherapy for the first-

line treatment of ES-SCLC derived from the mechanism that

Monalizumab restores NK cell and T-cell function. In addition to

strategies to improve NK cell and T-cell function, adoptive NK cells

or CAR-NK cells, as well as CAR-T therapies, are also being carried

out in SCLC.

ADC drugs are another promising research direction and hot

spot in SCLC including B7-H3 and TROP2. The Ideate-lung01 is a

phase II clinical trial using I-DXd for patients with recurrent SCLC

who were divided into 8 mg/Kg (n = 46) arm and 12 mg/Kg (n = 42)

arm, respectively. The ORR was 26.1% and 54.8%, PFS was 4.2 and

5.5 months, OS was 9.4 and 11.8 months, and then 12 mg/Kg was

selected as the phase 3 study dose (187). Currently, a phase III study

of DS-7300 in recurrent SCLC also been initiated. In addition,

ADCs targeting SEZ6 also showed excellent potential, such as

ABBV-706, which included 23 patients with SCLC in the first-in-

human study, with an ORR of 60.9%. In addition, the rise of

bispecific antibody drugs will bring hope for the treatment of

SCLC. PM8002 is a bispecific antibody drug targeting PD-L1 and

VEGF-A, and, in a phase II study, PM8002 combined with

paclitaxel showed 81.8% DCR, 72.7% ORR, and up to 5.5 months

mPFS in the second-line SCLC (n = 27) who failed in first-line

platinum-based chemotherapy with or without ICIs, implying

encouraging anti-tumor activity. The clinical trials targeting

Trop2 ADC in SCLC are currently underway; phase I and II data

showed that, for recurrent SCLC, ORR is 30%–40%, PFS is around 4

months, and the preliminary OS is 13.6 months with manageable

safety profile, so that Trop2 ADC is worthy further research in

SCLC (188, 189).

It is also one of the future directions to study how to accurately

formulate a combination drug regimen according to the genetic

characteristics of individual patients, tumor stage, and other factors.

Through multi-omics analysis such as genomics and proteomics of

a large number of patient samples, potential biomarkers are

discovered, which can help achieve early diagnosis, accurate

staging, and personalized treatment. There have been some

studies on PD-L1 expression as biomarkers for SCLC

immunotherapy, and there are many more undiscovered

biomarkers waiting to be explored. Recently, progression in

defining transcriptome molecular subtypes and characterizing

immune microenvironment provides multiple new potential

biomarkers for SCLC. Subtype classifications based on

transcription factor expression and immune infiltration may be a

prerequisite for the development of biomarkers, as SCLC subtypes

with high immune infiltration and high immune response-related
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gene expression are more likely to benefit from ICI therapy in the

exploratory studies of clinical trials. Furthermore, accurate

biomarker research on the mechanism of different regiments is

needed, which will improve the application and efficacy of targeted

therapy drugs, including immunotherapy, in SCLC.

In the future, individualized therapeutic regime should be

developed on the basis of the genotyping of patients with SCLC.

In addition, patients with different genetic variants may respond

differently to the treatment, for example, patients with certain

genetic variants may be more sensitive to the targeted drugs. It is

particularly important to conduct translational research on

precision diagnosis and treatment in multiple dimensions. With

the continuous development of genetic testing technology, there will

be more research and application opportunities for this genotyping-

based precision therapy.
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