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Infection and rejection are major complications that impact transplant longevity

and recipient survival. Balancing their risks is a significant challenge for clinicians.

Current strategies aimed at interrogating the degree of immune deficiency or

activation and their attendant risks of infection and rejection are imprecise. These

include immune (cell counts, function and subsets, immunoglobulin levels) and

non-immune (drug levels, viral loads) markers. The shared risk factors between

infection and rejection and the bidirectional and intricate relationship between

both entities further complicate transplant recipient care and decision-making.

Understanding the dynamic changes in the underlying net state of immunity and

the overall risk of both complications in parallel is key to optimizing outcomes.

The allograft biopsy is the current gold standard for the diagnosis of rejection but

is associated with inherent risks that warrant careful consideration. Several

biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines

(CXCL9 and CXCL10), show significant promise in improving subclinical and

clinical rejection risk prediction, whichmay reduce the need for allograft biopsies

in some situations. Integrating conventional and emerging risk assessment tools

can help stratify the individual’s short- and longer-term infection and rejection

risks in parallel. Individuals identified as having a low risk of rejection may tolerate

immunosuppression wean to reduce medication-related toxicity. Serial

monitoring following immunosuppression reduction or escalation with

minimally invasive tools can help mitigate infection and rejection risks and

allow for timely diagnosis and treatment of these complications, ultimately

improving allograft and patient outcomes.
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1 Introduction

With the increase in the global burden of chronic disease and

the continued shortfall of transplantable organs, optimizing

transplant recipient and allograft outcomes becomes paramount.

Achieving and maintaining transplant tolerance, the ultimate goal

of transplantation, requires an understanding of the individuals’ net

state of immunity and achieving the optimal net-immune balance.

Whilst over-immunosuppression is thought to lead to infective

complications and underimmunosuppression to allograft rejection,

the relationship between the two entities is likely more complicated

and interlinked. Despite steady improvements in early allograft and

patient survival, rejection, and infection continue to pose significant

long-term risks (1). Balancing these two important complications

remains a significant challenge for transplant clinicians.

An individual’s net state of immunity is a composite of their net

state of immunosuppression and its resultant risk of infection and the

net state of immune activation and its attendant risk of infection. The

net state of immunity varies over time and is modulated by several

factors, chiefly the degree of immunosuppression. Clinical risk

assessments performed by Infectious Diseases and Transplant

physicians may focus on infection and rejection risks in isolation,

whereby optimal transplant recipient care and outcomes require the

understanding of these risks in parallel. The clinical risk assessments

are often further complicated by shared risk factors for

both complications.

Strides to prevent and treat allograft rejection through potent

immunosuppression increase susceptibility to infections. Conversely,

infections can promote rejection by triggering immune mechanisms

(e.g., heterologous immunity/alloreactive virus-specific T-cell

activation, upregulation of surface markers and altered MHC class II

signaling, de novo donor-specific antibody (DSA) formation and direct

inflammation) or following the intentional reduction of

immunosuppression to facilitate recovery from severe infection (2,

3). Furthermore, severe infections and the use of antimicrobial agents

may affect immunosuppression medication levels through altered

pharmacokinetic and pharmacodynamic profiles (4). Viruses pose a

specific challenge, given their immune-evasive capabilities allowing for

viral persistence and latency. Additionally, viral control relies on robust

T-cell immune surveillance and responses, which are dampened by

efforts to curb the risk of rejection.

Similarities in immune responses and clinical and histological

features of infection and rejection, as is the case with polyomavirus

(BK) nephropathy, can complicate therapeutic decision-making (5).

Additionally, both rejection and infection episodes (particularly

cytomegalovirus (CMV)) in the early post-transplant period

predispose the recipient to both rejection and infective

complications later on (2, 6–9). Immunosuppression reduction in

response to leukopenia, a complication of both cytomegalovirus

(CMV) infection and its’ treatments, has been associated with

allograft rejection (10, 11). Moreover, lymphopenia/neutropenia, a

well-described risk factor for primary and recurrent CMV disease, is

a side effect of both immunosuppression (e.g., mycophenolate

mofetil (MMF)) used to prevent rejection, and chemoprophylaxis
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used to prevent and treat infections such as CMV (e.g.,

valganciclovir, ganciclovir) and Pneumocystis jirovecii (PJP)

(trimethoprim/sulfamethoxazole) (10, 11). Finally, rejection and

infection can occur concurrently, rendering treatment options

particularly difficult.

Current long-term monitoring of transplant health includes

non-invasive and invasive measures. The conventional blood and

urine parameters, serum creatinine, estimated glomerular filtration

rate (eGFR), and proteinuria are not sensitive nor specific for

rejection and often lag behind the onset of histological changes

that may potentially be irreversible. Allograft biopsy, the current

gold standard diagnostic test for rejection, is invasive, making it

impractical for the regular surveillance of allograft health. It is also

subject to large variabilities in sample adequacy and pathologists’

scoring (12, 13).

Emerging biomarkers show great promise in complementing

conventional measures to improve their predictive power and pave

the way for personalized transplant care and improved graft and

patient survival. Detection of graft injury prior to changes in

conventional markers may allow for early definitive histological

diagnosis of rejection and timely therapy initiation prior to

irreversible histological damage. Biomarkers may also provide

valuable insight into the degree of immune activation and guide

immunosuppression weaning strategies to reduce infection and

toxicities. This review aims to describe the currently available and

evolving tools relevant to simultaneously assessing the risk of

infection and rejection. Informed, parallel infection and rejection

risk assessments can allow clinicians to appropriately counsel

recipients on their risks and personalize decisions around

immunosuppression optimization and follow-up care.
2 Net state of immunity

A transplant recipient’s net state of immunity is dynamic and

influenced by several host, donor, graft, surgical, immunosuppression,

immunological, epidemiological, and environmental factors (14).

A shift towards an overall state of immune deficiency or activation

increases the overall infection and rejection risks, respectively.

Infection risk is primarily modulated by the degree of immune

deficiency, epidemiological exposures, and preventative measures.

Rejection risk increases with a state of immune activation,

predisposed by an immunological mismatch/sensitization and

influenced by inadequate immunosuppression levels.

Several shared risk factors for infection and rejection further

complicate risk assessment strategies (Figure 1). These include a

high degree of immunological mismatch (HLA mismatch and

degree of sensitization), deceased donor transplantation, extended

criteria donors, older donor age, prolonged cold ischemic time,

delayed graft function, and prior history of rejection and infection

(15–18).

An infection-rejection risk stratification model proposed by Cippa

et al. (2015) revealed that older recipient age, deceased donor transplants,

a higher number of HLAmismatches, andCMVdonor +ve/recipient -ve
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status were highly associated with infection, while rejection was

associated with deceased donor transplants, a higher number of HLA

mismatches, and cyclosporin based immunosuppression (compared to

tacrolimus) (19).
3 Cause-and-effect relationship
between infection and rejection

Significant temporal and geographical variations exist in

infection and rejection rates post-transplantation. Infection and

rejection episodes can occur in isolation, sequentially, with a period

of overlap, or concurrently (Figure 2).
3.1 Infection causing rejection

Several pathogen-induced innate and adaptive immune responses

can foster allosensitization and trigger an immune cascade that may

lead to allograft rejection (2, 9). Direct graft inflammation, ischemia-

reperfusion injury (IRI) following septic shock, priming of the adaptive

immune response, T-cell phenotype switching from regulatory to

inflammatory T-cells, heterologous immunity/cross-reactivity of

virus-specific memory T-cells, and modulation of surface proteins

(ICAM, VCAM) to facilitate immune cell infiltration or altering

antigen (MHC-Class II) expression are postulated pathogen-induced

injurious mechanisms (Table 1) (2, 9, 20). While the relationship
Frontiers in Immunology 03
between CMV infection and allograft rejection has been well described,

chemoprophylaxis against CMV was demonstrated to reduce rejection

risk (21–24). Heterologous immunity describes the cross-reactivity of

virus-specific memory T-cells to alloantigens and is a potential

pathogen-driven mechanism of allosensitization and rejection (9, 25).

Recurrent CMV infections and accumulation of cross-reactive T-cells

through heterologous immunity may be a potential barrier to achieving

graft tolerance (26–28).

Direct graft inflammation and immune cell recruitment following

infections with viral (CMV, BK) and bacterial pathogens

(pyelonephritis) have also been linked to allograft rejection. However,

the mechanisms by which rejection occurs remains poorly understood

(2, 3, 9, 29). Lymphopenia is a common complication of CMV disease

and/or its treatment. Immunosuppression modulation in response to

lymphopenia, particularly mycophenolate dose reduction, may

increase the risk of immune activation and rejection (10, 11).

Several studies demonstrate that immunosuppression modulation/

interruption in the context of infection, particularly following BK

viremia, increases the risk of rejection (4, 14). However, most studies

on rejection risk following immunosuppression reduction or

interruption are mixed (30–33). There may be an increased risk of

denovo DSA formation and/or rejection in transplant recipients who

experience more severe infection and require intensive and/or

prolonged immunosuppression reduction and in those who are at

high immunological risk (31, 34).

Table 1 outlines the various mechanisms by which infection

may elicit immunological changes that lead to rejection.
FIGURE 1

Factors impacting net state of immunosuppression (infection risk) and net state of immune activation (rejection risk). Shared risk factors are highlight
in bold. Immunosup, immunosuppression; DGF, delayed graft function; HLA, human leukocyte antigen; D+/R-, Donor positive/Recipient negative;
CMV, Cytomegalovirus; UTI, urinary tract infection; HIV, Human immunodeficiency virus.
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3.2 Rejection causing infection

Treatment of allograft rejection with lymphocyte-depleting

therapies increases the risk of opportunistic infections that carry

significant morbidity and mortality risk (14, 16). The infection risk is

often prolonged with therapies such as anti-thymocyte globulin, where

T-cell depletion can persist beyond one year. Immunosuppression-

induced leukopenia/lymphopenia increases the risk of infections,

particularly CMV (57–59). Furthermore, CMV and PJP

chemoprophylaxis with agents such as valganciclovir and

trimethoprim/sulfamethoxazole can also cause lymphopenia/

neutropenia, and interruption of these agents to reverse the

leukopenia can increase the susceptibility to these opportunistic

infections (10, 11).

Transplant recipients with neutropenia experienced more

bacterial infections and the degree of neutropenia correlated with

infection risk (60). Several international guidelines recommend

initiating CMV prophylaxis for at least three months following

anti-rejection therapy with lymphocyte-depleting agents (61, 62).

Intentional or accidental omission of chemoprophylaxis following

potent anti-rejection immunosuppression may pave the way for

viral reactivation and disease.

Chronic kidney disease, particularly late-stage kidney

dysfunction, is associated with adaptive and innate immune system

dysregulation and accelerated immune aging (63, 64). Shift towards

exhausted and immunosenescent lymphocyte phenotype, CD4+ T-

cell lymphopenia, reduced CD4+/CD8+ ratio, increased terminally

differentiated T-cells, and chronic systemic inflammation are all

described to be associated with uremia and progressive CKD (63,

64). Profound allograft dysfunction in the context of rejection,

coupled with anti-rejection therapy, can compound the state of
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immunocompromise and hinder infection and vaccine-induced

immune responses. Transplant recipients with lower eGFR

(progressive dysfunction beyond <30mL/min/1.73m2) were less

likely to achieve positive vaccine sero-response and require extra

booster doses to achieve seroprotection (65).
3.3 Immunosuppression modulation
during infection

The decision for immunosuppression reduction should consider

infection severity, immunological risk of rejection, availability of

targeted anti-microbial therapies, and the need for immune

reconstitution for infection clearance (Figure 3) (14). Invasive fungal

infections (e.g., Cryptococcus spp) and other severe opportunistic

infections (e.g., norcadia spp) have considerable 1-year mortality

rates and often require immune reconstitution for pathogen control.

While immunosuppression reduction following severe infection

was associated with improved patient survival, most infections,

particularly mild infections, did not require immunosuppression

reduction for infection resolution (14). Additionally, there are no

clear guidelines on the immunosuppression agents to reduce. Higher

immunosuppression levels are required in the early post-

transplantation period. Therefore, immunosuppression reduction in

the early phase may be associated with a higher risk of rejection (4).

Most clinicians reduce anti-metabolites first, particularly in the

setting of leukopenia, followed by calcineurin inhibitor (CNI)

reduction. However, there are no evidence-based protocols on the

best immunosuppression reduction strategy (66, 67). Individual

immunosuppression agents have different impacts on the innate

and adaptive immune systems and, as such, may have different risk
FIGURE 2

The possible temporal relationships between infection and rejection.
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FIGURE 3

Factors to consider prior to immunosuppression reduction following infection. IS, immunosuppression.
TABLE 1 Possible mechanisms by which infection trigger rejection.

INFECTION LEADING TO REJECTION

Direct inflammation/tissue injury - CMV/BK - recruitment of proinflammatory mediators, Natural Killer (NK), CD8 & gd T-cells (27, 35, 36).
- Bacterial infection – Pyelonephritis (renal allograft rejection), pseudomonas spp (lung transplant rejection)
immune infiltration and alloimmunity (3, 29)

Modulation of surface proteins - Upregulation of adhesion molecules (VCAM/ICAM) increase immune cell infiltration and activation (9, 37–39).
- MHC Class II receptors - allorecognition and T-cell activation (37, 40).

Switching from regulatory to inflammatory T-
cell phenotype

- Reprogramming from regulatory T-cells to pro-inflammatory phenotype - CMV, non-commensal bacteria
(9, 27, 41).
- CMV associated accelerated T-cell ageing and switch to proinflammatory phenotype (36, 42, 43).

Heterologous Immunity - Virus specific memory T-cells cross-react to self-antigens/HLA molecules (allosensitization) - CMV, EBV,
VZV, Influenza A (9, 20, 44, 45).
- Pathogen induced alloreactive memory T-cells shown to block ability to develop graft tolerance (26, 27).

De novo DSA formation - Potential association between viral infections (SARS-CoV-2, CMV/BK) and denovo DSA formation (30–33).
- post-SARS-CoV-2 DSA, mainly restricted to those with high immunological risk and severe infections (31).

Viral gene product modulation of immune responses - CMV infected monocytes - gene expression modification to proinflammatory phenotype and upregulation
of chemokine expression (46).
- Increase in interferon (IFN) signaling and cytotoxic T-cell function (47).

Shock/Ischemia reperfusion injury - Damage associated molecular patterns trigger pro-inflammatory response (48–51).
- Endothelial injury and inflammation (52–54).

Immunosuppression reduction - Sepsis, CMV, BK nephropathy (high peak virus, calcineurin inhibitor (CNI) reduction >20%, MMF
discontinuation) (4, 5).
- BKN related IS reduction particularly assoc. with rejection (4).

Virus related malignancies: Post-transplant
lymphoproliferative disorder (PTLD) post-EBV

- PTLD → Immunosuppression reduction to improve cytotoxic T-cell response against EBV induced B-cell
clonal proliferation, associated with increased risk of rejection (55, 56).
F
rontiers in Immunology
CMV, cytomegalovirus; gd, gamma delta T-cells; VCAM, vascular cell adhesion molecule; ICAM, intracellular cell adhesion molecule, MHC, major histocompatibility complex, SARS-CoV-2,
severe acute respiratory syndrome coronavirus2, BK- human polyomavirus 1; EBV, Epstein Barr virus.
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profiles for infections with specific microbial organisms (14, 68).

Understanding this may assist with clinical decision-making around

immunosuppression modulation (14). Adopting a mammalian

target of rapamycin (mTOR) inhibitor-based immunosuppression

regimen is a common strategy, particularly following viremia. The

mTOR inhibitors suppress viral replication and are associated with

a reduced risk of viral respiratory infections, increased viral

clearance following BK and CMV infections, and milder SARs-

CoV-2 infections (69–72).
4 Current and emerging tools to
measure infection and rejection risks

Given the lack of validated or standardized tests, clinicians rely

on surrogate markers of immunity to determine the individual risk

of rejection versus infection. Conventional organ-specific allograft

dysfunction measurements are neither specific nor sensitive for

rejection diagnosis and often lag behind intragraft immunological

injury. Biopsy, the definite diagnostic tool for rejection, is invasive

and imprecise and is subject to variations in sampling, processing,

and pathologists’ reporting.

Immunemarkers provide insights into the innate and/or adaptive

arms of the immune system (73–75). Some immune cells, such as NK

cells, play a dual role in immune activation and graft tolerance (76).

Supplementary Table S1 provides an overview of the immunological

markers of infection and rejection, including absolute lymphocyte

counts and subsets (57, 58, 77–89), NK cell count and function

(76, 90–96), immunoglobulin levels (37, 97–101), complements

(102, 103), mannose-binding lectin levels (104), soluble CD30

(a transmembrane glycoprotein of the tumor necrosis factor family,

cleaved from activated effector and memory T-cells) levels (74, 105–

110), and CD4+ intracellular adenosine triphosphate (iATP)

concentrations (75, 111–115). Lymphocyte number and subsets,

immunoglobulin levels, CD4+ iATP concentrations, sCD30 levels,

and cell-mediated immunity assays (IFN-g release) reflect the

adaptive immune response (73–75), whereas NK-cell number,

complement components 3,4 (C3, C4) levels, and mannose-binding

lectin (MBL) levels are markers related to innate immunity (73).

Viral load quantification describes the coordinated efforts of the

innate and adaptive arms of the immune system (14). Current and

historical drug levels are common non-immune-based surrogate

markers of the immune state.

Several emerging biomarkers have been evaluated for use in the

transplant population, however, their integration into routine

clinical care requires standardization of assays and test thresholds,

favorable test characteristics, clarification of clinical contexts of use,

and optimization of costs and availability. A rapid turnaround time

is also essential for the dynamic analysis of the immune state.

Despite the mounting evidence in favor of the use of certain

biomarkers, to date widespread uptake has been restricted,

primarily by the lack of external validation and standardization of

commercial assays and diagnostic thresholds, excess costs and

limited access. We will explore several emerging biomarkers of

infection and rejection, emphasizing those with the greatest promise

for clinical implementation.
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4.1 Immune composite scoring systems

Several immune scoring systems have been evaluated to

improve the infection-risk prediction. Dendle et al. (2018)

describe a 4-point composite scoring system predicting severe

infection risk in kidney transplant recipients (KTRs). Lower NK

cell or CD4+ T-cell count, mycophenolate use, and lower eGFR

positively correlated with the risk of severe infection (116). Crepin

et al. (2016) examined an “immune risk profile (IRP)” defined by

positive CMV status, CD4/CD8 ratio <1 and/or CD8 T-cell count

>90th percentile, which was predictive of opportunistic and

spontaneous bacterial infections (117). The incidence of acute

allograft rejection was lower in the IRP-positive group.

In kidney transplant recipients, the “simplicity score” calculated

one month post-transplant was able to predict future risk of

infections with good discrimination capacity (118). The score

incorporates immune (C3 level, IgG level, CD4+ T-cell count,

CD8+ T-cell count), and clinical (recipient age, glomerular

filtration rate, recipient age, and infection within the first month)

variables (118).

Sarmiento et al. (2014) described a composite “immunological

score” using immunoglobulins (IgG, IgM, IgA), complements (C3,

C4), and lymphocyte subsets (CD3+, CD4+, CD8+ T cells, NK cells,

and B-cells) correlating with severe infections in a cohort of heart

transplant recipients (119). IgG <600 mg/dL, C3 <80 mg/dL, C4 <18

mg/dL, NK count <30 cells/µL, and CD4 count <350 cells/µL were

all associated with a significantly higher risk of infection, and these

five parameters were used to derive the immunological score.

Assigned points for each parameter totaled a maximum score of

16. An immune score ≥13 was associated with the highest risk

of infection.
4.2 Quantification of viral loads

Several viruses, including CMV, EBV, and BK, are highly

seroprevalent and remain latent until waning immune

surveillance and clearance allows for viral replication and

reactivation. Higher quantitative viral loads positively correlate

with the intensity of immunosuppression (14, 120). Identifying

and quantifying viral replication through nucleic acid amplification

helps guide prophylactic, pre-emptive, and therapeutic treatment

strategies. The emergence of viremia and/or rising viral loads

suggests overimmunosuppression and waning viral surveillance

(14). Viral infections lacking targeted therapies rely on robust

immune responses. T-cell function is particularly important for

viral suppression and clearance (14).

BK viral loads over 10,000 copies/mL increase the risk of BK

nephropathy. Clinicians commonly use this threshold for

immunosuppression reduction (121). Calcineurin level reduction

>20%, mycophenolate discontinuation, and high peak BK viral

loads correlate with an increased risk of allograft rejection (5).

Higher EBV load is linked to PTLD development and the need for

immunosuppression reduction (56).

Torque tenovirus (TTV) is a ubiquitous human virus of unclear

pathogenic significance. It is unaffected by currently available
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antiviral therapies and, as such, is a valuable marker of immune

competence (14, 122, 123). The kinetics of TTV can provide a

measure of the integrated innate and adaptive immune responses.

High TTV titres correlate with a reduced risk of allograft rejection

and an increased risk of infection (124, 125). A prospective

observational study by Doberer et al. (2020) demonstrated a 22%

reduced risk of kidney allograft rejection and an 11% increased risk

of infection with each log increase in TTV copies/mL (122). TTV

counts were significantly higher in KTRs with bacterial, viral, and

fungal infections, and elevated counts were detected up to 3 months

before the infection (125, 126). A TTV viral load of >3.45 log DNA

copies/ml within the first ten days post-transplantation positively

predicted the risk of CMV reactivation (127). A TTV threshold level

>1x106 copies/ml could exclude rejection with a sensitivity of

94% (124).

KTRs with histopathological lesions of active rejection had

lower TTV loads (128). Furthermore, the risk of developing

histological features of chronic rejection was associated with

the number of days with a TTV viral load <1x 106 copies/ml

between 3 to 12 months post-transplant, suggesting suboptimal

immunosuppression (128).
4.3 Virus-specific cell mediated immunity

Measurement of virus-specific cell-mediated immunity (CMI)

can provide insights into cellular immunocompetence and the

ability to suppress viral replication. Understanding the strength of

virus-specific responses can risk stratify transplant recipients and

personalize chemoprophylaxis duration and monitoring (129–132).

Immune assays commonly stimulate and measure T-cell functions,

including activation, cytokine expression/production (IFN-g),
proliferation, and cytotoxicity (133).

Enzyme-linked immunospot, enzyme-linked immunosorbent

assay, flow cytometry and intracellular cytokine staining (ICS),

and MHC multimer staining (CMV CD8+ Immune Competence)

are currently available techniques to assess viral-CMI (133). The

flow cytometry ICS also allows for the co-staining of other cytokines

and T-cell surface markers to characterize immune cell phenotypes.

CMV-CMI (QuantiFERON-CMV, ELISpot and ICS assays)

correlated with functional T-cell responses and viral control (129–

132). A positive QuantiFERON-CMV assay at the end of

chemoprophylaxis in high-risk recipients (donor +ve/recipient -ve)

yielded a positive predictive value of 90% for immune protection

(132). Whereas indeterminant or negative results yielded the highest

risk of CMV disease, likely correlating with blunted cellular

responses (129–132). Quantiferon-CMV status was helpful for risk

stratification of individuals with asymptomatic, low-level viremia

following prophylaxis cessation (134). Those who were Quantiferon-

CMV positive had a higher likelihood of spontaneous clearance,

whilst those who were negative had a higher risk of CMV disease

(134). Quantiferon-CMV guided pre-emptive therapy was more

cost-effective than pre-emptive therapy alone (135). CMV-CMI

responses were suppressed for up to 3 months post-ATG therapy.

High dose prednisolone and elevated tacrolimus levels particularly

impaired CMV-specific functional T-cell responses (129).
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T-cell alloreactive CMI assays may be helpful in predicting

immune activation and rejection risk, but studies to date are

heterogeneous and quote different performance characteristics.

Positive pre-transplant donor-reactive IFN-g responses (ELISpot),

particularly at higher levels, were associated with a greater risk of

post-transplant rejection (136, 137). The meta-analysis by Montero

et al. (2019) found that KTRs with positive pre-transplant donor-

specific IFN-g ELISPOT results had a 3.3-fold higher risk of acute

rejection (138). A high number of donor-reactive memory T-cells,

as measured by IFN-g and interleukin-21 ELISPOT assays, was

significantly associated with the risk of kidney allograft

rejection (139).

CMI is an evolving additive tool for infection risk

quantification, particularly for CMV infection. However, further

research is needed to establish clear test thresholds relevant to

different risk groups (recipient CMV positive vs. negative).
4.4 Medication/immunosuppression levels

Drug levels are often used to assess the overall immune state.

However, the impact of the individual immunosuppressants on the

overall immune state is difficult to quantify due to heterogeneity in

individual drug pharmacokinetics and pharmacodynamics coupled

with concomitant drug dosage adjustments. Therapeutic drug

monitoring and target concentration intervention aims to

optimize immunosuppression while minimizing toxicity.

Calcineurin inhibitor and mTOR inhibitor levels are routinely

measured for dose titration.

The proposed optimal target trough tacrolimus level for kidney

allografts is 5-8ng/ml beyond the first few months post-transplant

[128]. Lower levels are associated with rejection, and higher levels

with infection and toxicity (140). CNI level variability relating to

non-adherence or underdosing increased the risk of intragraft

interstitial fibrosis/tubular atrophy, allograft rejection, and failure

(121). Time in therapeutic range (TTR) >78% in the first year post-

transplantation was associated with reduced rates of rejection and

infection (141). Tacrolimus trough levels >10ng/ml were associated

with an increased risk of BKVN, while lower levels were associated

with rejection (142, 143). Every 1ng/mL increase in Tacrolimus

trough levels beyond 5.35ng/mL at one month post-transplant was

associated with an 11% higher rate of infections (144). Genetic

polymorphisms related to drug clearance can play a critical role in

rejection. Friebus-Kardash et al. (2022) demonstrated that CYP3A5

expressers achieved lower tacrolimus trough levels and were at

greater risk of de novo DSA formation (145).

In contrast to CNI and mTOR level-based dose titration,

mycophenolate dosing based on regular area under the

concentration-time curve (MMF.AUC) measurements or Cmin

(minimum concentration) levels have yet to be universally

implemented. A fixed dosage mycophenolate regimen is standard

practice in many transplant centers worldwide (146). Mycophenolate

AUC measurements (targeting 30-60mg/L.h) are often used on a

case-by-case basis, such as in the context of infection or malignancy,

to guide dose adjustments. Mycophenolate AUC-based dose

adjustment reduced infection rates in the 12 months post-kidney
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transplantation relative to a fixed-dose regimen (147). Individuals

with high mycophenolate exposure (AUC 60-100mg/L.h) may safely

and cautiously have their mycophenolate dose reduced (e.g. following

leukopenia) while maintaining a level required for rejection

prophylaxis. A mycophenolate AUC >50mg/L.h at three months

post-transplant was associated with sustained BK viremia and BKVN

in the subsequent two years (142). Conversely, mycophenolate AUC

levels <30mg/L.h have been strongly correlated with rejection,

particularly with other risk factors such as high immunological

mismatch, delayed graft function, and low levels of concomitant

immunosuppressants (148, 149). Despite this, most studies suggest an

increased risk of rejection below a threshold of 40mg/L.h, particularly

beyond six months post-transplantation (146). Reduction or

discontinuation of mycophenolate, irrespective of tacrolimus levels,

was associated with adverse graft outcomes, including rejection (146,

150). Hence, the impact of individual drug levels on the overall

immune state warrants consideration.
4.5 Donor specific antibody detection (HLA
and non-HLA)

Anti-HLA donor-specific antibodies may be pre-formed or de

novo (develop post-transplantation). The detection of donor-

specific antibodies (against HLA antigens) has long been the

hallmark of the diagnosis of antibody-mediated rejection (AMR)

according to the BANFF criteria (151). Recipients with pre-formed

antibodies at the time of transplant are at a higher risk of AMR.

Within five years post-transplant, 15-25% of transplant recipients

develop de novo DSA, with an incidence of 2% per year in

immunosuppression adherent transplant recipients (152, 153).

The DSA titer, as measured by the mean fluorescence intensity

(MFI), correlated strongly with the risk of antibody-mediated

rejection and graft failure (154).

This correlation is especially true of complement activating

(C1q-positive) and anti-HLA class II DSA (155, 156). There is

emerging evidence on the significance of several non-HLA

antibodies, including those against major histocompatibility

complex class 1-related chain A (MICA), type I angiotensin II

receptor, endothelin A receptor, and collagen, in the development

of AMR (157).

Under-immunosuppression, owing to medication dosing,

genetic variability in drug metabolism, or non-adherence strongly

favors DSA formation (152, 158, 159). A high degree of HLA

mismatches (especially DQ) and events that cause graft

inflammation and increased immunogenicity, including ischemic

injury, infections, and cellular rejection, can also trigger de novo

DSA formation (154, 160–162).

During the first-year post-transplantation, de novo DSA

formation was more common in transplant recipients with

subtherapeutic tacrolimus levels (<5ng/ml), particularly in the

preceding 6 months (163, 164). Additionally, achieving less than

60% of the time within the therapeutic range (5-10ng/mL) in the

first year post-transplant was associated with an increased risk of de

novo DSA formation, rejection at 12 months, and graft loss by five

years (143).
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With the advent of molecular diagnostics, DSA-negative AMR

was revealed to be a more common AMR phenotype than

previously recognized (165). Several minimally invasive

biomarkers may detect graft injury and assist in diagnosing AMR

without clear indicators, such as DSA.
4.6 Donor-derived cell-free
deoxyribonucleic acid

Donor-derived cell-free DNA (dd-cfDNA) is one of the most

promising and extensively studied biomarkers. Also termed the

“liquid biopsy,” dd-cfDNA is a useful screening tool to identify

individuals at risk of rejection, who would benefit from a definitive

histological diagnosis. A threshold of 1% dd-cfDNA distinguished

allograft injury and rejection (166–169). Higher levels of dd-cfDNA

correlated with a greater degree of histological injury (170).

Following cell apoptosis and necrosis, a small proportion of

DNA, termed cell-free DNA, enters the circulation. Graft tissue

necrosis was associated with larger fragment cfDNA (10,000 base

pairs), while apoptosis with smaller fragments (60-500bp) (168). In

transplant recipients, a small fraction of dd-cfDNA may enter the

recipient’s circulation following graft injury (171). Urinary dd-

cfDNA can arise from glomerular filtration of circulating dd-

cfDNA or donor DNA released from the donor urinary tract (169,

172). Dd-cfDNA can be quantified as relative (proportion (%) of total

cf-DNA) or absolute quantitative dd-cfDNA (cp/ml). The diagnostic

performance of dd-cfDNA varies depending on the rejection

phenotypes, clinical context, immunological risk, and assay type.

Several local and systemic causes affecting graft integrity can

elevate circulating dd-cfDNA levels, including infections,

calcineurin inhibitor-induced nephropathy, disease recurrence,

and ischemia/acute tubular necrosis (167). As such, all potential

causes of allograft injury must be considered when assessing dd-

cfDNA elevation.

4.6.1 Donor-derived cell-free DNA and infection
KTRs with infections that compromised graft integrity,

including BK nephropathy and urinary tract infections, had

elevated plasma dd-cfDNA levels (173). A dd-cfDNA rise of >1%

was noted within seven days of a respiratory viral infection (RVI) in

lung transplant recipients (174). In lung transplant recipients with

RVI, a greater plasma %dd-cfDNA rise correlated with poorer lung

function recovery post-RVI (174). In a prospective cohort study of

44 heart transplant recipients, those who tested positive for CMV

infection had significantly higher plasma dd-cfDNA levels as

compared to those who were CMV-negative (175). Dd-cfDNA

elevations have also been described in case studies of heart

transplant recipients with myocardial injury following COVID-19

infection (176).

4.6.2 Donor-derived cell-free DNA and rejection
4.6.2.1 Liver transplant

In a multicenter cohort study of 219 liver transplant recipients,

serial plasma dd-cfDNA elevations accurately predicted rejection in

recipients with normal liver function tests (177). Additionally, dd-
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cfDNA levels decreased following successful rejection treatment.

Day 7 dd-cfDNA level >10.2% accurately predicted the risk of early

rejection within the first three months post-transplant (sensitivity-

93%, specificity-94%, positive predictive value (PPV)- 88%, negative

predictive value (NPV)-97%) (178).
4.6.2.2 Lung transplants

The systematic review by Li et al.(2023) demonstrated that

elevated plasma dd-cfDNA in lung transplant recipients

distinguished rejection versus no-rejection with high pooled

sensitivity and specificity of 87% (95% CI: 80-92%) and 82%

(95% CI: 76-86%) respectively (179). Dd-cfDNA was elevated in

lung transplant recipients with subclinical rejection (AMR &

TCMR) and infection (180, 181). A multicenter retrospective

cohort study by Keller et al. (2022) assessed the performance

characteristics of plasma dd-cfDNA (≥ 1%) in detecting acute

lung allograft dysfunction, a composite marker of infection and

rejection, in 175 asymptomatic lung transplant recipients.

Sensitivity, specificity, PPV, and NPV of dd-cfDNA ≥1% were

74%, 88%, 43%, and 97%, respectively (181). Given the very high

NPV, a normal dd-cfDNA may be helpful in excluding underlying

rejection or infection in stable lung transplant recipients.
4.6.2.3 Heart transplant

In a prospective cohort study of 223 heart transplant recipients,

dd-cfDNA of ≥0.15% accurately predicted rejection with sensitivity,

specificity, PPV, and NPV of 79%, 77%, 25%, and 97%, respectively

(182). The specificity for rejection was slightly higher (82%) with a

≥0.2% threshold, however the PPV remained poor (30%). In a

multicenter-prospective cohort study of 740 heart transplant

recipients, those who had any-cause rejection had higher plasma

%dd-cfDNA than those who did not (median: 0.17% vs. 0.07%)

(183). Despite a poor sensitivity (44%), a threshold of >0.2%

demonstrated a very high NPV (97%) for allograft rejection.
4.6.2.4 Kidney transplants

The addition of dd-cfDNA to standard diagnostic algorithms

greatly enhanced their discriminatory power for AMR, TCMR, and

mixed rejection phenotypes (170). However, dd-cfDNA can better

predict AMR than TCMR. Additionally, the magnitude of dd-

cfDNA correlated with the degree of graft injury and rejection

severity (166–168, 170, 173).

Owing to significant heterogeneity amongst studies, a wide

range of performance metrics for dd-cfDNA in diagnosing kidney

allograft rejection has been reported. A systematic review and meta-

analysis by Xing et al. (2024) included nine studies assessing the

accuracy of plasma dd-cfDNA in diagnosing any rejection and 12

studies specific to AMR (184). The diagnostic accuracy of dd-

cfDNA was much greater for AMR as compared to any-rejection

phenotypes. The pooled sensitivity was only 59% (95% CI, 48–69%)

for any-rejection diagnosis; however, the specificity and the area

under the receiver operating characteristics curve (AUROC) were

more favorable at 83% (95% CI,76–0.88%) and 80% (95% CI,76–

83%) respectively. Comparatively, the pooled sensitivity, specificity,

and AUROC for AMR diagnosis were 81% (95% CI, 72–88%), 80%
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(95% CI, 73–86%), and 87 (95% CI, 84–90%), respectively. “The

European Society of Organ Transplantation’s (ESOT) Consensus

Statement on Non-invasive Diagnosis of Kidney Allograft

Rejection” favored the use of dd-cfDNA in transplant recipients

with allograft dysfunction to exclude rejection, particularly AMR

(185). The magnitude of plasma dd-cfDNA coupled with

histological features may help re-classify rejection severity and

predict clinical outcomes such as eGFR decline and risk of de

novo DSA formation (186, 187). The prospective, multicenter

Trifecta study by Halloran et al. (2023) assessed the relationship

between plasma dd-cfDNA, DSA, and molecular signatures in 280

kidney transplant biopsies (188). DSA-negative AMR was more

prevalent than previously described, as 56% of the molecular and

51% of the histological AMR diagnoses were DSA-negative. DSA-

negative and positive AMR had similar degrees of dd-cfDNA

elevation, making dd-cfDNA a useful predictive tool for

identifying AMR in the absence of DSA and prompting a

confirmatory allograft biopsy (188). Screening with dd-cfDNA

may not be reliable for detecting subclinical or low-grade T-cell

mediated rejection (type 1 A) (166, 185). Compared to AMR, the

fractional plasma dd-cfDNA threshold of 1% was less sensitive for

TCMR, which required a higher diagnostic threshold (189).

However, combining dd-cfDNA with other biomarkers such as

molecular markers may improve the overall test accuracy for

predicting TCMR. The dynamics of dd-cfDNA in the early

postoperative period is unclear, and several confounding factors

that cause graft injury can elevate the levels during this time. As

such, dd-cfDNA is not particularly useful for rejection-infection

diagnosis in the immediate peri-operative period. Shen et al. (2019)

assessed the dd-cfDNA fluctuations in the first two weeks post-

kidney transplant (190). Deceased donor grafts had higher plasma

%dd-cfDNA immediately post-transplant as compared to living

donor grafts (45% vs. 10%), and those with delayed graft function

had a slower decline in dd-cfDNA. A sudden rebound of dd-cfDNA

levels may point to rejection as a possible cause.

With respect to diagnosing rejection in different SOT

populations, most studies report higher sensitivity than specificity

and a much higher negative predictive value (>90%) than a positive

predictive value (191). As such, dd-cfDNA is particularly useful for

ruling out allograft rejection (168, 169). Additionally, given the

short half-life of circulating cfDNA (30-120 minutes), the return of

dd-cfDNA levels to baseline can indicate successful treatment of

allograft injury (rejection or infection), allowing for real-time

assessment of allograft injury and recovery (192, 193).

Studies to date have not examined the use of dd-cfDNA in place

of biopsies to diagnose rejection or assess longer-term clinical

outcomes following rejection. Additionally, dd-cfDNA cannot

discriminate between different rejection phenotypes. Dd-cfDNA

can be useful for identifying transplant recipients with allograft

injury who require a histological diagnosis whilst considering

alternative causes, including local and systemic infections.

Integration of dd-cfDNA into routine clinical care is gaining

momentum, with commercial assays currently available in several

countries in Europe and the United States. In the United States, dd-

cfDNA has been Medicare reimbursable since 2017 (194). Despite

its’ commercial availability, concerns regarding its poor specificity,
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assay validation, and significant associated costs have limited its

uptake elsewhere including in Europe and Australasia. While the

cost and availability currently prohibit widespread adoption of dd-

cfDNA, there may be long-term cost savings if its integration as a

surveillance tool leads to earlier histological rejection diagnosis and

therapeutic intervention before chronic and permanent allograft

damage ensues (168).
4.7 Urinary chemokines

Urinary chemokines are gaining significant ground as a valuable

biomarker in assessing kidney allograft health. CXC-motif

chemokine ligands 9 and 10 (CXCL9 and CXCL10) are

interferon-g induced chemokines that promote leukocyte

migration and infiltration during allograft rejection (195, 196).

4.7.1 Urinary chemokines and infection
Urinary chemokines are not specific for rejection, but rather,

renal inflammation, and may also be elevated in KTRs with local

infections, including BK nephropathy and urinary tract infections

(197, 198). In a longitudinal study of 60 KTRs with BK viremia,

urinary CXCL10/cr levels were identified as a prognostic marker of

graft dysfunction and predicted the degree of infection related renal

inflammation (199). A threshold value of 12.86ng/mmol was

associated with a greater degree of inflammatory burden and

eGFR decline. Urinary CXCL10 levels were not elevated with

CMV viremia alone, highlighting that renal-specific inflammation

was required to trigger urinary chemokine elevation (200).

Given the association between urinary chemokines and renal

inflammation, all potential causes, including infection, must be

considered and excluded before attributing the rise to rejection.

4.7.2 Urinary chemokines and kidney
allograft rejection

The reported sensitivity and specificity of both urinary

chemokines in diagnosing rejection vary widely owing to different

test thresholds and variations in the prevalence of rejection

phenotypes in study populations. Reported CXCL9 sensitivity and

specificity for detecting kidney allograft rejection ranged between

58%-86% and 64%-80%, respectively, and CXCL10 sensitivity and

specificity from 59-80% and 76%-90%, respectively (195–197, 200).

The high negative predictive value of CXCL9 and CXCL10 make

them useful for ruling out acute kidney allograft rejection at low

levels (195). Combination of both CXCL9 and CXCL10 did not

provide superior discriminatory power compared to measuring

individual levels (197).

Urinary CXCL9 and CXCL10 could accurately discriminate

between allograft dysfunction due to rejection and non-rejection

causes but were not able to distinguish between AMR and TCMR

(195, 196). Theymay serve as an early indicator of allograft dysfunction

with elevated CXCL9 levels detected up to 30 days before clinical

changes and biopsy-confirmed acute rejection (195). Whereas lower

urinary chemokine levels at 1- and 3-months post-transplant were

associated with immunological quiescence and a lower risk of allograft
Frontiers in Immunology 10
rejection (201). Post-rejection monitoring with urinary chemokines

identified individuals at risk of rejection recurrence. Low CXCL9 levels

six months following a rejection episode correlated with a reduced risk

of rejection in the subsequent 18 months (NPV 99.3%). Conversely, a

rising CXCL10, a potential sign of persistent inflammation, was linked

to eGFR decline (202). Successful treatment of allograft rejection was

associated with reduced CXCL10 levels (197). CXCL10 elevations may

reflect renal compartment-specific histological injury, as elevations

accompanied tubulointerstitial inflammation and peritubular

capillaritis but not isolated glomerulitis or vascular inflammation (200).

4.7.3 Chemokines in other solid organ transplants
Plasma and tissue chemokines may serve as potential indicators

of graft injury in other solid organ transplants, however their value

in allograft rejection diagnosis has not been established. Plasma and

bronchoalveolar lavage CXCL9 and CXCL10 levels were shown to

positively correlate with chronic lung allograft damage and acute

rejection in a prospective multicenter study of 184 lung transplant

recipients (203). Liver transplants with early allograft dysfunction

had elevated plasma levels of T-lymphocyte-associated chemokines

and cytokines including CXCL9/CXCL10, in the early postoperative

period (204). Inhibition of plasma CXCL9/CXCL10 levels delayed

cardiac allograft rejection in murine models (205).

The ESOT consensus statement on non-invasive diagnostic

tests recommended the use of urinary CXCL9 and CXCL10 to

exclude or consider kidney allograft rejection in transplant

recipients with acute allograft dysfunction (185). Whilst urinary

chemokines show great promise as a serial surveillance tool, given

that they are easy to access and non-invasive, they are currently not

yet recommended for use in subclinical rejection (185). The

randomized controlled trial by Hirt-Minkowski et al. assessed the

utility of a serial urinary CXCL10 monitoring-based care in

reducing poor graft outcomes at 1-year post-kidney transplant

(206). CXCL10 monitoring did not reduce the primary endpoints

of allograft rejection, death-censored graft loss, denovo DSA

formation, or eGFR decline to <25 ml/min. Several prospective

studies are currently underway that may shed light on the utility of

serial CXCL9 and CXCL10 monitoring in predicting clinical and

subclinical rejection.
4.8 Molecular markers/transcriptomics

Molecular diagnostics is a rapidly evolving field that could

change the landscape of precision medicine by providing

mechanistic insights into immune cell phenotypes and molecular

pathways involved in allograft disease states. Gene expression

changes in blood, peripheral blood mononuclear cells (PBMC),

urine and tissue have been described in relation to various microbial

infections and rejection phenotypes.

4.8.1 Molecular markers of infection
Measurement of characteristic gene signatures may help

clinicians tailor chemoprophylaxis and guide testing for viral

reactivation. Ahn et al (2021) describe changes in whole-blood
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gene expression in CMV-positive KTRs across multiple time points

within the first year post-transplantation (47). Peak gene expression

differences occurred between baseline and 1-week timepoints

involving the innate and adaptive arms of the immune system

(e.g., interferon signaling and cytotoxic T-cells). While many

pathways normalized post-infection, several genes remained

differentially expressed at one year, suggesting long-term

adaptations to the immune system (47).

Given similarities in histological features, molecular markers

may prove useful in overcoming the diagnostic dilemma of rejection

versus BK Nephropathy of the kidney allograft. Adam et al. (2020)

described a five-gene set (Agnoprotein, LTAg, VP1, VP2, VP3) that

reliably distinguished BK virus nephropathy from TCMR in biopsy

specimens (207). Gene expression biomarkers may help

differentiate between rejection and viral or bacterial infections in

lung transplant recipients with acute respiratory symptoms

(208, 209).

4.8.2 Molecular markers of rejection
Molecular markers of subclinical rejection would help facilitate

early diagnosis and treatment, ultimately reducing the risk of

chronic damage and allograft loss.

The Molecular Microscope Diagnostic System (MMDx) project

collates genome-wide microarray data to describe different molecular

phenotypes (e.g. AMR, TCMR, parenchymal injury, irreversible

atrophy-fibrosis) associated with allografts. Several molecular AMR

phenotypes have been identified, including subclinical, DSA-negative,

and C4d-negative subtypes (210). Molecular disease classifiers were

able to discriminate between the rejection phenotypes (AMR, TCMR,

mixed) in cases where histology was ambiguous (211). Halloran et al.

(2024) identified gene transcripts that were TCMR and AMR selective

and those shared by both rejection phenotypes. IFN-g inducible

(CXCL11, WARS, IDO1, and GBP4), effector T cells, and NK cell-

related transcripts (KLRD1 and CCL4) were common to both AMR

and TCMR phenotypes (210). The top TCMR-selective transcripts

were predominantly associated with activated effector T-cells (IFNG,

LAG3, SIRPG), macrophages, and dendritic cells (ADAMDEC1,

CXCL13, CD86, and SLAMF8) (210). Some IFN-g-inducible
transcripts (ANKRD22 and AIM2) were highly selective for TCMR.

NK cell (CD160, GNLY, KLRD1, SHD2D1B, CX3CR1) transcripts

strongly correlated with AMR, suggesting a prominent role of NK-

induced cell-mediated cytotoxicity in its pathogenesis (210).

Endothelial cell (CCL4, DARC/ACKR1, CDH5, CDH13, COL13A1,

etc.) and IFN-g inducible gene transcripts (CXCL11, CXCL10,

PLA1A) are also commonly described to be associated with AMR

(165, 212, 213). AMR molecular classifiers closely correlated with

microcirculation lesions, histological damage, and DSA (210).

The BANFF Molecular Diagnostics Working Group (MDWG)

compiled a validated 770-gene BANFF-Human Organ Transplant

(B-HOT) panel, which incorporated genes involved in immune

responses, rejection, tolerance, and viral infections (214). The panel

uses the NanoString nCounter platform, which allows relatively

rapid quantification of transcripts from fresh or formalin-fixed

paraffin-embedded samples.

Blood gene expression profiling (GEP) (commercial assay-

AlloMap®) has been extensively studied, primarily in heart
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transplant recipients, to reduce the need for frequent

endomyocardial biopsies. The 11 rejection-associated gene set was

discovered and validated in the CARGO study, a prospective

observational study of heart transplant recipients (215). A score

beyond a determined threshold was associated with a higher

likelihood of acute cellular rejection in cardiac allografts (215).

The IMAGE and EIMAGE trials revealed non-inferiority of GEP

compared to a biopsy-driven protocol for detecting rejection (216,

217). The Outcome AlloMap registry, a multicenter prospective

study of 1504 heart transplant recipients, showed that GEP

surveillance was associated with improved survival, reduced rates

of allograft dysfunction, and acute rejection (218). Low 2-6 months

and >6-month post-transplant GEP scores had NPVs for rejection

of 98.4% and 98.5% respectively. Kidney-specific GEP (5-gene

classifier: DCAF12, MARCH8, FLT3, IL1R2, and PDCD1)

discriminated between immune quiescence and rejection (219).

The Kidney Solid Organ Response test (kSORT) assay is a

peripheral blood 17 gene-set panel associated with rejection (220).

Whilst the original study, the Acute Rejection in Renal

Transplantation (AART) study of 436 KTRs, reported a high PPV

(81.3%–95.5%) and NPV (91.6%–98.0%) for detecting rejection,

this finding was not validated in a subsequent retrospective

multicenter study of 1763 KTRs (220, 221). Several studies since

have yielded conflicting results.

TruGraf®v1 is another commercially available blood 200-probe

micro-array gene-expression signature assay that is useful in stable

allografts to identify subclinical rejection (222). A positive test was

associated with poorer 24-month allograft outcomes and the

development of DSA (222). The application of an 11-gene set

signature, termed the “common rejection module” on urine and

tissue (kidney allograft biopsies) was shown to discriminate

between stable and rejection biopsies (223–225).

Given the comparative ease of collection relative to biopsies,

blood and urine gene expression profiling may be a helpful adjunct in

diagnostic algorithms. Despite the promising studies, ESOT

guidelines currently do not recommend the clinical use of gene

expression signatures to diagnose allograft rejection in those with

acute allograft dysfunction (185). The issue lies in the absence of

clearly defined, validated, and reproducible gene set signatures that

can distinguish between rejection and no rejection, and differentiate

between rejection phenotypes. Furthermore, the gene sets need to be

specific to the biological specimen type. Identifying specific gene sets

in more extensive, prospective studies, improving costs and

availability, and standardizing testing may push molecular

diagnostics to the forefront of rejection-infection diagnosis. The

MMDx project and the global collaboration of gene transcript

research using the Nanostring B-HOT panel may help with this

endeavor (214). Molecular profilingmay allow for the re-classification

of rejection phenotypes and severity, particularly where histology is

ambiguous. Additionally, gene signatures can provide insights into

intragraft changes associated with rejection therapies.

4.8.3 MicroRNAs
MicroRNAs (miRNA) are short (22 nucleotides), non-coding

RNA segments that regulate gene expression and play an important

role in modulating homeostatic and disease processes, including
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allograft rejection (226, 227). Up to 60% of transcribed genes of the

human genome are targeted by miRNA, and different cell types

express specific subsets of miRNA (227). MiRNAs may also provide

organ and disease-specific signatures relevant to allograft rejection

and infection. MiRNAs may be up- or down-regulated and detected

in the systemic circulation (serum or PBMC) or urine using real-

time PCR, microarray and next-generation sequencing (228). They

are annotated by a “miR” prefix and a unique number

identifier (229).
4.8.3.1 miRNA in infection

Whilst miRNAs have predominantly been assessed with respect

to rejection, miRNA profiling may also assist with infection

prediction and diagnosis. Viral miRNAs regulate viral genes

relating to replication, immune evasion and viral persistence and

can be detected in biological samples.

Two BK-virus miRNAs, bkv-miR-3p and bkv-miR-5p, regulate

viral replication. Serum levels of these miRNAs were higher in

KTRs with BK Nephropathy (230). Demey et al. (2021)

demonstrated that in KTRs with BK viremia, urinary bkv-miR-

B1-3p and bkv-miR-B1-5p levels reduced in concert with

reductions in serum viral loads (231). Additionally, increased

urine bkv-miR-B1-5p levels suggested active viral replication

(232). BK-virus encoded miRNA bkv-miR-5p and bkv-miR-3p

downregulate viral large T-antigen (LTag) expression, reducing

viral recognition and allowing immune evasion and persistence

(230). Downregulation of ULBP3 by BK-virus encoded miRNA

dampened NK-cell mediated killing of viral-infected cells (233).

Several miRNAs are described to be associated with CMV

viremia and infection. Afshari et al. (2022) found that KTRs with

CMV viremia had significantly higher plasma expression of the

CMV-encoded miRNAs, miR-UL112-3p/5p, miR-UL22A-3p/5p,

miR-US25-1-5p, miR-US25-2-3p/5p, miR-UL36-3p/5p and miR-

UL70-3p, relative to those with latent CMV (234). Reduced

expression of miR-125a-5p in CMV seropositive KTRs with

positive CMV-specific cell-mediated immunity predicted those

who were at higher risk of CMV infection despite the positive

CMI result (235).

Other microbial pathogens also induce characteristic miRNA

signatures. In bronchoalveolar lavage (BAL) samples of lung

transplant recipients, increased levels of miR-23b-3p expression

were associated with pneumonia (236). Dysregulation of five

miRNAs (miR-145-5p, miR-424-5p, miR-99b-5p, miR-4488, and

miR-4454/miR-7975) in BAL specimen was specific for invasive

aspergillosis in lung transplant recipients (237). A 25-set intragraft

miRNA signature differentiated acute pyelonephritis from allograft

rejection in KTRs (238).
4.8.3.2 miRNA in rejection

Studies have associated miRNA expression with immune cell

pathways implicated in rejection, notably T-cell activation and

regulation. FOXO1 is a key regulator of several cellular and

immune cell processes and plays a critical role in the

development of FOXP3 regulatory T-cells (226). Increased miR-

182-5p expression following IL-2 and STAT5 activation, has been
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shown to suppress FOXO1 and reduce regulatory T-cell production

(226). Elevated miR-182-5p levels were also noted in mice with

rejecting cardiac allografts (239). Another miRNA, miR-146a was

significantly upregulated in activated T-cells, particularly memory

T-cells (226).

4.8.3.3 Liver transplants

Several hepatocyte-derived miRNAs have been investigated for

their potential to diagnose clinical and subclinical liver transplant

rejection. In liver transplant recipients (LTRs), plasma miRNAs,

miR-122, miR-148a, miR-194, were linked to liver injury and acute

rejection (240). Plasma miR-483-3p and miR-885-5p levels could

predict rejection in those undergoing immunosuppression

withdrawal (241). Pre-transplant plasma miR-155-5p and post-

transplant miR-155-5p and miR-181a-5p expression correlated

with the risk of developing rejection in LTRs (242). These

miRNAs may be helpful in stratifying immunological risk pre-

transplant and rejection risk post-transplant (242).

4.8.3.4 Heart transplant

Myocardium-specific miRNAs have also been linked to cardiac

allograft rejection. The multicenter prospective cohort study, the

Genomic Research Alliance for Transplantation (GRAfT),

identified 12 plasma miRNAs that predicted acute cellular

rejection (ACR) (AUROC-0.92, 95% CI:0.86-0.98) and 17 that

predicted antibody-mediated rejection (AUROC-0.82, 95%

CI:0.74-0.90) (243). Other circulating miRNAs including miR-

486-5p and miR-181a-5p have also been shown to predict ACR

(244, 245). Circulating miR-10a, miR-92s, and miR-155 had

previously been linked to cellular rejection, however the

prospective multicenter study by Coutance et al. (2023) showed

no associations between these three miRNAs and allograft

rejection (246).

4.8.3.5 Lung transplant

Epithelial-to-mesenchymal transition (EMT) is important in

the pathophysiology of chronic lung allograft dysfunction (CLAD).

Increased expression of circulating miR-21, a regulator of EMT, was

seen in lung transplants with CLAD (247). TGF-b, is a potent

inducer of EMT and a critical mediator offibrosis. TGF-b associated
miRNAs, miR-369-5p and miR-144, were dysregulated in lung

transplant recipients with DSA and bronchiolitis obliterans

syndrome (BOS) (248, 249). The miRNA signature of

mononuclear cells (miR-369-5p, miR-144, miR-134, miR-10a,

miR-195 miR-142-5p, miR-133b, and miR-155) was able to

predict the development of DSA and BOS (248, 249). In

bronchoalveolar lavage samples, low miR-148b-5p and high miR-

744-3p expression distinguished rejection from no-rejection and

was significantly associated with shorter time to the acute rejection

episode (236).

4.8.3.6 Kidney transplant

Urinary and blood miR-155-5p expression has been evaluated

as a diagnostic and prognostic marker of allograft rejection in KTRs.

Urinary miR-155-5p levels correlated with eGFR levels and
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normalized after successful treatment and resolution of allograft

injury (250). Elevation in plasma miR-155, miR-223, and miR-21

expression was associated with AMR (251). MiR-223 was also raised

in TCMR, alongside miR-142-3p, miR-10a, and miR-100a, whilst

miR-99a declined (252). Changes in miRNA expression could

precede clinical and histological features of TCMR, with elevation

in miR-155-5p and miR-142 expression and reduction in miR-210-

3p expression noted before and during TCMR (250).

Whilst several studies have linked specific miRNAs with

allograft injury and damage, consistent associations are yet to be

validated. Available studies vary substantially with respect to study

populations, sample type and size, detection assays, and thresholds

used and demonstrate conflicting results. When tissue-specific,

unique miRNA signatures are established, miRNA profiling may

be a valuable additive tool for allograft surveillance and

rejection prediction.

4.8.4 Exomes
Exomes are nanometer-sized (50-200nm) extracellular vesicles

that carry proteins, lipids, metabolites, and/or nucleic acids (mRNA

or miRNA) and play a key role in inter-cell communication (253).

They are present in almost all biofluids, and their composition and

function are specific to the originating cell and are modulated by

physiological conditions and stressors. The role of exomes in SOT

has gained considerable interest. Exosomes that transport donor

and self-antigens may play a key role in allorecognition and

rejection (254). Urinary and plasma exome contents, particularly

proteomic and nucleic acid profiles, may provide valuable insights

into the underlying pathological processes such as rejection.

4.8.4.1 Kidney transplant

In a prospective study of 175 KTRs, a urinary mRNA exome

signature (CXCL11, CD74, IL32, STAT1, CXCL14, SERPINA1,

B2M, C3, PYCARD, BMP7, TBP, NAMPT, IFNGR1, IRAK2, and

IL18BP) distinguished any-cause rejection with no rejection (255).

The sensitivity, specificity, AUROC, and NPV were 85% (95%

CI, 74 -92%), 94% (95%CI 88 – 97%), 93% (95% CI 87 – 98%) and

93% (95% CI 88 – 96%) respectively. Additionally, another specific

gene signature (CD74, C3, CXCL11, CD44, and IFNAR2)

distinguished TCMR and AMR phenotypes, with a AUROC of

0.87 (95% CI, 0.76 to 0.97). Eleven urinary exome proteins were

enriched in KTRs with rejection (256). Tower et al. revealed an

increase in the plasma concentrations of C4d+/CD144+

microvesicles, an endothelial marker, in KTRs with AMR (257).

Additionally, C4d+/CD144+ microvesicle levels decreased following

anti-rejection therapy.

4.8.4.2 Heart transplant

A serum proteomic profile of 15 exomal proteins distinguish

cardiac allograft rejection with no-rejection. These related to

complement activation (C1QA, C1R), coagulation (FIBA, FIBB,

FIBG, FINC, F13A, and TSP1), IgG subfraction (KV302, HV304,

HV315) and APOL1 (258). In a prospective study of 10 heart

transplant recipients, serum exosomal miRNAs, miR-142-3p, miR-

92a-3p, miR-339-3p, and miR-21-5p were enriched in individuals

with allograft rejection (259).
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4.8.4.3 Lung transplant

Circulating exomes containing self-antigens may identify lung

transplant recipients at risk of allograft rejection and CALD (260). In

an observational study of 30 lung transplant recipients, donor-HLA

and self-antigens were detected in bronchioalveolar lavage and serum

exosomes of recipients with rejection and BOS but not in stable

patients. Exomes containing Col-V and immunomodulatory miRNA

were also isolated in lung transplant recipients with rejection (261).

Further large-scale research is required to validate and

reproduce relevant organ specific exomes that may serve as

biomarkers of organ health.
4.9 Integrating biomarkers

Integrating several markers, including molecular, immune,

serological, and clinical parameters, may strengthen the overall

diagnostic and predictive accuracy for rejection compared to a

single method used in isolation. The combination of dd-cfDNA

with gene expression profiling increased the predictive power for

detecting allograft rejection (262). Additionally, in the study by Park

et al. (2021) GEP detected more TCMR whilst dd-cfDNA detected

more AMR (262). In a heart transplant cohort, compared to GEP

alone for rejection surveillance, GEP with dd-cfDNA produced

similar one year rejection-free survival but did so with significantly

fewer biopsies (263). Integrating a pre-transplant functional

immune assay (donor-alloreactive IFN-g release assay/ELIspot)

with the six-month post-transplant blood gene-expression kSORT

assay was shown to predict subclinical rejection (264).

An integrated model combining urinary chemokines, CXCL9,

and CXCL10 with six other clinical parameters (recipient age,

gender, eGFR, DSA, signs of urinary tract infection, blood BK viral

load) showed moderate diagnostic accuracy (AUROC, 0.85) for the

detection of kidney allograft rejection (198). Similarly, an integrated

model combining CXCL9, CXCL10 with clinical markers (eGFR,

DSA, and BK viremia) also showed similar diagnostic performance

for detecting acute rejection (AUROC-0.81) (265). Moreover, using

the latter composite score, when the predicted rejection risk was

<10%, 59 out of 100 protocol biopsies were avoided (265).

The combination of chemokines and miRNA profiling has also

been assessed. Millan et al. (2023) described an integrated plasmatic

model including three miRNAs (miR-155, miR-181a-5p, miR-122-

5p) and CXCL10, which predicted TCMR in liver transplant

recipients with good diagnostic performance, AUROC 0.98 and

high PPV-97.7% and NPV-97.1% (266). In another study, an

integrated model of miR-155-5p, miR-615-3p, and CXCL-9 had

strong diagnostic accuracy for predicting kidney transplant allograft

rejection (AUROC- 0.92) (267).
5 Simultaneous infection and rejection
risk assessments and clinical
application of biomarkers

Several tools support the assessment of the transplant recipients’

net immune state and help refine infection-rejection risk stratification.
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Considering the complex interplay between these two complications,

their risks should be assessed concurrently (Table 2). Furthermore, the

dynamic nature of the immune state necessitates regular assessments

tailored to the clinical contexts. Several biomarkers, including dd-

cfDNA, urinary chemokines, and miRNAs, lack the specificity for the

prediction and diagnosis of rejection and may be deranged in the

context of other confounding contributors that cause graft

inflammation, including local and systemic infections (BK, CMV,

UTIs, pneumonia). Consequently, the distinction between these

entities requires clinical evaluation and assessment to identify the

most probable clinical scenario. Additionally, both rejection and

infection may co-exist. Table 2 summarizes the currently available

and emerging immune and non-immune tools for simultaneous

infection and rejection risk assessments.
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If concerns regarding accessibility and affordability are

circumvented, validated biomarkers should ideally be performed

at regular intervals during high-risk periods for rejection and

infection, particularly in transplant recipients with high

immunologic risk. The first-year post-transplant carries

significant risks for both infection and rejection. Monitoring

during this period with 1-3 monthly biomarkers may allow for

early detection of graft injury. Identifying the appropriate clinical

cause of graft injury requires integrating the biomarkers with the

clinical picture, infection-rejection risk assessments (e.g.,

immunological risk, donor/recipient serological match,

chemoprophylaxis, previous rejection), and relevant investigations

(viral serology, CMV-CMI, specimen cultures, inflammatory

markers, biopsy).
TABLE 2 Tests to assess the net-state-of immunity, and the results infection (immunosuppression) and rejection (immune activation) risk.

TEST INFECTION/IMMUNOSUPPRESSION RISK REJECTION/IMMUNE ACTIVATION RISK

Donor Specific antibody Increased background risk with DSA+ (immunosuppression
burden/previous rejection)

Positive DSA (HLA and non-HLA)
High MFI >4000, rising titers, type (DQ) (154–156, 161, 269).

Drug levels High IS levels: Particularly when Tacrolimus level >8ng/ml (141,
142, 144), MMF.AUC (>60mg/L.h) (142, 146, 147)

Low drug level (Tacrolimus <5ng/ml, MMF.AUC <40mg/L.h)
(144, 146) & high Tac variability (140, 143)

Cell counts Leukopenia, Neutropenia, Lymphopenia (73) Leukocytosis/lymphocytosis

Immunoglobulins Hypogammaglobulinemia (particularly IgG <600 mg/dL) (97–99)

Lymphocyte subsets Impaired NK cell function and low count (<30 cells/µL) (90, 91)
Low CD4+ count (<350 cells/µL), higher risk of OI with (<200
cells/µL) (81, 83).
Low CD4/CD8 ratio <1, high proportion CD8+ (>90th centile)
Increase in exhausted T-cells* (inhibitory surface markers) (63,
73, 119, 219).

Elevated T-cell (CD8+, CD4+ (>497cells/µL),
High effector T cell/T-reg ratio (82, 85, 86, 270)
Increased total NK cell count, low CD56+dim NK cells (76, 90,
94, 95).

Complement Low complements: C3 <80 mg/dL, C4 <18 mg/dL (73, 102, 103,
119).
Low MBL (104, 119, 271)

Soluble CD30 Low (<90 U/mL) (105, 107) High (74, 107, 108, 110)

Cell mediated immune assay Negative virus specific CMI, particularly CMV-CMI (129–132,
134, 135)

Positive/High alloreactive B & T-cell ELISPOT assay (IFN- g, IL-
2) (136–139).

CD4+ iATP assay Low ImmuKNOW assay results, (<225ng/mL) (111–113) High ImmuKNOW assay result (unclear evidence) (113–115)
- higher risk if ATP >280 ng/ml (115)

Viral loads Higher counts = greater degree of immunosuppression (14, 120)
- BK (particularly >10,000 copies/ml) (121)
- Teno-torque virus (122, 123, 125–128, 272)

Suppressed/undetectable viral loads

Donor derived cell free DNA >1% with allograft infection i.e., pyelonephritis of renal allograft,
pneumonia in lung transplant recipients (173, 174).

Elevated dd-cfDNA (>1%), in absence of other causes of graft
injury (i.e. infection) (168–171).
Improved discriminatory performance when combined with
clinical, molecular, DSA and protein markers (e.g. gene
expression profiling, DSA, urinary chemokines) (187, 198, 263).

Urinary chemokines Elevated in BK Nephropathy and UTI in KTRs (197, 198). CXCL10, CXCL11 (clinical and subclinical rejection screening)
(196, 197, 200, 202)

Molecular diagnostics Gene transcripts associated with infection (129, 207, 208, 273).
miRNA associated with infection (230–233, 235–237)

Transcripts/gene-sets associated with subclinical or acute rejection
(MDMx, AlloMAP, TruGRAF, kSORT) (134, 210, 212–215, 217,
221, 223–225, 264, 274)
miRNA associated with rejection (226, 227, 240, 243, 248, 251,
267)
Exomes associated with rejection (253–261)
DSA, Donor specific antibody; HLA, human leukocyte antigen; IS, immunosuppression; MIF, Mean Fluorescence Index; NK, Natural Killer; MMF. AUC, Mycophenolate area-under-curve;
MDMx, molecular microscope diagnostic system; miRNA, microribonucleic acid.
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Biomarkers could enhance pre-transplant risk and

immunocompatibility assessments and allow for personalization

of induction and maintenance immunosuppression and post-

transplant monitoring. A positive ELISPOT (IFN-g) identified

individuals with donor-reactive memory and/or effector B and T-

cells who were at a higher risk of rejection and may require a more

potent induction regimen (e.g., Anti-thymocyte globulin) (268).

Other clinically useful time points include following anti-

rejection therapy, completion of antimicrobial prophylaxis or

infection therapies, and immunosuppression adjustments (e.g.,

escalation following rejection or modulation following infections

such as BK/CMV).
6 Future direction and conclusion

Understanding the transplant recipient’s net state of immunity and

balancing the infection-rejection risk axis is a constant challenge for

clinicians. The cause-and-effect relationship between infection and

rejection is complicated and intricate, with several shared risk factors.

Heightening immunosuppression reduces the risk of rejection, albeit

with increased risk of rejection and short and long-term

immunosuppression-related toxicities. Accurately identifying transplant

recipients with allograft tolerance remains elusive. Developing effective

measures to identify graft tolerance will enable the safe reduction of

immunosuppression and its attendant complications.

Conventional markers of allograft dysfunction, such as eGFR and

proteinuria, are not sufficiently sensitive nor specific for timely

diagnosis of allograft rejection, with their perturbations often

trailing behind immunological injury. Biomarkers, particularly

when integrated with clinical, immunological, and serological

parameters, could help bridge this gap. Several commercially

available tests include but are not limited to: Luminex DSA

detection assays (anti-HLA, and non-HLA antibodies); dd-cfDNA

quantification (Allosure®); urinary chemokine measurement;

molecular diagnostics (Allomap®, TruGraf, kSORT assay) and

immune profiling (ELIspot, ImmuKNOW).

Despite considerable focus and research efforts devoted to

identifying non-invasive biomarkers of graft health, most

currently fall short of clinical implementation. The complex and

evolving immunological changes associated with rejection may not

be accurately reflected by a single biomarker alone. Many of the

described biomarkers do not consistently demonstrate both high

sensitivity, specificity, and favorable predictive values. Additionally,

the lack of standardization and validation of commercial assays and

diagnostic thresholds with respect to different biological tissue

types, clinical phenotypes and patient populations, significantly

limits the universal adoption of several emerging biomarkers into

routine clinical practice. The significant costs and lack of

commercial availability further hinder the transition of some

biomarkers from bench to bedside.

Dd-cfDNA and urinary chemokines are the most promising

biomarkers that have garnered significant interest with increasing

commercial availability. They are now incorporated into several

international clinical guidelines for the assessment of allograft

dysfunction (185). Dd-cfDNA is particularly advantageous as it is
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applicable to all SOT and its clinical use has gathered considerable

momentum, particularly in the United States (191, 194). Several

large clinical trials have been conducted to validate the predictive

and diagnostic test characteristics of both dd-cfDNA and urinary

chemokines, particularly for the detection or exclusion of AMR

(170, 191, 275). Their high NPV makes them especially effective for

excluding allograft injury and minimizing unnecessary biopsies

(275). However, their poor specificity for rejection diagnosis and

inability to distinguish rejection phenotypes may dampen the

enthusiasm for widespread clinical uptake. In addition to their

role in rejection diagnosis, both dd-cfDNA and urinary chemokines

have shown potential for use in detecting and monitoring graft

infections such as CMV, BK nephropathy, UTI and pneumonia

(197, 199).

Emerging evidence suggests that dd-cfDNA and urinary

chemokines may be beneficial in excluding subclinical rejection in

those with stable graft function and for assessing immunological

injury resolution following anti-rejection therapy (170, 191).

Despite promising evidence, the utility of biomarkers in detecting

subclinical allograft injury has yet to be verified. Prospective clinical

trials are currently underway to clarify their role in this context.

Temporal variations of these biomarkers, pre-test risk modifiers,

and confounding factors need to be carefully considered when

interpreting the results. The incorporation of dd-cfDNA and

urinary chemokines in the proper clinical context in conjunction

with other predictive and diagnostic immune and non-immune

markers could further strengthen the infection-rejection risk

stratification algorithm.

Molecular profiling (gene expression, miRNA, exomes)

methods, such as the Molecular Microscope Diagnostics system, is

also making significant ground and could drastically advance

transplant diagnostics. Rejection is a complex process involving

the graft, circulating immune cells, and secondary/tertiary

lymphoid tissue/organs. Molecular changes at all of these levels

must be clearly understood to better appreciate the underlying

immunological changes underpinning rejection. Furthermore,

identified rejection-specific gene signatures need to be reproduced

and validated in large, prospective trials. If this is achieved, molecular

diagnostics may eventually enable clinicians to refine the diagnosis of

rejection phenotypes and provide insights into the intragraft

mechanistic impacts of rejection and anti-rejection therapies.

Biomarkers would be particularly beneficial in clinical scenarios

associated with high infection and/or rejection risk, and where

currently available risk assessment strategies are imprecise. While

allograft biopsies are integral for definitive rejection diagnosis, they

are invasive and carry organ-specific risks. Incorporating

immunological, serological, and clinical parameters with

minimally invasive biomarkers could revolutionize transplant

recipient care by allowing serial surveillance of allograft health,

enhanced risk stratification of infection and rejection, and

personalization of therapeutic and diagnostic decisions. The

overarching goal is to detect immunological injury at its earliest

stage when therapeutic interventions are most likely to be effective.

Developing biomarkers that accurately identify subclinical rejection

could substantially advance this goal and significantly enhance both

allograft and patient survival.
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