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Single-cell RNA sequencing
highlights the influence of innate
and adaptive immune response
mechanisms in psoriatic arthritis
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and Lars Erik Kristensen3,5‡

1Department of Health Technology, Section for Bioinformatics, Technical University of Denmark,
(DTU), Kgs., Lyngby, Denmark, 2Department of Clinical Immunology, Aarhus University Hospital,
Aarhus, Denmark, 3The Parker Insitute, Copenhagen University Hospital – Bispebjerg and
Frederiksberg, Copenhagen, Denmark, 4Copenhagen Center for Translational Research, Copenhagen
University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark, 5Department of Clinical
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Introduction: Psoriatic arthritis (PsA) is a chronic immune-mediated inflammatory

disease displaying heterogeneous symptoms. However, the association between the

clinical heterogeneity of PsA and disease immunopathogenesis remains poorly

understood complicating diagnostic precision. A knowledge gap remains on

whether it is possible to distinguish the clinical PsA phenotypes on the immune

cellular level. The primary aim of the study was to explore the differences in gene

expression profiles comparing PsA patients without cutaneous psoriasis (PsA-only)

and PsA patients with cutaneous psoriasis (PsA/PsC). The secondary aim was to

describe the transcriptional patterns in PsA patients compared with healthy controls.

Methods: The study applied single-cell RNA sequencing (scRNAseq) using the BD

Rhapsody™ Single-Cell Analysis System to evaluate peripheral blood mononuclear

cells (PBMCs) from 70 PsA patients and 10 healthy controls. Differential expression

(DE) analysis and gene set enrichment analysis (GSEA) were applied to evaluate

differentially expressed genes (DEGs) and enriched signaling pathways, respectively.

Results: The DE analysis and GSEA comparing PsA-only and PsA/PsC patients

with healthy controls, respectively, revealed divergent results involving both

innate and adaptive immune mechanisms, which might be associated with

differences in the clinical phenotype. No DEGs were discovered in the direct

comparison of PsA-only and PsA/PsC patients.

Discussion: The single-cell transcriptome profiling provided insight into the

heterogeneity of PsA patients as the discovered DEGs and the GSEA did

demonstrate differences in signaling associated with inflammation comparing

PsA patients with and without cutaneous psoriasis.
KEYWORDS

psoriatic arthritis, psoriasis, scRNAseq, transcriptomics, bioinformatics, inflammation,
differential expression analysis, gene set enrichment analysis
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1 Introduction

Psoriatic arthritis (PsA) is a chronic immune-mediated

inflammatory disease driven by a dysregulation of the immune

response leading to a heterogeneous array of clinical manifestations,

including one or more of the following: joint pain and swelling,

spinal disease, cutaneous psoriasis (PsC), enthesitis, nail

abnormalities, and dactylitis (1).

The association between the clinical heterogeneity of PsA and

disease immunopathogenesis remains poorly understood, which

complicates diagnostic precision as treatment response may vary

between individual patients suffering from different symptoms (2).

The majority of patients diagnosed with PsA present with

preexisting PsC. However, 20% of PsA patients develop PsC after

the debut of arthritis (3), whereas 1%–2% of patients will never

develop PsC (4). This complicates treatment decision-making and

can lead to a prolonged clinical process for patients before the

correct diagnosis is established and the medical therapy with the

best effect on the inflammatory response and clinical symptoms is

provided. Furthermore, it has been estimated that 20%–30% of PsA

patients have no effect of existing treatment options (5, 6) and it is

well known that medical treatment in some cases can worsen

existing symptoms (7). However, the immunological knowledge

to support clinical practice in treatment decision-making is lacking.

Understanding the underlying immunopathogenesis, including

immune cell composition and functionality specific to the various

PsA clinical phenotypes, can pave the way for more personalized,

targeted, and effective treatment. Existing research has indicated

different immune cellular phenotypes to be associated with different

clinical phenotypes, including high clinical PsC scores being

influenced by natural killer cells and CD8+ T cells (8). Moreover,

an evaluation of the genetic predisposition to disease has identified

different risk variants comparing PsC subtypes, including PsA (9),

implying that diverse immune response mechanisms might be

responsible for the observed clinical heterogeneity.

Here, we present a translational study utilizing high-throughput

single-cell RNA sequencing (scRNAseq) to explore transcriptional

pattern and gene expression profiles of PsA patients to uncover the

association between transcriptional characteristics and clinical

phenotypic heterogeneity, comparing PsA patients suffering from

concurrent PsC (PsA/PsC) and PsA patients without cutaneous

psoriasis (PsA-only).
2 Materials and methods

2.1 Cohort description

2.1.1 Patients
A total of 70 PsA patients, comprising 30 PsA patients planned

for initiation of tumor necrosis factor alpha inhibitor (TNFi), 20

PsA patients planned for initiation of interleukin 17A inhibitor (IL-

17Ai), and 20 patients planned for initiation of methotrexate

(MTX), were included from the Parker Institute’s consecutive PsA

patient cohort (PIPA). PIPA inclusion and exclusion criteria are
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described in the PIPA cohort paper (10). Included patients were

further stratified based on cutaneous PsC involvement quantified by

the Psoriasis Area Severity Index (PASI), i.e., PsA/PsC with PASI >2

and PsA-only with PASI = 0. Patients with PASI >0 and ≤2 were

excluded from the current study (Supplementary Figure S1).

Peripheral blood mononuclear cells (PBMCs) and clinical data

were retrieved from the PIPA (10) baseline visit conducted

adjacent to the initiation of medical therapy. Additionally, 10

healthy, age- and gender-matched individuals were included as

controls. The project was conducted in accordance with the

Declaration of Helsinki with ethical approval obtained from the

Danish Ethical Committee of the Capital Region of Denmark (J.no.:

H-18024568) and the General Data Protection Regulation approved

by the Capital Region of Denmark (J.no.: BFH-2015-043). All

patients provided written informed consent before inclusion.

2.1.2 Clinical and patient-reported outcomes
A clinical evaluation was performed by a physician to examine

the impact of PsA, including 66/68 joint assessments to evaluate

swollen and tender joints, respectively. Furthermore, the

Spondyloarthritis Research Consortium of Canada (SPARCC)

enthesitis score evaluating 16 sites, an 18-site fibromyalgia tender

point count, and Psoriasis Area Severity Index (PASI) ranging from

0 to 72 were obtained from the clinical examination. Patient-

reported outcome included the Visual Analogue Scale (VAS)

depicting patient global health, pain and fatigue ranging from 0

mm to 100 mm, Psoriatic Arthritis Impact of Disease (PSAID)

ranging from 0 to 10, and Health Assessment Questionnaire –

Disability Index (HAQ-DI) ranging from 0 to 3. Composite

measures, including Disease Activity in PsA (DAPSA) (11) and

Disease Activity Score (DAS28CRP) (12), were calculated to

quantify PsA disease activity.
2.2 Experimental workflow

2.2.1 Separation of PBMCs
Peripheral blood was collected in EDTA vacutainer tubes

(Greiner Bio-One, Kremsmünster, Germany) for immediate

processing to retrieve PBMCs, which were isolated performing

density gradient centrifugation, including Ficoll-Paque solution

(GE Healthcare, Uppsala, Sweden). PBMCs were cryopreserved in

heat-inactivated fetal bovine serum (FBS) (Gibco, Grand Island, NY

USA) with 10% dimethyl sulfoxide (ITW Reagents, Darmstadt,

Germany) with initial controlled freezing to −80°C ensured by the

CoolCell™ (Corning) cryogenic storage box and subsequently

transfer to liquid nitrogen until further analysis.

2.2.2 Single-cell capture and cDNA
library preparation

The BD Rhapsody™ Single-Cell Analysis System (BD

Biosciences) (13) was implemented for the preparation of cDNA

libraries. PBMCs were thawed and washed twice using preheated

RPMI 1640 (Gibco) with 10% FBS (Gibco). Cells were stained with

Calcein AM (Thermo Fisher Scientific) and Draq7 (BD Biosciences)
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before evaluation of viability and cell concentration on the BD

Rhapsody Scanner. Cells were labeled with the BD® Single-Cell

Multiplexing Kit (BD Pharmingen™) (14) using different sample

tags 1–12 and washed twice with stain buffer (BD Pharmingen™).

Multiplex-labeled cells from two patients were pooled and loaded

onto the primed BD Rhapsody™ Cartridge and transferred to the

BD Rhapsody Express station (15). Magnetic cell capture beads

were loaded to the cartridge followed by an incubation step to

ensure single-cell capture in the microwells of the cartridge, and a

washing step to remove excessive beads. Cells captured by the

magnetic beads were lysed within the microwells and beads were

recovered before reverse transcription. The median retrieval rate of

viable cells per patient was 9,946 [IQR 8,726; 11,332] with a median

cell viability of 95.3% [IQR 90.4%; 97.9%] and a median doublet rate

of 5.1% [IQR 4.6%; 5.9%]. The mRNA whole-transcriptome

approach (WTA) (16) was implemented for priming, extension,

and amplification of transcripts. Library indexes were added

through polymerase chain reaction (PCR) generating the final

cDNA libraries and sample tag libraries, separately. All

procedures were performed strictly in accordance with the

manufacturer’s protocol.

2.2.3 Sequencing
WTA cDNA libraries and sample tag libraries, including

relevant cell labels and unique molecular identifiers (UMI), from

five to six cartridges (10–12 patient samples) were pooled before

sequencing. Pooled libraries were spiked with 20% PhiX and

sequenced (paired-end, 2 × 150 bp) on the NovaSeq 6000 S4

(Illumina). Sequencing was conducted at the Kennedy Center,

Department of Clinical Genetics, Centre of Diagnostic

Investigation, Rigshospitalet, Copenhagen, Denmark.
2.3 Statistical and single-cell data analyses

An overview of the steps involved in the single-cell RNA-seq

analysis pipeline is provided in Supplementary Figure S2. Baseline

characteristics were presented as numbers with percentages for

categorical variables and median with interquartile ranges (IQR) for

continuous variables. Differences between groups in baseline

demographics and clinical characteristics were evaluated with chi-

squared test for categorical variables and one-way ANOVA for

continuous variables, utilizing the “tableone” package (version

0.13.2) in R.

2.3.1 Quality control, cell annotation, and
reference mapping

The BD Rhapsody™ WTA Analysis Pipeline incorporated in

the Seven Bridges Genomics platform was used for processing of the

raw fastq-files to generate gene count matrices (17). This involved

filtering by read quality, aligning reads to the GRCh38 human

reference genome, correcting for UMI errors using recursive

substitution error correction (RSEC) and sample demultiplexing.

The raw unfiltered gene count matrices were further processed by

CellBender v0.3.0 (18) to eliminate technical artifacts by reducing
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counts due to ambient RNA molecules and random barcode

swapping. Subsequent quality control was conducted using the

Seurat v5.0.1 R-package (19). Cells with less than 500 UMI

counts or 200 distinct gene counts were filtered out. To

accommodate the varying proportions of mitochondrial content

across samples, sample-dependent thresholds were selected based

on the 95th percentile of mitochondrial content within each

sample’s cells. For each sample, the 95th percentile was rounded

up to the nearest value of 20%, 25%, 30%, or 35%, and cells with

higher mitochondrial proportions were filtered out. Eight samples

were excluded from the analysis as they did not pass quality control

due to much higher mitochondrial content and fewer gene counts

than the majority and were therefore suspected to be compromised

and four samples were excluded due to technical issues.

Additionally, cells with a hemoglobin (HBA1, HBA2, HBB, HBD,

HBM, HBG1, HBZ, HBQ1) expression greater than 0.1% were also

filtered out. While the sample determination algorithm provided by

BD Biosciences removes between-sample doublets, the

DoubletFinder R-package V2.0.3 (20) was used for the removal of

within-sample doublets using an expected proportion of doublets

of 2%.

The count matrix of each sample was individually normalized

using SCTransform (19), which identified 3,000 variably expressed

genes per sample. The Azimuth anchor-based reference mapping

framework was applied to map each sample to a PBMC CITE-seq

reference of 161,764 cells of annotated cell types offered by Seurat

(19). Anchors between each sample and the reference were

identified using the “FindTransferAnchors” function with 50

dimensions and a pre-computed reference dimensional reduction

based on supervised PCA (SPCA). Next, these anchors were

supplied to the MapQuery function to map each cell of a given

query sample to one of the reference cell types. The cell type

annotation process was evaluated by considering the highly

expressed genes of each predicted cell type as well as the

prediction scores derived from Azimuth. Having verified the

annotation, all query samples were merged, and cells predicted

doublets were removed. Finally, to check for novel populations in

the query data, we merged all reference and query cells, and a new

Uniform Manifold Approximation and Projection (UMAP)

embedding was computed. It was further investigated whether

samples could be clustered by a PCA on the sample level, using

the fractions of each cell type as input. In addition, a batch-

dependent gene ambient metric was computed. This metric was

calculated by aggregating counts for each gene found in barcodes

with fewer than 100 total gene counts, which indicate non-viable

cells. This metric was utilized in subsequent analyses to determine

whether a gene ’s expression difference stemmed from

contamination with ambient RNA or biological factors.

2.3.2 Differential expression analysis
Differentially expressed genes (DEGs) were analyzed at baseline

between A) PsA/PsC patients and PsA-only patients, B) PsA/PsC

patients and healthy controls, C) PsA-only patients and healthy

controls, and D) all PsA patients and healthy controls. For all

differential expression (DE) analyses, an initial quality control step
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was conducted based on the subset of data involved in the analysis.

This involved re-clustering of the data, to ensure that all samples

were represented in each cluster, as well as visual inspection of the

generated UMAPs. Next, pseudo-bulks were produced by

aggregating the raw counts per cell type and sample combination.

Sample-cell type combinations with zero counts and genes observed

in less than five cells from such a combination were removed before

DE analysis. For consensus, all analyses were performed on each

identified cell type separately using the three tools DESeq2 (21),

EdgeR (22), and Limma-voom (23). Venn diagrams were generated

to visualize the overlapping genes across tools (Supplementary

Figure S3). Only genes found to have an absolute log2 fold

change > 0.5 and found to be significantly differentially expressed

(adjusted p-value < 0.05) by at least two of the tools or found to have

an adjusted p-value of < 0.01 by a single tool were considered

significantly differentially expressed. The 75th percentile was used

for filtering based on ambient gene count.

2.3.3 Gene set enrichment analysis
The ClusterProfiler R package V 4.10.0 (24) was applied to

perform gene set enrichment analysis (GSEA), using genome-wide

annotation for the human reference dataset available from the R

package org.Hs.eg.db (25). The analysis was conducted in cases

where more than 100 genes were found significantly differentially

expressed per model setup. The input for the analysis included all

the identified differentially expressed genes. To rank the genes, for

the GSEA we performed a principal component analysis (PCA) on

the log2 fold changes obtained from DESeq2, EdgeR, and Limma-

voom and used the first principal component (PC) for gene ranking

(Supplementary Figure S4). GSEA was performed on all genes for

each cell type. Pathways with an adjusted p-value < 0.05 were

considered significant and retained for further analysis.
3 Results

This study utilized scRNAseq to explore transcriptional pattern

and gene expression profiles of PsA patients, examining the

association between transcriptional characteristics and clinical

phenotypic heterogeneity, comparing PsA/PsC and PsA-only. A

total of 39 PsA patients, including 19 PsA/PsC patients and 20 PsA-

only patients, were included for the primary analysis exploring the

differences in transcriptional patterns of PsA patients with different

clinical phenotypes defined by cutaneous disease involvement. A

total of 58 PsA patients and 10 healthy controls were included to

explore the difference between PsA patients and healthy controls

(Supplementary Figure S1). No statistically significant differences

were found at baseline comparing PsA/PsC (PASI 4.80 [IQR 3.15;

5.85]) and PsA-only (PASI 0.00 [IQR 0.00; 0.00]) patients with

regard to age, disease duration, type of biological disease-modifying

anti-rheumatic drugs (bDMARDs), number of previous

bDMARDs, and clinical outcome, including SPARCC, tender

point count, DAPSA, and DAS28CRP (Table 1). Statistically

significant differences between the groups were found comparing
Frontiers in Immunology 04
sex, VAS patient global health, and VAS patient fatigue with PsA-

only patients scoring higher than PsA/PsC patients. This trend was

indicated in measuring VAS patient pain as well, but the result did

not reach statistical significance.
3.1 Cell type abundance profiles were
similar in PsA patients

A total of 469,438 cells from 68 patient samples (58 PsA patients

and 10 healthy controls) were retained after quality control and

included for further analysis. There were 27 distinct immune cell

types identified by the cell type annotation and clustered according

to the identified cell types (Figure 1A) with no discovery of novel

cell populations (Supplementary Figure S5). The abundance of the

different cell types was overall consistent across all samples

(Supplementary Figure S6) and across the three examined groups,

i.e., PsA/PsC (148,078 cells), PsA-only (142,563 cells), and healthy

controls (58,138 cells), with a similar distribution of cell type

clusters (Figure 1C). The overall cell type distribution and

frequency within the examined groups were similar with CD4+ T

central memory cells (TCM), CD14+monocytes, and CD4+ naïve T

cells, being the most dominant cell types accounting for 53.0%–

57.7% of the examined immune cells of all three groups (Figure 1B),

although with varying fractions of CD14+ monocytes, and a lower

fraction of NK cells in PsA-only patients (Figures 2A, B). The PCA

using cell type fractions did not reveal any distinct clustering of the

patients, with 74.29% variance explained by the first two PCs

(Supplementary Figure S7).
3.2 Differential expression analysis
comparing PsA-only and PsA/PsC patients

The examination of DEGs comparing PsA-only patients and

PsA/PsC patients was conducted, aiming to resolve the diversity

and heterogeneity of clinical PsA phenotypes. No differentially

expressed genes were found comparing the two patient groups.
3.3 Identification of differentially expressed
genes in PsA compared with
healthy controls

A comparison between all PsA patients (n=58) and healthy

controls (n=10) revealed a total of 298 unique significant DEGs

(Supplementary Table S1), which were mainly identified within

CD4+ TCM, CD4+ naive, CD14+ monocytes, and NK cells

(Figure 3A). Several unique DEGs (Figure 3C) were identified

across multiple cell types. Among the top 20 DEGs, by absolute

log2 fold change, were genes RGS1, CX3CR1, NCAP2G, and

PMAIP1, which were represented in >1 cell type (Figure 3B).

RGS1 (regulator of G-protein signaling 1) was downregulated in

both intermediate B cells and CD4+ naïve T cells, CX3CR1 (C-X3-C
frontiersin.org
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Motif Chemokine Receptor 1) was found upregulated in CD14+

monocytes and cDC2s, and NCAPG2 (Non-SMC Condensin II

Complex Subunit G2), a protein-encoding gene important to cell

division, was downregulated in CD4+ naive T cells, CD4+ TEM,

and NK cells. Additionally, PMAIP1 (Phorbol-12-Myristate-13-

Acetate-Induced Protein 1), a pro-inflammatory and pro-apoptotic

gene, was found downregulated in CD4+ TCM, MAIT cells, and

Tregs. Out of the top 20 DEGs, 13 were associated with T-cell

subtypes (Figure 3B), demonstrating the well-known importance of

T cells in PsA immunopathogenesis. Interestingly, five of the top 20

DEGs were found downregulated in MAIT cells, namely, CSRNP1,

IRS, NR4A2, PMAIP1, and RBM38. CISH and CLU were found

upregulated in I) CD4+ TCM and CD4+ TEM and II) CD14+

monocytes, respectively. Several genes were found differentially

expressed in multiple cell subtypes, including upregulated GIMAP
Frontiers in Immunology 05
family genes, up- and downregulated ZNFs and TMEMs, and

downregulated ZTBTs and PDZD8 (Supplementary Table S1).
3.4 DEGs associated with PsA-only and
PsA/PsC compared with healthy controls

Grouping PsA patients based on PsC, a total of 113 unique genes

were identified as significantly differentially expressed in PsA-only

patients compared with healthy controls (Supplementary Table S2).

On the other hand, 308 unique genes were identified as significantly

differentially expressed in PsA/PsC patients compared with healthy

controls (Supplementary Table S3), respectively (Supplementary

Figure S8). DEGs were mainly found in CD14+ monocytes for

PsA-only patients and CD4+ TCM and CD4+ Naïve T cells for
TABLE 1 Baseline characteristics.

All PsA
(n=58)

PsA-only
(n=20)

PsA/PsC
(n=19)

p value † HCs
(n=10)

p value ‡

Age 52.57 (12.33) 52.94 (14.12) 48.29 (12.16) 0.279 46.77 (10.42) 0.166

Female 26 (44.8) 5 (25.0) 12 (63.2) 0.038 5 (50.0) 1.000

Disease duration 8.44 (10.08) 8.75 (12.72) 7.07 (7.55) 0.620

Active treatment 0.116

- TNFi 17 (29.3) 8 (40.0) 4 (21.1)

- IL-17Ai 16 (27.6) 6 (30.0) 3 (15.8)

- MTX 25 (43.1) 6 (30.0) 12 (63.2)

Previous bDMARDs 0.265

- 0 8 (13.8) 3 (15.0) 1 (5.3)

- 1 30 (51.7) 8 (40.0) 11 (57.9)

- 2 12 (20.7) 4 (20.0) 5 (26.3)

- ≥3 8 (13.8) 5 (25.0) 2 (10.6)

SPARCC enthesitis 3.00 [1.00, 5.00] 4.50 [1.75, 5.00] 3.00 [1.00, 6.00] 0.713

Tender point count 1.00 [0.00, 6.00] 4.00 [0.00, 8.25] 0.00 [0.00, 3.50] 0.160

PASI 1.20 [0.00, 3.00] 0.00 [0.00, 0.00] 4.80 [3.15, 5.85] <0.001

DAPSA 29.80 [22.00, 42.50] 32.60 [24.47, 40.47] 29.00 [20.05, 45.40] 0.844

DAS28CRP 4.14 [3.72, 4.92] 4.40 [3.86, 4.96] 4.09 [3.73, 4.90] 0.613

VAS pt. Global 69.00 [50.00, 79.00] 76.00 [68.25, 91.25] 57.00 [33.50, 74.00] 0.012

VAS pt. Pain 64.00 [30.00, 79.00] 70.50 [56.75, 85.75] 41.00 [23.00, 77.50] 0.064

VAS pt. Fatigue 67.00 [50.00, 82.00] 79.50 [67.75, 89.25] 60.00 [37.50, 77.00] 0.038

PSAID 5.68 [3.17, 6.54] 6.09 [4.78, 7.63] 4.81 [2.58, 6.52] 0.164

HAQ 1.00 [0.50, 1.63] 1.13 [0.60, 1.75] 0.88 [0.44, 1.19] 0.190
Baseline characteristics presented as number with corresponding percentages for categorical variables and median with interquartile ranges (IQR) for continuous variables. P values (†) represent
the differences between PsA/PsC and PsA-only patients. P-values (‡) represent the difference between all PsA patients and healthy controls. HCs, healthy controls; TNFi, tumor necrosis factor
alpha inhibitor; IL-17Ai, interleukin 17A inhibitor; MTX, methotrexate; bDMARDs, biological disease modifying anti-rheumatic drugs; SPARCC, Spondyloarthritis Research Consortium of
Canada; PASI; Psoriasis Area Severity Index; DAPSA, Disease Activity in Psoriatic Arthritis; DAS28CRP, Disease Activity Score; VAS, Visual Analogue Scale; PSAID, Psoriatic Arthritis Impact of
Disease; HAQ, Health Assessment Questionnaire.
Bold text indicates statically significant p-values.
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FIGURE 1

Immune cell abundance profiles. Cell type annotation of the data (A) UMAP embedding of the entire dataset labeled by referenced-based cell type
annotation revealed 27 unique cell type clusters identified using all 68 samples. (B) Stacked bar chart including the fraction of each annotated cell
type, in PsA-only, PsA/PsC, and healthy controls (49 samples). (C) UMAP embeddings split by PsA-only, PsA/PsC patients, and healthy controls (49
samples). PsA-only, psoriatic arthritis without cutaneous psoriasis; PsA/PsC, psoriatic arthritis with cutaneous psoriasis; UMAP, uniform manifold
approximation and projection; PsA, psoriatic arthritis; PsC, cutaneous psoriasis; CD, cluster of differentiation; TCM, central memory T cells; TEM,
effector memory T cells; NK, natural killer; MAIT, mucosal associated invariant T cells; Tregs, regulatory T cells; cDC2, conventional dendritic cells 2
(CD1c-positive); pDCs, plasmacytoid dendritic cells; HSPC, hematopoietic stem and progenitor cells; cDC1, conventional dendritic cells 1 (CD141-
positive); ILC, innate lymphoid cells; ASDC, AXL+ dendritic cells; CTL, cytotoxic T cells.
FIGURE 2

Cell type frequencies in PsA-only patients, PsA/PsC patients, and healthy controls. Boxplot of the cell type frequency distribution, colored by the
groups PsA-only (red), PsA/PsC (blue), and healthy controls (green); 49 samples in total. (A) Cell types with a frequency above 1%. (B) Cell types with
a frequency lower than 1%. PsA, psoriatic arthritis; PsA/PsC psoriatic arthritis with cutaneous involvement; PsA, psoriatic arthritis; PsC, cutaneous
psoriatic; CD, cluster of differentiation; TCM, central memory T cells; TEM, effector memory T cells; NK, natural killer; MAIT, mucosal associated
invariant T cells; Tregs, regulatory T cells; CTL, cytotoxic T cells; conventional dendritic cells 2 (CD1c-positive); pDCs, plasmacytoid dendritic cells;
HSPC, hematopoietic stem and progenitor cells; cDC1, conventional dendritic cells 1 (CD141-positive); ILC, innate lymphoid cells; ASDC, AXL+
dendritic cells; CTL, cytotoxic T cells.
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PsA/PsC patients (Figure 4A), with an overlap in 49 unique DEGs

appearing in both PsA-only and PsA/PsC patients compared with

healthy controls. Among the top 20 DEGs based on log2 fold change,

only downregulation of IGLL5 in plasmablast cells was observed in

both PsA-only and PsA/PsC patients (Figure 4B). Overlapping DEGs

associated with both PsA-only and PsA/PsC compared with healthy

controls, respectively, include inflammation-associated genes such as

EOMES and CX3CR1. EOMES was found upregulated in CD8+

TEM in both PsA-only and PsA/PsC, and in MAIT and NK cells in

PsA/PsC patients, whereas CX3CR1 was upregulated in CD14+

monocytes and cDC2 in both PsA-only and PsA/PsC patients.

Furthermore, in NK and gd T cells in PsA/PsC patients. Additional

overlapping genes included TNFAIP family gene members and

TNFAIP8L2 upregulated in cDC2 cells of both patient groups and

in CD4+ TCM of PsA/PsC patients, and TNFAIP3 (Figure 4B) was

downregulated in multiple cell types (CD4+ naïve T cells, CD4+

TCM and TEM, CD8+ TCM and TEM, gdT cells, andMAIT and NK

cells). Several differentially expressed long non-coding (lnc)RNA

were exposed in the study, which has been implicated in the

development of inflammation and the immunopathogenesis of

PsA. However, the exact mechanisms of immune-related lncRNAs

in the inflammation response remain largely unknown (26, 27).
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3.5 Both innate and adaptive molecular
mechanisms were associated with PsA

GSEA was implemented to identify enriched pathways in all

PsA patients compared with healthy controls. Based on the detected

DEGs, a total of 128 pathways were found to be significantly

enriched (adjusted p-value < 0.05), with 49 negatively enriched

and 79 positively enriched pathways (Supplementary Table 4). In

CD14+ monocytes, pathways such as positive regulation of

osteoclast differentiation (GO:0045672), leukocyte activation

(GO:0045321), and leukocyte migration (GO:0050900) were

enriched having a high gene ratio, spanning from 35% to 48%

overlap between the identified DEGs and the list of genes involved

in the pathways (Figure 5). The significant DEGs CLU and PTPRJ

were part of the core enrichment gene set for leukocyte activation

and were upregulated in CD14+ monocytes of PsA patients

compared with healthy controls. Additionally, the pathway

defense response to other organism (GO:0098542) was enriched in

CD4+ Naive T cells (Figure 5). The core enrichment genes included

ARL8B and SLC15A4, which were upregulated in PsA patients

compared with healthy controls. The pathways Immunoglobulin

mediated immune response (GO:0016064) and B cell-mediated
FIGURE 3

Differentially expressed genes (DEGs) associated with PsA compared with healthy controls. Differential expression analysis revealed 298 unique
differentially expressed genes comparing PsA patients and healthy controls. (A) visualizes the number of DEGs in individual immune cell types,
(B) displays the top-20 DEGs and the cell association, and (C) is the volcano plot defining the DEGs with p-adjusted cutoff at 0.05 and log2 fold
change cutoff at 0.5 representing the distribution of non-DEGs and DEGs. The mean values for p-adjusted and log2 fold change across all three
tools (DESeq2, edge R, and Limma-voom) are used for the visualization in (B, C). For all figures, it applies that blue corresponds to downregulated
genes, whereas red corresponds to upregulated genes. TCM, central memory T cells; NK, natural killer; MAIT, mucosal associated invariant T cells;
TEM, effector memory T cells; cDC2, conventional dendritic cells 2 (CD1c-positive); Tregs, regulatory T cells.
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immunity (GO:0019724) were enriched in plasmablast. The

significant DEG IGLL5 part of the core enrichment was

downregulated in plasmablast cells of PsA patients compared

with healthy controls.
3.6 GSEA comparing PsA-only and PsA/PsC
with healthy controls

The GSEA for PsA-only compared with healthy controls

identified 75 significantly enriched pathways (adjusted p-value <

0.05), with 37 pathways negatively enriched and 38 positively
Frontiers in Immunology 08
enriched (Supplementary Table S5). In CD4+ Naive T cells,

several pathways exhibited negative enrichment, including

Defense response to other organism (GO:0098542), Immune

response-regulating signaling pathway (GO:0002764), Regulation

of innate immune response (GO:0045088), Regulation of tumor

necrosis factor production (GO:0032680), and Tumor necrosis

factor production (GO:0032640). Additionally, innate immune

response (GO:0045087) was negatively enriched in CD4+ Naive

and cDC2 cells. Significant DEGs in the core enrichment included

CD180 and TNFAIP8L2, which were both upregulated (log2fc of

1.22) in PsA-only patients compared with healthy controls

(Figure 6A). In cDC2 cells, negative enrichment was observed in
FIGURE 4

Differentially expressed genes (DEGs) associated with PsA-only and PsA/PsC compared with healthy controls. Differential expression analysis
revealed 113 and 308 unique differentially expressed genes between PsA-only patients and PsA/PsC patients compared with healthy controls,
respectively. (A) visualizes the number of DEGs in individual immune cell types, (B) displays the top-39 DEGs and the cell associations. The x-axis
log2 fold change represents the mean log2 fold change across all three tools (DESeq2, edgeR, Limma-voom). PsA, psoriatic arthritis; PsC, cutaneous
psoriatic; CD, cluster of differentiation; TCM, central memory T cells; TEM, effector memory T cells; NK, natural killer; MAIT, mucosal associated
invariant T cells; Tregs, regulatory T cells; CTL, cytotoxic T cells; conventional dendritic cells 2 (CD1c-positive); pDCs, plasmacytoid dendritic cells;
HSPC, hematopoietic stem and progenitor cells; cDC1, conventional dendritic cells 1 (CD141-positive); ILC, innate lymphoid cells; ASDC, AXL+
dendritic cells; CTL, cytotoxic T cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1490051
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nielsen et al. 10.3389/fimmu.2024.1490051
Regulation of interferon beta production (GO:0032648) and

Interferon beta production (GO:0032608). Interferons are a well-

known contributor to psoriatic inflammation (28). Furthermore,

positive enrichment was observed in pathways related to epidermis

development (GO:0008544). The core enrichment genes included

MAFF, associated with keratinocyte proliferation (29), which was

significantly downregulated (log2fc = −1.85) in PsA patients

compared with healthy controls. For CD14+ monocytes,

pathways involved in leukocyte migration (GO:0050900) showed

negative enrichment. The core enrichment genes VAV1 and

CD99L2 were significantly DEGs and upregulated (log2fc = 0.59

and 0.68, respectively) in PsA patients compared with healthy

controls. Other negatively enriched pathways were observed in

natural killer (NK) cells, particularly those involved in chemotaxis

(GO:0006935) and taxis (GO:0042330).

GSEA identified 65 significantly enriched pathways (adjusted p-

value < 0.05) in PsA/PsC patients compared with healthy controls,

with 45 pathways showing negative enrichment and 20 showing

positive enrichment (Supplementary Table S6). In CD4+ naïve T

cells, negatively enriched pathways included the regulation of tumor

necrosis factor production (GO:0032680), tumor necrosis factor

production (GO:0032640), and positive regulation of response to

cytokine stimulus (GO:0060760) (Figure 6B). The significant DEGs

IFIH1 (log2fc = 0.54) and IFNGR1 (log2fc = 1.23) were part of the

core enrichment genes for these pathways and were found

upregulated in PsA patients. In CD14+ monocytes, the pathway

Cellular response to type I interferon (GO: 0071357) was negatively

enriched, whereas in NK cells, pathways related to the Positive

regulation of epithelial cell proliferation (GO:0050679) were

positively enriched.
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4 Discussion

This study aimed to explore the clinical heterogeneity of PsA

patients, and how the immune cell composition and transcriptional

patterns might differ depending on the clinical phenotype, i.e., PsA

patients with and without cutaneous involvement. We utilized

scRNAseq of PBMC cells from a total of 58 patients and 10 healthy

controls, to gain further understanding of the heterogeneity of the

immune cells, identification of specific gene signatures, and biological

pathways distinguishing PsA-only and PsA/PsC patients from healthy

controls. No difference in clinical measures depicting inflammatory

arthritic activity, i.e., DAPSA, DAS28CRP, and SPARCC, was found

between patient groups, i.e., PsA-only and PsA/PsC patients. The

clinical similarities justified a direct comparison of immune response

mechanisms in PsA-only and PsA/PsC patients, minimizing bias that

might be introduced by inflammatory disease activity, different

immunosuppressive treatments, etc.

Differential expression analysis demonstrated DEGs in PsA

patients, including both PsA-only and PsA/PsC patients, well-

known and associated with T-cell differentiation, and

inflammatory arthritides, including EOMES and NCAP genes in

several immune cell subtypes, promoting the importance of CD4+

helper T cells (30, 31). Even though up- and downregulation of

individual genes might point in different directions of T-cell

differentiation, it mirrors the significance of T-cell plasticity in

PsA (32, 33) or the importance of different T-cell subsets, including

Th1 and Th17 cells (8). The DE analysis further identified several

genes associated with inflammation and autoimmune diseases in

the top-20 DEGs such as RGS1, which has been associated with

several autoimmune diseases (34, 35). RGS1 is essential for T-cell-
FIGURE 5

Top 30 enriched pathways defined by gene set ratio. Gene set enrichment analysis identified a total of 128 significantly enriched pathways (adjusted
p-value < 0.05) including 49 negatively enriched pathways and 79 positively enriched pathways. The figure visualizes the top 30 pathways with the
highest gene set ratio, describing the overlap between the identified DEGs, and the reference list of genes in the pathway. All 128 pathways are
reported in Supplementary Table S1. CD, cluster of differentiation; cDC2, conventional dendritic cells 2 (CD1c-positive).
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mediated immunity and possible for the development of

inflammation, as RGS1 depletion has been shown to reduce T-cell

migration to the inflammatory site (36, 37) in line with the RGS1

downregulation seen in this study. The downregulation of NCAPG2

might be considered divergent in association with PsA

immunopathogenesis, as NCAPG2 and additional NCAP genes

have been found upregulated in IL-17+ cells compared with IL-17

cells (31). However, downregulation of NCAPG2 has further been

associated with response to TNFi (38), which is highly relevant to

acknowledge as 86.2% of PsA patients in the current study have

been treated with another bDMARD on a previous occasion.
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Upregulated genes included CX3CR1, which has been considered

important to the pathogenesis of arthritis (39), and the CX3CR1-

expressing monocytes have been associated with increased arthritic

pain (40). Additionally, both CISH and CLU were found

upregulated in I) CD4+ TCM and CD4+ TEM and II) CD14+

monocytes, respectively, which are associated with IL-1b-induced
and synovial inflammation (41, 42), and increased levels have been

related to psoriasis and arthritis (43). Interestingly, five of the top 20

DEGs were found downregulated in MAIT cells, which might both

have tissue-protective and pro-inflammatory features (44).

Downregulated genes of MAIT cells included CSRNP1, IRS,
FIGURE 6

Enriched pathways comparing PsA-only and PsA/PsC vs. healthy controls. Gene set enrichment analysis identified (A) for PsA-only vs. healthy
controls a total of 75 significantly enriched pathways (adjusted p-value < 0.05), including 37 negatively enriched pathways and 38 positively enriched
pathways, and (B) for PsA/PsC vs. healthy controls a total of 65 significantly enriched pathways (adjusted p-value < 0.05), including 45 negatively
enriched pathways and 20 positively enriched pathways. The figures visualize the top 30 enriched pathways by gene set ratio, describing the overlap
between the identified DEGs, and the reference list of genes in the pathway. All pathways are reported in Supplementary Table S5 and
Supplementary Table S6. PsA, psoriatic arthritis, PsC, cutaneous psoriasis; NK, natural killer; cDC2, conventional dendritic cells 2 (CD1c-positive).
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NR4A2, PMAIP1, and RBM38 of which NR4A2 has been found in

psoriatic skin (45). Results further implicate the CD8+ cytotoxic T

cells and NK cells, which have gained recognition as possibly

important contributors to PsA immunopathogenesis (8, 46).

Additional DEGs and top enriched pathways retrieved from the

GSEA were associated with especially CD14+ monocytes, which

might be associated with the osteoclast differentiation through the

upregulation of the TNF receptor superfamily gene member,

TNFRSF1A (47–50), and to immune response activation and

sustaining inflammation in PsA (51, 52). Results establish the

importance of innate factors in PsA immunopathogenesis and

PsA as a mixed pattern disease (53).

It was not possible to conduct the GSEA comparing PsA-only

patients and PsA/PsC patients as noDEGs were found comparing the

two groups directly. This was unexpected considering the number of

differentiating DEGs comparing PsA-only and healthy controls

versus PsA/PsC patients and healthy controls. These results could

be due to differences in the clinical phenotype that are not reflected in

the various gene signatures, why it is less likely that the findings can

aid in distinguishing PsA with and without cutaneous psoriasis.

However, the results of 0 DEGs between PsA-only and PsA/PsC

patients may further be caused by low levels of cutaneous psoriasis,

i.e., PASI median of 4.45, in the PsA/PsC patient group. Further

investigation into differential gene expression in patients with varying

degrees of cutaneous psoriasis may benefit from analyses focused on

tissue-level cells rather than PBMCs.

Results of the GSEA exploring differences in gene expression

comparing PsA patients and healthy controls exposed a significant

shift in immune cell distribution supported by positively enriched

pathways of leukocyte migration into the extravascular space of PsA

patients (GO:0050900, GO:0030335, both in CD14+ monocytes).

Evidence of leukocyte activation (GO:0045321, GO:0001775, in

CD14+ monocytes) supports the significant role of innate

immunity in PsA and psoriasis, possibly contributing to the

recruitment of additional immune cells to the inflammatory site

(54, 55). Nevertheless, the study underscores the importance of T cells

in the immunopathogenesis of PsA (56–58). Interestingly, the

relationship between innate and adaptive immunity was notably

also elucidated through the suggested interaction between

monocytes and B cells (GO:0019724, GO:0016064, both in CD14+

monocytes), which reinforces the growing evidence of the B cells’ role

in PsA immunopathogenesis (59). Comparing the GSEA results from

the separate analyses of PsA-only patients versus healthy controls and

PsA/PsC patients versus healthy controls revealed distinct patterns of

pathway enrichment, which suggest differential immune response

mechanisms in these patient groups possibly associated with varying

degrees of cutaneous involvement. In PsA-only patients, negative

enrichment was demonstrated related to Regulation of interferon beta

production (GO:0032648, cDC2) and Interferon beta production

(GO:0032608, cDC2), whereas positive enrichment was observed in

pathways related to epidermis development (GO:0008544) in cDC2,

accompanied by downregulation of the MAFF gene. The

combination of negatively enriched interferon beta pathways and

downregulation of MAFF may potentially influence the absence of

PsC development in this group (28, 29). The three pathways were not

enriched in PsA/PsC patients. On the contrary, pathways related to
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the Positive regulation of epithelial cell proliferation (GO:0050679)

were positively enriched in NK cells, and analysis of PBMCs has

previously associated NK cells with increasing PASI score (8).

Noticeably, several pathways associated with circadian rhythm

(GO:0042752, GO:007623, in CD14+ monocytes) and its regulation

of gene expression (GO:0032933 in CD14+ monocytes and cDC2)

were positively enriched in PsA-only patients compared with healthy

controls, whereas only the pathway circadian rhythm (GO:007623 in

CD14+monocytes) was positively enriched in PsA/PsC patients. This

is considered highly relevant to PsA immunopathogenesis as several

(pro-)inflammatory cytokines secreted are subjected to circadian

variation (60, 61). Interestingly, PsA-only patients experienced

statistically significantly higher levels of fatigue compared with PsA/

PsC patients. Further investigation into the gene expression

associated with fatigue and sleep disturbances in PsA may offer

valuable insights into the underlying mechanisms contributing to

these symptoms and their relation to inflammatory disease activity.

Limitations to the study included patients with different histories of

previous immunosuppressive treatments, including TNFi, IL-17Ai, and

MTX, with different effects on the immune response (62, 63). However,

baseline characteristics implied no statistically significant difference

between groups considering active and previous treatment. It is likely

that medical treatment has biased the results evaluating PsA

immunopathogenesis and should be taken into account when

interpreting the results. This might be the case considering negatively

enriched pathways such as Regulation of tumor necrosis factor

production (GO:0032680) and Tumor necrosis factor production

(GO:0032640), and the downregulation of the NCAPG2 gene found

in the current study, as NCAPG2 overexpression has been associated

with inflammation. However, the downregulation has been associated

with response to TNFi (38). Longitudinal studies focusing on gene

expression over time should be prioritized to gain further insight into

the effect of treatment on the immune response and gene expression.

Additional limitations include the difference in gender distribution

within the PsA-only and PsA/PsC patient groups, which was not

controlled for andmight cause a gender bias associated with differential

gene expression in different sex and sex-related genes, possible

technical variations, and differences in sample quality. Technical

variation was minimized as it was the same person running all

single-cell isolation and cDNA library preparation procedures.

Additional variations were captured during the statistical analysis.

Some of these factors can be handled during the preprocessing of the

data, but the existing methods are not perfect and can eventually “over”

or “under” correct the technical variation instead of regressing it (64).

Strengths of the study included the level of real-life data from PsA

patients treated in clinical practice, the incorporation of three different

methods for the identification of DEGs in the differential expression

analysis, and the significant DEGs which were selected based on results

across all three methods. Moreover, the distribution of the identified

cell types was similar across all samples and patient groups minimizing

bias associated with analyzing different immune cell subtypes. Lastly,

for the GSEA, the gene ranking was conducted by conducting a PCA

on the log2 fold changes from all three tools, providing a more reliable

ranking, since several methods were included. In summary, we present

genes and pathways that distinguish PsA and PsA/PsC patients from

healthy controls, as well as the differences between PsA and PsA/PsC
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patients, contributing to understanding the underlying immune

mechanism, which can eventually lead to better treatment decisions

of PsA patients.

In conclusion, single-cell transcriptome profiling provided

insight into the heterogeneity of PsA patients and revealed

specific transcriptome differences that can be used to distinguish

subgroups of PsA patients from healthy controls. Since no studies

have compared a PsA cohort based on skin symptoms, those

findings add to existing knowledge of distinguishing patients

within the group and identifying subtypes that can eventually

lead to better treatment decisions and understanding of the

immunopathogenesis underlying PsA.
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38. Zaba LC, Suárez-Fariñas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky
E, Cardinale I, et al. Effective treatment of psoriasis with etanercept is linked to
suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin
Immunol. (2009) 124(5):1022-10.e1-395. doi: 10.1016/j.jaci.2009.08.046

39. Sato M, Ohtsuka K, Takahashi R, Wakabayashi K, Odai T, Isozaki T, et al.
Involvement of CX3CL1/CX3CR1 axis in etanercept therapy for patients with active
rheumatoid arthritis. Open Access Rheumatol. (2011) 3:1–7. doi: 10.2147/OARRR.S16210

40. Oggero S, Cecconello C, Silva R, Zeboudj L, Sideris-Lampretsas G, Perretti M,
et al. Dorsal root ganglia CX3CR1 expressing monocytes/macrophages contribute to
arthritis pain. Brain Behav Immun. (2022) 106:289–306. doi: 10.1016/j.bbi.2022.09.008

41. Ungsudechachai T, Honsawek S, Jittikoon J, Udomsinprasert W. Clusterin
exacerbates interleukin-1b-induced inflammation via suppressing PI3K/Akt pathway
in human fibroblast-like synoviocytes of knee osteoarthritis. Sci Rep. (2022) 12:9963.
doi: 10.1038/s41598-022-14295-7

42. Ungsudechachai T, Honsawek S, Jittikoon J, Udomsinprasert W. Clusterin is
associated with systemic and synovial inflammation in knee osteoarthritis. Cartilage.
(2021) 13:1557S–65S. doi: 10.1177/1947603520958149

43. Sun Y, Zhang J, Zhai T, Li H, Li H, Huo R, et al. CCN1 promotes IL-1b
production in keratinocytes by activating p38 MAPK signaling in psoriasis. Sci Rep.
(2017) 7:43310. doi: 10.1038/srep43310

44. Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and
mucosa? In: Mucosal Immunology, vol. 14. Springer Nature (2021). p. 803–14.

45. Teunissen MBM, Yeremenko NG, Baeten DLP, Chielie S, Spuls PI, de Rie MA,
et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin
comprises mucosa-associated invariant T cells and conventional T cells. J Invest
Dermatol. (2014) 134:2898–907. doi: 10.1038/jid.2014.261
frontiersin.or
g

https://doi.org/10.1056/NEJMra1505557
https://doi.org/10.1080/1744666X.2019.1627876
https://doi.org/10.1016/j.autrev.2014.11.012
https://doi.org/10.5312/wjo.v5.i4.537
https://doi.org/10.1136/annrheumdis-2012-203037
https://doi.org/10.1136/annrheumdis-2012-203037
https://doi.org/10.3899/jrheum.150744
https://doi.org/10.1080/09546630802441234
https://doi.org/10.1186/s13075-022-02956-x
https://doi.org/10.1038/s41467-018-06672-6
https://doi.org/10.1002/acr.2019.71.issue-6
https://doi.org/10.1136/annrheumdis-2015-207507
https://doi.org/10.1136/ard.2007.084459
https://doi.org/10.1007/978-1-0716-2756-3_2
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1126/science.1258367
https://doi.org/10.1126/science.1258367
https://doi.org/10.1007/978-981-13-6037-4
https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BD_Single_Cell_Multiomics_Analysis_Setup_User_Guide.pdf
https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BD_Single_Cell_Multiomics_Analysis_Setup_User_Guide.pdf
https://doi.org/10.1038/s41592-023-01943-7
https://doi.org/10.1038/s41592-023-01943-7
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1007/s13258-021-01173-1
https://doi.org/10.3389/fimmu.2018.01533
https://doi.org/10.1016/j.cytogfr.2021.12.002
https://doi.org/10.1016/j.cytogfr.2021.12.002
https://doi.org/10.1038/jid.2012.33
https://doi.org/10.1002/eji.201847677
https://doi.org/10.1016/j.celrep.2013.03.035
https://doi.org/10.3109/08916934.2016.1166214
https://doi.org/10.1038/s41590-021-01004-1
https://doi.org/10.1038/gene.2016.16
https://doi.org/10.1038/gene.2016.16
https://doi.org/10.1016/j.immuni.2005.01.017
https://doi.org/10.4049/jimmunol.1100833
https://doi.org/10.4049/jimmunol.1100833
https://doi.org/10.4049/jimmunol.1100833
https://doi.org/10.4049/jimmunol.1100833
https://doi.org/10.1016/j.jaci.2009.08.046
https://doi.org/10.2147/OARRR.S16210
https://doi.org/10.1016/j.bbi.2022.09.008
https://doi.org/10.1038/s41598-022-14295-7
https://doi.org/10.1177/1947603520958149
https://doi.org/10.1038/srep43310
https://doi.org/10.1038/jid.2014.261
https://doi.org/10.3389/fimmu.2024.1490051
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nielsen et al. 10.3389/fimmu.2024.1490051
46. Penkava F, Velasco-Herrera MDC, Young MD, Yager N, Nwosu LN, Pratt AG,
et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial
CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat Commun.
(2020) 11(1):4767. doi: 10.1038/s41467-020-18513-6

47. Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, et al.
New insights for RANKL as a proinflammatory modulator in modeled inflammatory
arthritis. Front Immunol. (2019) 10:97. doi: 10.3389/fimmu.2019.00097

48. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al.
Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism
independent of the ODF/RANKL-RANK interaction. J Exp Med. (2000) 191:275–86.
doi: 10.1084/jem.191.2.275

49. Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, et al. TNF-a
Directly enhances osteocyte RANKL expression and promotes osteoclast formation.
Front Immunol. (2019) 10:2925. doi: 10.3389/fimmu.2019.02925

50. Iwamoto N, Kawakami A. The monocyte-to-osteoclast transition in rheumatoid
arthritis: Recent findings. Front Immunol. (2022) 13:998554. doi: 10.3389/
fimmu.2022.998554

51. Wang Y, Edelmayer R, Wetter J, Salte K, Gauvin D, Leys L, et al. Monocytes/
Macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin
inflammation. Sci Rep. (2019) 9:5310. doi: 10.1038/s41598-019-41655-7

52. Italiani P, Mosca E, Della Camera G, Melillo D, Migliorini P, Milanesi L, et al.
Profiling the course of resolving vs. Persistent inflammation in humanmonocytes: the role
of IL-1 family molecules. Front Immunol. (2020) 11:1426. doi: 10.3389/fimmu.2020.01426

53. McGonagle D, McDermott MF. A proposed classification of the immunological
diseases. PloS Med. (2006) 3:1242–8. doi: 10.1371/journal.pmed.0030297

54. Golden JB, Groft SG, Squeri MV, Debanne SM, Ward NL, McCormick TS, et al.
Chronic psoriatic skin inflammation leads to increased monocyte adhesion and
aggregation. J Immunol. (2015) 195:2006–18. doi: 10.4049/jimmunol.1402307

55. Schön MP, Zollner TM, Boehncke WH. The molecular basis of lymphocyte
recruitment to the skin: clues for pathogenesis and selective therapies of
Frontiers in Immunology 14
inflammatory disorders. J Invest Dermatol. (2003) 121:951–62. doi: 10.1046/j.1523-
1747.2003.12563.x

56. Montico G, Mingozzi F, Casciano F, Protti G, Gornati L, Marzola E, et al. CCR4
+CD8+ T cells clonally expand to differentiated effectors in murine psoriasis and in
human psoriatic arthritis. Eur J Immunol. (2023) 53(4):e2149702. doi: 10.1002/
eji.202149702

57. Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. (2018)
391:2273–84. doi: 10.1016/S0140-6736(18)30830-4

58. Veale DJ, Ritchlin C, FitzGerald O. Immunopathology of psoriasis and psoriatic
arthritis. Ann Rheum Dis. (2005) 64:26–9. doi: 10.1136/ard.2004.031740

59. Johnsson H, Cole J, McInnes IB, Graham G, Siebert S. Differences in
transcriptional changes in psoriasis and psoriatic arthritis skin with immunoglobulin
gene enrichment in psoriatic arthritis. Rheumatology. (2024) 63:218–25. doi: 10.1093/
rheumatology/kead195

60. Yuan X, Ou C, Li X, Zhuang Z, Chen Y. The skin circadian clock gene F3 as a
potential marker for psoriasis severity and its bidirectional relationship with IL-17
signaling in keratinocytes. Int Immunopharmacol. (2024) 132:111993. doi: 10.1016/
j.intimp.2024.111993

61. Yoshida K, Hashimoto T, Sakai Y, Hashiramoto A. Involvement of the circadian
rhythm and inflammatory cytokines in the pathogenesis of rheumatoid arthritis. J
Immunol Res. (2014) 2014:1–6. doi: 10.1155/2014/282495

62. Skougaard M, Ditlev SB, Søndergaard MF, Kristensen LE. Cytokine signatures in
psoriatic arthritis patients indicate different phenotypic traits comparing responders
and non-responders of IL-17A and TNFa Inhibitors. Int J Mol Sci. (2023) 24(7):6343.
doi: 10.3390/ijms24076343

63. Dong Q, Li D, Xie BB, Hu LH, Huang J, Jia XX, et al. IL-17A and TNF-a
inhibitors induce multiple molecular changes in psoriasis. Front Immunol. (2022)
13:1015182. doi: 10.3389/fimmu.2022.1015182

64. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a
tutorial. Mol Syst Biol. (2019) 15:e8746. doi: 10.15252/msb.20188746
frontiersin.org

https://doi.org/10.1038/s41467-020-18513-6
https://doi.org/10.3389/fimmu.2019.00097
https://doi.org/10.1084/jem.191.2.275
https://doi.org/10.3389/fimmu.2019.02925
https://doi.org/10.3389/fimmu.2022.998554
https://doi.org/10.3389/fimmu.2022.998554
https://doi.org/10.1038/s41598-019-41655-7
https://doi.org/10.3389/fimmu.2020.01426
https://doi.org/10.1371/journal.pmed.0030297
https://doi.org/10.4049/jimmunol.1402307
https://doi.org/10.1046/j.1523-1747.2003.12563.x
https://doi.org/10.1046/j.1523-1747.2003.12563.x
https://doi.org/10.1002/eji.202149702
https://doi.org/10.1002/eji.202149702
https://doi.org/10.1016/S0140-6736(18)30830-4
https://doi.org/10.1136/ard.2004.031740
https://doi.org/10.1093/rheumatology/kead195
https://doi.org/10.1093/rheumatology/kead195
https://doi.org/10.1016/j.intimp.2024.111993
https://doi.org/10.1016/j.intimp.2024.111993
https://doi.org/10.1155/2014/282495
https://doi.org/10.3390/ijms24076343
https://doi.org/10.3389/fimmu.2022.1015182
https://doi.org/10.15252/msb.20188746
https://doi.org/10.3389/fimmu.2024.1490051
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single-cell RNA sequencing highlights the influence of innate and adaptive immune response mechanisms in psoriatic arthritis
	1 Introduction
	2 Materials and methods
	2.1 Cohort description
	2.1.1 Patients
	2.1.2 Clinical and patient-reported outcomes

	2.2 Experimental workflow
	2.2.1 Separation of PBMCs
	2.2.2 Single-cell capture and cDNA library preparation
	2.2.3 Sequencing

	2.3 Statistical and single-cell data analyses
	2.3.1 Quality control, cell annotation, and reference mapping
	2.3.2 Differential expression analysis
	2.3.3 Gene set enrichment analysis


	3 Results
	3.1 Cell type abundance profiles were similar in PsA patients
	3.2 Differential expression analysis comparing PsA-only and PsA/PsC patients
	3.3 Identification of differentially expressed genes in PsA compared with healthy controls
	3.4 DEGs associated with PsA-only and PsA/PsC compared with healthy controls
	3.5 Both innate and adaptive molecular mechanisms were associated with PsA
	3.6 GSEA comparing PsA-only and PsA/PsC with healthy controls

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


