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Introduction: Gastropod hemocyanins are potent immunostimulants in

mammals, a trait associated with their large molecular size and unusual

glycosylation patterns. While the hemocyanin from the marine snail keyhole

limpet (KLH), has been widely studied and successfully employed as a carrier/

adjuvant in several immunological applications, as well as a non-specific

immunostimulant for bladder cancer treatment, few other gastropod

hemocyanins have been biochemically and immunologically characterized. In

this work, we investigated the immunogenic properties of the hemocyanin from

Pomacea canaliculata (PcH), an invasive south American freshwater snail. This

species, known for its high reproductive rate and easy rearing, represents a

promising source of potential biomedical compounds, including hemocyanin.

Methods: Employing flow cytometry, fluorescence microscopy, immunoassays,

and quantitative PCR, we analysed the effects of PcH on THP-1 monocytes and

their derived macrophages, as well as its ability to induce humoral response on

C57BL/6 mice. Additionally, we evaluated the structural stability of PcH across a

wide range of temperature and pH values.

Results and discussion:Our findings demonstrate that PcH is a structurally stable

protein that not only triggers a pro-inflammatory effect on THP-1 derived-

macrophages by increasing IL1-b and TNF-a levels, but also promotes

phenotypic changes associated with the monocyte-to-macrophage

differentiation. Moreover, the humoral response induced by PcH in mice was

indist inguishable from that of KLH, highl ight ing the promis ing

immunostimulatory properties of this freshwater snail hemocyanin.
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1 Introduction

Molluscan hemocyanins are large respiratory proteins widely

distributed among invertebrates in nature. They are enormous

multimeric glycoproteins freely dissolved in the haemolymph,

representing up to 90% of the total protein content in this fluid (1).

Structurally, these respiratory proteins consist of partially hollow

cylinders, composed of ten subunits, each around 400 KDa,

associated in di-, tri-, and even multi-decamers. Thus, they are

among the largest proteins in nature, with molecular masses

ranging from 4 to 8 MDa or even higher. In addition, they exhibit

high thermal stability, with melting temperature reaching up to 80°C

in some species (2–4). Despite these common structural features, the

great mollusc diversity leads to marked differences among groups (5).

In the last decades, immunotherapies have emerged as

alternatives to traditional chemotherapies, particularly in

developing new antitumoral treatments (6, 7). Notably, molluscan

hemocyanins are potent natural immunostimulants in mammals,

enhancing both innate and adaptive immune responses with

promising clinical outcomes (8, 9). They have been used as

carrier proteins coupled to different antigens, including tumour-

associated carbohydrate antigens (TACA) (10, 11). They also serve

as non-specific immunostimulants in therapeutic cancer vaccines

and other anti-tumour strategies, acting as adjuvants to counteract

immune self-tolerance to tumour antigens (8, 12). The

immunomodulatory effects of hemocyanins are linked to their

unique features such as their enormous size which allows for

prolonged antigen presentation (8), and their heterogeneous

glycosylation patterns (13, 14). These patterns include methylated

hexoses, fucose or xylose residues, and truncated N-glycans (14, 15).

These glycans interact with immune receptors like C-type lectin

receptors and Toll-like receptor 4 on leukocytes, promoting the

secretion of Th1-type inflammatory cytokines (16).

The first molluscan hemocyanin employed in biomedical

studies was the keyhole limpet hemocyanin (KLH), isolated from

the haemolymph of the marine gastropodMegathura crenulata (9).

KLH has been successfully employed as a non-specific

immunostimulant for the treatment of recurrent superficial

bladder cancer, with negligible toxic side effects (17), making it an

ideal therapeutic agent for long-term continuous treatment. In the

last decades, due to the limited bioavailability and growing demand

for KLH, there has been a marked interest in identifying and

characterizing new hemocyanins with similar or better

immunological properties. In this sense, various new gastropod

hemocyanins have been studied, mostly from marine species such

as RtH from Rapana thomasiana (18–20), HtH from Haliotis

tuberculata (21, 22), CCH from Concholepas concholepas (23, 24),

FLH from Fissurella latimarginata (25), and HaH from the

pulmonated Helix aspersa (20).

Recently, a hemocyanin was isolated from a freshwater snail,

Pomacea canaliculata (Caenogastropoda, Ampullariidae). This

protein named PcH is a KLH-type hemocyanin organized in di-

decamers of 390 kDa subunits (26). The glycan moiety of PcH (2.8%

w/w) includes terminal galactose and GalNAc residues, as well as

high mannose and complex type N-glycans, containing structures

compatible with the T-antigen (27). PcH is of particular interest
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because it can be purified in large quantities from adult P.

canaliculata, a South American freshwater snail. This species is

especially significant as it is an invasive species with a high

reproductive potential and is easy to rear in laboratory

conditions. Since its introduction to China in the 1980s, it has

rapidly spread worldwide, prompting extensive studies on its

biology, physiology, and metabolism (28). These attributes

highlight the potential of this species as a source of compounds

with promising biomedical use, such as PcH.

In the present work, we study the immunostimulant properties

of PcH and evaluate its structural stability to explore its potential

application as a bioactive compound. We evaluated the effect of

PcH on macrophages focusing on pro-inflammatory cytokines, and

the morphophysiological changes induced in a human monocyte

leukemic cell line employing flow cytometry, fluorescence

microscopy, immunoassays, and quantitative PCR. In addition,

we evaluated in vivo the immunogenic activity of PcH in C57BL/

6 mice measuring the sera IgG titers by ELISA and characterized its

structural stability against temperature and extreme pH values by

absorption and fluorescence spectroscopy.
2 Materials and methods

2.1 Animals

Adult P. canaliculata snails were collected in water streams near

La Plata city, Buenos Aires province, Argentina (40° 42´ 46´´ S, 74°

0´ 21´´W), genetically identified by sequencing a cytochrome C

oxidase I gene fragment by using LCO1490 and HCO2198 primers

(29), and reared in the laboratory. All studies followed the

legislation of the Argentinean provincial Wildlife Hunting Law

(Ley 5786, Art. 2).

Six-week-old female C57BL/6JLAE mice were obtained from

the Experimental Animals Laboratory of the School of Veterinary

Science (UNLP, Argentina), housed in the facilities of the School of

Medicine (UNLP, Argentina), at 22°C with light/dark cycle of 12/12

h and fed ad libitum with sterile food and water.

Studies complied with the Guide for the Care and Use of

Laboratory Animals (30) and were approved by the “Comité

Institucional de Cuidado y Uso de Animales de Experimentación”

(CICUAL) of the School of Medicine, UNLP (P02-01-2024).
2.2 Protein sample preparation, NaIO4
treatment, and de-N-glycosylation

Lyophilized KLH was purchased from Sigma Chemical Co.

(Cat. No. H7017), reconstituted in phosphate buffer saline (PBS)

according to the manufacturer’s guidelines and sterilized by 0.22

µm filtration. Native PcH was isolated from the haemolymph

collected through exsanguination of 6 adult snails under sterile

and pyrogen-free conditions. The purification of PcH was

performed as previously described (27). Briefly, samples were

pooled, and cell free haemolymph was obtained by sequential

centrifugation at 500 x g, 10 min and 10,000 x g, 10 min. The
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obtained supernatant was layered on a tube containing NaBr (d
=1.28 g/mL) and centrifuged at 200,000 x g, 22 h, in a swinging

bucket rotor SW60.Ti on a Beckman L8M (Beckman, Palo Alto,

CA). After centrifugation, PcH-containing fractions -blue color

bands- were collected and pooled to further purify the protein by

size exclusion liquid chromatography on a Superose-6 column

(Amersham-Pharmacia, Uppsala, Sweden) coupled to an Agilent

1260 HPLC system (Agilent Technologies) using two different

mobile phases, PBS or 20 mM Tris-HCl pH 7.4, 20 mM CaCl2
and MgCl2 buffer, as appropriate for the experiments.

Deglycosylated PcH forms were obtained by an oxidative

procedure incubating with 15 mM sodium periodate for 1 h in

the dark at room temperature as previously described (31). PcH was

also de-N-glycosylated by treatment with glycerol-free PNGase F

(New England Biolabs) using dissociating conditions to give better

access to oligosaccharides, as previously described by Salazar and

coworkers (32). Briefly, PcH was dialyzed against dissociation buffer

(130 mM glycine containing 2.5 mM EDTA, pH 8.6), and then

heated at 60 or 100°C for 15 min. PcH was then cooled to room

temperature, and 2 ml of PNGase F in deionized water was added

and incubated for 24 h at 37°C. After deglycosylation, both PcH

samples were washed with PBS and concentrated to 1 mg/mL

employing an Amicon Ultra-15 50K MWCO device (Millipore).

Glycan removal was verified through PAGE analysis, by comparing

the electrophoretic pattern of the deglycosylated PcH forms with

the negative control for each treatment. The protein content of PcH

preparations was determined spectrophotometrically at 280 nm and

their purity was checked using PAGE. For cell culture assays,

hemocyanin samples were sterilized by filtration through 0.22 µm

membranes and endotox in l eve l s we re de t e rmined

spectrophotometrically, following the method described by

Karkhanis and coworkers (33).
2.3 PcH structural stability against pH
and temperature

To evaluate the influence of pH on the protein structure, 1.0

mg/mL PcH at pH values ranging from 2.0 to 12.0 were prepared.

Buffers were formulated using 100 mM sodium phosphate salts,

except for pH 4.0 buffer which was prepared by mixing 100 mM

sodium citrate and 200 mM Na2HPO4 0.2 M. Samples were

incubated for 48 h at 4°C in the dark and analysed by

fluorescence and absorption spectroscopy at 25°C.

To assess thermal stability, 0.6 g/L PcH dissolved in 20 mM

Tris-HCl buffer (pH 7.4) containing 10 mM CaCl2 and 10 mM

MgCl2 was subjected to rising temperatures from 25 to 85°C. Once

the desired temperature was stable, fluorescence and absorption

spectra were acquired.

2.3.1 Absorption spectroscopy
UV-visible spectra were recorded between 250 and 310 nm

using an Agilent 8453 diode array spectrophotometer (Agilent

Technologies, Waldbronn, Germany). The temperature of the

sample holder was controlled using a circulating water bath
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(Lauda-Königshofen, Germany). For each sample, three spectra

were acquired and averaged, and its corresponding buffer was

subtracted. In all cases, the fourth derivative spectra were calculated.

2.3.2 Fluorescence spectroscopy
Intrinsic fluorescence spectra of PcH at different temperatures

and pH values were recorded in emission scanning mode in a

Varian Cary Eclipse spectrofluorometer (Varian Inc., Australia).

Tryptophan residues were excited at 290 nm (5 nm slit) and the

emission was recorded between 310 and 410 nm (5 nm slit) in a 1

cm optical path quartz-cell. The temperature of the sample holder

was controlled by employing a circulating water bath (LAUDA,

Lauda-Königshofen, Germany). For each sample, three emission

spectra were acquired, averaged, and corrected for buffer

fluorescence. In all cases, the mass center was calculated.
2.4 Cell culture

The human pro-monocyte cell line THP-1 was obtained from

ECACC (Salisbury, UK). Cells were cultured in RPMI 1640 medium

(Serendipia Lab, Buenos Aires, Argentina) with 25 mM sodium

bicarbonate, 25 mMHepes, pH 7.3 supplemented with 10% v/v fetal

bovine serum (FBS, NATOCOR, Villa Carlos Paz, Córdoba,

Argentina), and 100 nM penicil l in/streptomycin (Life

Technologies, Grand Island, NY) at 37°C with 5% CO2 in a

humidified atmosphere. The cellular density was kept below 5 x

105/mL by diluting the cultures with fresh medium every 5 to

7 days.

2.4.1 Pro-inflammatory effects of PcH
To promote macrophage transformation, THP-1 cells were

seeded on a 24-well plate at approximately 106 cells/mL (0.5x106

cells/well), and exposed to 5 ng/mL phorbol 12-myristate 13-acetate

(PMA, Sigma Chemical Co.), for 48 h. Once transformed, the PMA-

containing medium was removed, and the macrophages were

washed twice with PBS and cultured for 24 h in fresh medium.

Finally, cells were exposed for 3 h to PcH as well as to its de-

glycosylated forms, at concentrations ranging from 0.015 to 1.000 g/

L in PBS, employing 50 ng/mL of lipopolysaccharide (LPS, Sigma

Chemical Co.) and PBS as positive and negative control of the assay,

respectively. After treatments, cell viability was evaluated by 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT,

Sigma Chemical Co.) assay as we previously described (34) and

the levels of TNF-a and interleukin-1b were determined in the

culture supernatants by ELISA (BD Biosciences, San Diego, CA) as

previously described (35).

2.4.2 Effect of PcH on monocyte differentiation
To evaluate the ability of PcH to promote THP-1 cell

differentiation to macrophages, THP-1 cells were seeded on

multiwell plates at approximately 106 cells/mL unless otherwise

stated and incubated with 1 g/L of the purified protein in PBS buffer.

The phenotypic changes observed were measured and compared

with 5 ng/mL of PMA and PBS as positive and negative controls,
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respectively. Experiments were performed by triplicates and cell

morphology, cell adhesion, and gene differential expression of

different macrophage markers were analysed as described below.

2.4.2.1 Cell adhesion

Cell adhesion was evaluated employing the Hoescht-33258

fluorophore. Briefly, cells were seeded on 96-multiwell plates and

incubated for 24 h either in the presence or absence of PcH, as

described above. Culture supernatants were centrifugated at 500 x g,

10 min and the pelleted cells were washed with RPMI 0.5% FBS, the

obtained pellet was resuspended in distilled water and incubated for

15 min in the dark at 37°C with 100 mL of Hoescht-33258 (Sigma

Chemical Co.), 0.02 mg/mL in TNE buffer (Tris-HCl 10 mM,

pH=7.4, NaCl 2 M, EDTA 1 mM). Well-adhered cells were

treated similarly. Sample fluorescence was registered at 460 nm

(lex, 358 nm) in a multiwell reader DTX 880 (Beckman Coulter,

CA, USA). In addition, images of adhered and non-adhered cells

were acquired in an inverted fluorescence microscope (Olympus

IX-71, Tokyo, Japan).

2.4.2.2 Flow cytometry

THP-1 monocyte cells were seeded in a multi-12 well plate and

incubated for 72 h in RPMI 0,5% FBS with PcH 1 mg/mL, PBS or

PMA 5 ng/mL. The culture supernatant, containing the non-

adhered cells, was taken and the adhered cells were gently

scrapped and resuspended in fresh medium. Both cell populations

of each treatment were pooled, washed once, and resuspended in

PBS, and their cell size and granularity were inferred by the forward

(FSC) and side scattered (SSC) light respectively. Additionally, to

further evaluate this differentiation process, the same experiment

was performed and, before harvesting, cells were incubated for 15

min at 37°C with 1 nM MitoTracker DeepRed (Invitrogen,

Waltham, MA, USA), a mitochondrial-potential dependent dye,

dissolved in RPMI without neither phenol red nor FBS.

The assays were performed on a BD AccuriTM C6 Plus Flow

Cytometer (BD Bioscience, San Diego, CA, USA), with a two-laser

base configuration: 488 nm solid-state blue laser and 640 nm diode

red laser, carrying standard optical filters: FL1 533/30 nm, FL2 585/

40 nm, FL3 >670 nm and FL4 675/25 nm. The latter was employed
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for detecting the emission of MitoTracker DeepRed excited by the

640 nm laser. Cells solely incubated with RPMI were employed as

autofluorescence control and subtracted to the median fluorescence

intensity (MdFI) of each treatment. For each sample 50,000 events

were recorded.

Data transformation and analysis were performed using the

FlowJo™ X 10.0.7r2 Software (BD Life Sciences). To define

populations, the FSC-A vs SSC-A gate was used for all data files.

Experiments were performed by triplicates or quadruplicates.

2.4.2.3 Quantitative RT-PCR

THP-1 cells were seeded in 60 mm culture plates at a density of

2.5 x 106 cells/mL (2.5 x 106 cells/plate) and cultured for 36 h in the

presence of 1 g/L of PcH and 5 ng/mL of PMA. Total RNA was

isolated from cultures using TRIzol reagent (Thermo Fisher Scientific

Inc.) following the manufacturer’s instructions. The absence of

genomic DNA as well as RNA integrity was checked in a 1%

agarose gel electrophoresis and total RNA content was quantified at

260 nm in a Nanodrop 2000/2000c (Thermo Fisher Scientific Inc.).

Synthesis of cDNA was performed using the iScript cDNA Synthesis

Kit (BIO-RAD Laboratories, Inc., Hercules, CA, USA) following the

manufacturer’s instructions. Real-time PCR was performed in a

AriaMix (Agilent Technologies, Inc) thermocycler using a qPCR

iTaq Universal SYBR Green Supermix, (BIO-RAD Laboratories, Inc.,

Hercules, CA, USA) to determine the relative gene expression levels

in each sample employing the following quantitation formula:

Ratio =
(ETARGET)

DCqTARGET(CALIBRATOR�SAMPLE)

(EREFERENCE)
DCqREFERENCE(CALIBRATOR�SAMPLE)

where E is the qPCR efficiency for each gene, calculated in the

corresponding calibration curves as 10(1-SLOPE REGRESSION LINE)-1,

TARGET means each of the markers which expression was

evaluated, REFERENCE is the housekeeping gene employed, i.e.

GAPDH, and CALIBRATOR the PBS-treated cells used as

negative control.

The oligonucleotide primer sequences for well-characterized

macrophage markers, including CD-80, CD-86, iNOS, CD-206,

CD-263, and CD-11b, as well as GAPDH used as housekeeping

gene, are listed in Table 1.
TABLE 1 Oligonucleotide primer sequences employed to evaluate the differential expression of macrophage markers.

GENE FORWARD PRIMER REVERSE PRIMER

Pan Macrophage CD68 CGAGCATCATTCTTTCACCAGCT ATGAGAGGCAGCAAGATGGACC

CD11b GGAACGCCATTGTCTGCTTTCG ATGCTGAGGTCATCCTGGCAGA

M1 CD86 CCATCAGCTTGTCTGTTTCATTCC GCTGTAATCCAAGGAATGTGGTC

CD80 CTCTTGGTGCTGGCTGGTCTTT GCCAGTAGATGCGAGTTTGTGC

iNOS GCTCTACACCTCCAATGTGACC CTGCCGAGATTTGAGCCTCATG

M2 CD163 CCAGAAGGAACTTGTAGCCACAG CAGGCACCAAGCGTTTTGAGCT

CD206 AGCCAACACCAGCTCCTCAAGA CAAAACGCTCGCGCATTGTCCA

Reference GAPDH GAGTCAACGGATTTGGTCGT TTGATTTTGGAGGGATCTCG
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2.4.2.4 Quantitation of CD-68 by Western blot

THP-1 cells were seeded in 12-well plates and incubated with 1

g/L of purified PcH in PBS for 72 h. Negative and positive controls

were obtained by incubating cells with PBS and 5 ng/mL PMA,

respectively. Plates were centrifugated at 500 x g for 10 min, the

supernatant discarded, and the cell culture total proteins extracted

with 40 µL of RIPA lysis buffer and quantified by Bradford (36).

Then, 5 mg of each protein sample was resolved in a 4-12% SDS-

PAGE gel and transferred onto a nitrocellulose membrane at 100 V

for 1 h in a Transblot Cell (Bio Rad Laboratories, Inc.), using 25

mM Tris–HCl, 192 mM glycine, 20% (v/v) methanol, pH 8.5 buffer.

After transfer, membrane was blocked with 5% (w/v) non-fat dry

milk in PBS–Tween 0.05% (v/v) for 1 h, and then incubated

overnight at 4°C with an anti-CD68 mouse monoclonal antibody

diluted 1/10,000 in 1% (w/v) non-fat dry milk in PBS–Tween. After

washing with PBS–Tween, the membrane was incubated with goat

anti-mouse IgG horseradish peroxidase conjugate (BioRad

Laboratories, Inc.) diluted 1/20,000. Immunoreactivity was

visualized by ECL in a ChemiDoc Imaging System (BioRad

Laboratories, Inc.).
2.5 Humoral immunity bioassays

To evaluate the immunogenicity of PcH in vivo, groups of three

mice were inoculated intraperitoneally with 100 mL of either KLH

(Sigma-Aldrich) or PcH, both at 2 g/L in PBS. A third group

received the same volume of PBS. Fifteen days later, the

immunization was repeated, and ten days after that, mice were

euthanized by cervical dislocation and bled by cardiac puncture.

The specific anti-PcH IgG levels in the sera were determined by

ELISA. Briefly, 96-well plates (NUNCMaxiSorp, Thermo Scientific)

were coated with 100 mL/well at 25 mg/mL of either PcH or KLH in

carbonate buffer (pH 9.6) overnight at 4°C. The plates were then

washed three times with PBS–Tween 0.05% (v/v) and blocked with

200 mL/well of 3% (w/v) non-fat dry milk in PBS for 1 h at 37°C.

After blocking, plates were incubated with 100 µL/well of two-fold

serial dilutions of the obtained sera in PBS, 1% (w/v) non-fat dry

milk, for 1 h at 37°C. Then, plates were washed and incubated with

anti-mouse IgG HRP (BioRad Laboratories, Inc.) (1/10,000 dilution

in 1% w/v non-fat dry milk in PBS) 1 h at 37°C. Finally, the plates

were washed again and developed by adding 100 µL/well of 1 mg/

mL o-phenylenediamine dihydrochloride (OPD) in citrate buffer

with 1 mL of H2O2. The colorimetric reaction was stopped by adding

50 µL/well of 2N H2SO4 and the OD was measured at 492 nm in a

Varioskan LUX reader (Thermo Scientific).
2.6 Statistical analysis

Unless otherwise stated, significant differences among samples

were evaluated by the One-way ANOVA test using GraphPad

Prism software (GraphPad software, Inc., San Diego, CA). Results

shown are representative of at least three independent assays.
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3 Results

3.1 PcH structural stability

The structural stability of PcH was evaluated across a wide

range of temperatures and pH values by absorption and

fluorescence spectroscopy. The protein showed high thermal

stability, with absorption spectra showing no perturbation until

80°C (Figure 1A), where a shift to higher wavelengths in the

corresponding fourth derivatives was observed (Supplementary

Figure 1SA). In contrast, fluorescence spectra of PcH showed a

red shift in their emission maxima as well as an increase in the

spectra mass center above 60°C (Figures 1B, C), indicative of a slight

structural perturbation at this temperature. Regarding pH structural

stability, PcH remained stable across a range of pH from 4.0 up to

10.0, as evidenced by both absorption (Figure 1D; Supplementary

Figure 1SB) and fluorescence spectroscopy (Figures 1E, F).
3.2 PcH cytotoxicity

The cell viability of THP-1 monocytes was assessed by MTT

assay after exposure to different PcH concentrations, revealing a

lack of cytotoxic effect after 3, 24, and 72 h of incubation

(Figure 2A). The endotoxin content in hemocyanin stock

preparations was undetectable in our experimental conditions.
3.3 Pro-inflammatory response

The pro-inflammatory effect of PcH on THP-1 differentiated into

macrophages was confirmed by the significant increase in TNF-a and

IL-1b levels in culture supernatants in a dose-dependent manner

(Figures 2B, E). This cytokine secretion pattern is consistent with a

Th-1 response previously observed for other gastropod hemocyanins

(12, 24). Interestingly, a significant decrease in TNF-a secretion was

observed when PcH was pre-treated with sodium periodate or

enzymatically de-N-glycosylated (Figures 2C, D, respectively).

Regarding IL-1b secretion pattern, a significant decrease was only

observed in macrophages exposed to periodate-treated PcH

(Figure 2F), while a marked, but not significant, decrease was

observed for PcH enzymatically de-N-glycosylated (Figure 2G).

Deglycosylation of PcH was confirmed using 6% native PAGE, which

showed a shift in the electrophoretic migration pattern following both

treatments (Supplementary Figure S2). These shifts are consistent with

observations reported for other hemocyanins (23, 32, 37).
3.4 Monocyte differentiation

3.4.1 Morphological changes
To track the phenotypic changes during the monocyte into

macrophages differentiation, the morphological changes in THP-1

human monocytes associated with PcH exposure were determined
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by flow cytometry. The forward vs. side scattered light dot plots

(Figure 3A) revealed the rise of a subpopulation with increased

subcellular complexity and a reduction in cell size in monocytes

treated with PcH compared to PBS-treated cells. These

morphological changes are consistent with the effects observed

with PMA treatment , which was used as a posi t ive

differentiation control.

3.4.2 Changes in cellular adhesion
Monocytes exposed to PcH underwent a phenotypic alteration

from suspension-growing cells to adhered ones, as expected for

THP-1 macrophage differentiation (Figure 3B). To monitor cellular

behaviour, THP-1 nuclei were stained with the Hoescht-33258 dye

which significantly increases its quantum yield when bound to

DNA. Fluorescence microscopy observations suggested a higher

number of cells adhered to the plate when treated with PcH or PMA

compared to treatment with PBS alone (Figure 3C). The

fluorescence quantification in each condition confirmed

significant differences in the suspended/adhered cell ratio upon

PcH treatment (Figure 3D).

3.4.3 Metabolic changes
Mitochondrial metabolism is highly dependent on the type of

cellular differentiation that monocytes undergo. The monocyte
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subpopulation with smaller size, as described above, also showed

a diminished MitoTracker Deep Red fluorescence intensity

(Figure 4A), suggesting that differentiating monocytes went

through characteristic metabolic changes after PcH exposure.

Indeed, monocytes exposed to PcH displayed a decrease in the

MitoTracker MdFI compared to PBS-exposed monocytes, which

is consistent with the effects observed for PMA-exposed monocytes.

Such a reduction in MdFI is indicative of mitochondrial

membrane hyperpolarization and a metabolic shift towards a

glycolytic phenotype, as it is expected for proinflammatory M1

macrophage differentiation.
3.4.4 Macrophage differentiation markers
To confirm the macrophage differentiation of PcH-exposed

monocytes, we analysed the presence of the pan-macrophage

marker CD68 by Western blot. Monocyte cultures showed an

increase in CD-68 for PcH and PMA-treated cells as shown in

Figure 4B. To further characterize the effect of PcH on monocyte

differentiation, we evaluated the differential gene expression

of M1/M2 macrophage markers by qPCR. We found a significant

increase in the expression levels of two M1 markers, namely

CD86 and CD80, after 36 h exposure to PcH (Figure 4C). No

significant changes were observed for the M2 markers employed

(not shown).
FIGURE 1

Structural stability of PcH. (A) UV-vis absorption spectra, (B) normalized intrinsic fluorescence spectra, and (C) their mass centers of PcH at different
temperatures. (D) UV-Vis absorption spectra, (E) normalized intrinsic fluorescence spectra, and (F) their mass centers of PcH at different pH values.
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3.5 In vivo humoral response

The immunogenicity of PcH was evaluated in vivo in C57BL/6

mice. The IgG titers in the sera of PcH and KLH immunized

animals were determined by ELISA, averaged and the PBS-group

titer was subtracted. Notably, not-significant differences in the IgG

titers between both groups of mice were observed, indicating that

both, PcH and KLH trigger a similar humoral response (Figure 5).
4 Discussion

Gastropod hemocyanins have rapidly gained research interest

due to their immunomodulatory properties, making these
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glycoproteins attractive candidates for biomedical applications.

Although only KLH is currently used therapeutically, a few other

marine gastropod hemocyanins have shown promising results (8).

No recombinant hemocyanin has been obtained, making its

production entirely dependent on purification from marine snail

sources. In this work, we studied the immunostimulant capacity of a

freshwater gastropod hemocyanin for the first time and evaluated

its structural stability across a wide range of pH and temperatures.

Our results expand the knowledge on molluscan hemocyanins,

providing insights into their immunogenic mechanism and

potential biomedical applications.

The structural stability of PcH was evaluated in a wide range of

temperature and pH values. While the protein does not completely

unfold at 80°C, similar to reports for Helix aspersa and H. lucorum
FIGURE 2

PcH cytotoxicity and induced cytokine secretion profiles on THP-1 derived macrophages. (A) Cell viability in THP-1 derived macrophages assessed
by MTT assay after 3h, 24h, and 72h exposure to 1, 0.1, and 0.01 mg/mL of PcH. (B) TNF-a secretion levels induced by 1, 0.1 and 0.01 mg/mL of
PcH, (C) 1 mg/mL NaIO4 oxidized PcH, and (D) 1 mg/mL de-N-glycosylated (PNGase F) PcH, after 3h exposure. (E) IL-1b secretion levels induced by
1, 0.1 and 0.01 mg/mL of PcH, (F) 1 mg/mL NaIO4 oxidized PcH, and (G) 1 mg/mL de-N-glycosylated (PNGase F) PcH, after 3h exposure. Bars
represent the mean ± SD of 3 independent determinations, au: arbitrary units. *P<0.05; **P<0.01; ****P<1x10-4; ns, non-significant differences.
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hemocyanins with Tm values of 79.8°C and 82.3°C, respectively (2, 4),

slight structural perturbations were observed above 55°C. Interestingly,

PcH remains stable across a broader range of pH values than that

reported for H. lucorum hemocyanin (4). This structural stability of

PcH in a wide range of pH and temperature values highlight the

versatility of this hemocyanin as an immunostimulant molecule.

We verified the pro-inflammatory effect of PcH, through increased

cytokine levels of IL1-b and TNF-a after exposing THP-1-derived

macrophages to PcH. This cytokine secretion pattern is strongly

associated with Th-1 response (38) and agrees with that observed for

KLH (24). Previously, Yasuda andUshio (39) found that KLH activates

the inflammation-related transcription factor NF-kB in THP-1 cells,

while Zhong and collaborators (40) demonstrated that marine

gastropod hemocyanins promote the differential gene expression of

proinflammatory cytokines, including IL-1b and TNF-a in murine

macrophages. In this work, macrophages exposed to deglycosylated

PcH (both by oxidation with sodium periodate and by PNGase F

digestion) showed significantly decreased secretion levels of TNF-a. In
contrast, a significant decrease in IL-1 b secretion was observed only

for the periodate deglycosylated form of PcH, suggesting that

carbohydrate moieties not removed by PNGase F digestion are
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important players in the immunomodulatory properties of PcH.

These findings are consistent with previous studies on KLH, CCH,

and FLH (32, 41), highlighting the relevance of glycosylation in the

immunogenic effect of molluscan hemocyanins. The high

immunogenicity of native PcH may be linked to the presence of

unusual glycan structures as seen in other hemocyanins (5, 15, 42–44),

including the Galb (1–6)Man unit in KLH (13) and a truncated N-

glycosylation pattern in CCH (14). In particular, Galb(1–3)GalNAc
(9), an epitope cross-reactive with the Thomsen-Friedenreich (Tf)

antigen [a truncated O-glycan structure that is highly overexpressed in

epithelial carcinomas (45)] in KLH has been demonstrated to be

immunogenic and proposed as a mediator of the beneficial effect of

KLH in bladder cancer (46). Notably, the presence of Galb (1–3)

GalNAc has also been reported in PcH by lectin assays (27).

We further studied the effect of PcH on innate immunity by

evaluating the phenotypic changes in THP-1 monocytes after PcH

exposure. The appearance of a subpopulation with higher cellular

complexity and smaller size, together with an increase in cellular

adherence was observed in monocytes exposed to PcH and PMA.

These phenotypic changes observed in both treatments are

indicative of a monocyte-to-macrophage differentiation process
FIGURE 3

Morphological changes of monocytes upon PcH exposure. (A) Forward (FSC) and side light scatter (SSC) plots of THP-1 cells incubated with 1mg/mL
of PcH for 72h. Gates: DIFF, differentiated monocytes; UNDIFF, undifferentiated monocytes. Representative data of 3 independent analyses. A total
of 50,000 events per sample were acquired. PBS and 5 ng/mL of PMA were used as negative and positive controls, respectively. (B) Representative
phase contrast photographs, and (C) fluorescence microscopy images of adhered and non-adhered THP-1 cells after 24h exposures to 1 mg/mL of
PcH employing the nuclear-dying agent Hoescht-33258. (D) Total fluorescence intensity of the dye, au: arbitrary units. Bars represent the mean ±
SD of 3 independent determinations for each treatment. ****P<1x10-4; *P<0.05.
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(47). Moreover, a metabolic shift to a glycolytic phenotype,

associated with ROS production in an M1 pro-inflammatory

activation (38, 48), was also observed in monocytes exposed to

PcH and PMA. The differentiation of THP-1 monocytes to

macrophages was confirmed by the presence of macrophage

markers in PcH-exposed monocytes, including CD68, a well-

known pan macrophage marker (49, 50), and the increased

differential gene expression of CD80 and CD86, indicative of M1

polarization (51). Finally, the ability to elicit a strong humoral

response seems to be another key feature of the immunostimulation
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induced by hemocyanins (9, 31). Native PcH was able to elicit IgG

levels like those found with KLH in an in vivo assay, highlighting the

immunogenic capability of this freshwater gastropod hemocyanin.

Based on our findings and data from other hemocyanins (9, 20, 31,

52), we propose a potential mechanism for the immunomodulatory

effects of PcH. It may activate macrophages at specific sites, triggering

the release of pro-inflammatory cytokines, while promoting M1

differentiation in newly recruited monocytes. This process likely

involves the interaction of PcH glycan moieties with innate immune

receptors, such as TLR-4 and C-type lectin (53–55), leading to a Th-1

response that helps to overcome the immune tolerance set up by

tumors and other pathologies. This mechanism aligns with the

complex structure and glycosylation pattern of PcH (27). Moreover,

the very low cross-reactivity of CCH and FLH with anti-PcH

polyclonal antibodies (27) suggests that PcH contains unique glycan-

related epitopes with potentially different immune properties.

In this scenario, PcH emerges as a promising new

immunostimulant. Derived from a well-studied freshwater

gastropod, with available genomic and transcriptomic data (56,

57), PcH displays remarkable structural stability across a wide range

of temperatures and pH values, expanding its potential for

therapeutic applications. Given the lack of recombinant forms

and the limited bioavailability of other hemocyanin sources, an

easy-to-rear species with a high reproductive rate represents a

promising alternative. These findings encourage further

investigations into the biochemical and immunological properties

of PcH, which may uncover new biomedical applications for this

molluscan hemocyanin.
FIGURE 4

Immunometabolic changes of monocytes upon PcH exposure. (A) Metabolic changes on THP-1 monocytes after 1mg/mL PcH exposure as
observed in MitoTracker Fluorescence vs. FSC dot plots. Gates: DIFF, differentiated monocytes; UNDIFF, undifferentiated monocytes. Median
fluorescence intensity (MdFI) of the fluorescent probe were analysed by Kruskal-Wallis test, au: arbitrary units. Bars represent the mean ± SD of 3
independent determinations for each treatment. *P<0.05. A total of 50,000 events per sample were acquired. PBS and 5 ng/mL of PMA were used
as negative and positive controls, respectively. (B) The pan macrophage marker CD68 detected by Western Blot on THP-1 cells after PcH exposure.
(C) Differential gene expression of CD80 and CD86 M1 macrophage markers by qPCR upon PcH exposure, PBS was used as negative control. Bars
represent the mean ± SD of 3 independent determinations for each treatment. ****P<1x10-4, **P<0.01.
FIGURE 5

Mice humoral response to PcH. Serum IgG titers of mice immunized
with PcH were compared with those immunized with KLH
determined by ELISA. Bars represent the mean ± SD of 3
independent determinations for each hemocyanin. ns, non-
significant differences.
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Insights from an integrated view of the biology of apple snails (caenogastropoda:
Ampullariidae). Malacologia. (2015) 58:245–302. doi: 10.4002/040.058.0209

29. Matsukura K, Okuda M, Cazzaniga NJ, Wada T. Genetic exchange between two
freshwater apple snails, Pomacea canaliculata and Pomacea maculata invading East and
Southeast Asia. Biol Invasions. (2013) 15:2039–48. doi: 10.1007/s10530-013-0431-1

30. Guide for the care and use of laboratory animals. In: , 8th edition. The National
Academy Press, Washington, D.C. p. 1–246 p. National Academies Press. Eight Edit.
doi: 10.1163/1573-3912_islam_DUM_3825

31. Arancibia S, Del Campo M, Nova E, Salazar F, Becker MI. Enhanced structural
stability of Concholepas hemocyanin increases its immunogenicity and maintains its
non-specific immunostimulatory effects. Eur J Immunol. (2012) 42:688–99.
doi: 10.1002/eji.201142011
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