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Single-cell sequencing unveils
mitophagy-related prognostic
model for triple-negative
breast cancer
Peikai Ding †, Shengbin Pei †, Zheng Qu †, Yazhe Yang †, Qiang Liu,
Xiangyi Kong, Zhongzhao Wang, Jing Wang* and Yi Fang*

Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center
for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of

breast cancer lacking hormone receptors and HER2 expression, leading to

limited treatment options and poor prognosis. Mitophagy, a selective

autophagy process targeting damaged mitochondria, plays a complex role in

cancer progression, yet its prognostic significance in TNBC is not

well understood.

Methods: This study utilized single-cell RNA sequencing data from the TCGA and

GEO databases to identify mitophagy-related genes (MRGs) associated with

TNBC. A prognostic model was developed using univariate Cox analysis and

LASSO regression. The model was validated across multiple independent

cohorts, and correlations between MRG expression, immune infiltration, and

drug sensitivity were explored.

Results: Nine key MRGs were identified and used to stratify TNBC patients into

high-risk and low-risk groups, with the high-risk group showing significantly

worse survival outcomes. The model demonstrated strong predictive accuracy

across various datasets. Additionally, the study revealed a correlation between

higher MRG expression levels and increased immune cell infiltration, as well as

potential responsiveness to specific chemotherapeutic agents.

Conclusion: The mitophagy-related prognostic model offers a novel method for

predicting outcomes in TNBC patients and highlights the role of mitophagy in

influencing the tumor microenvironment, with potential applications in

personalized treatment strategies.
KEYWORDS
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1 Introduction

In recent times, breast cancer has established itself as the most

prevalent malignant tumor in women across the globe. The Global

Cancer Statistics 2022 report indicates that breast cancer ranks first

among newly diagnosed cancers worldwide. It caused approximately

685,000 deaths, accounting for 6.9% of all cancer-related deaths.

Despite a decline in mortality rates resulting from advances in early

detection and treatment, the prevalence of breast cancer is on the rise

globally, particularly in rapidly developing regions (1). Triple-negative

breast cancer (TNBC) represents a highly malignant variant of the

disease, accounting for approximately 10-20% of all diagnosed cases of

breast cancer (2). Patients diagnosed with TNBC tend to have a less

favorable prognosis, with a five-year survival rate that is considerably

lower than that observed in other breast cancer subtypes. Additionally,

they exhibit a higher incidence of recurrence and metastasis. The

prevalence of TNBC is notably elevated among younger women and

those of African descent, who also exhibit a proclivity for inferior

outcomes. Consequently, there is a strong imperative to develop new

prognostic models for breast cancer and to identify novel biomarkers.

Mitophagy represents a vital cellular mechanism that enables

the selective degradation of damaged mitochondria, thereby

maintaining mitochondrial function and cellular homeostasis. It is

instrumental in cellular energy metabolism, oxidative stress

responses, and programmed cell death (apoptosis) (3). More and

more studies have shown that mitophagy plays a complex role in

the development and progression of cancer (4). PINK1, a kinase of

the mitochondria, is recruited to the outer membrane of the

mitochondria and is responsible for Parkin activation. Parkin is

an E3 ubiquitin ligase that facilitates the ubiquitination of damaged

mitochondria, marking them for subsequent autophagic

degradation (5). This mechanism plays a key role in the

maintenance of mitochondrial function and the regulation of

cancer cell survival as well as death. The aberrant expression

levels of PINK1 and Parkin have been observed in lung and

breast cancers, which points towards a potential involvement in

the processes of tumorigenesis and progression (6, 7). The available

evidence suggests that elevated mitophagy activity may contribute

to the enhanced resilience of cancer cells to chemotherapy and

radiotherapy (8). The clearance of damaged mitochondria enables

cancer cells to survive the stress induced by treatment.

Consequently, the inhibition of mitophagy may represent a

promising avenue for enhancing the efficacy of cancer therapies.

Although TNBC is a highly invasive disease with a poor

prognosis, and although mitophagy plays an essential role in

cellular metabolism and apoptosis, prognostic studies targeting

mitophagy-related genes in TNBC remain scarce. The majority of

extant prognostic models are predicated on traditional molecular

markers or gene expression profiles and thus lack a comprehensive

examination of this crucial cellular process. Accordingly, the

construction of a prognostic model based on mitophagy-related

genes (MRGs) has the potential to address this research gap, as well

as to provide new biomarkers for the personalized treatment of

TNBC patients.

The advent of single-cell sequencing technology has afforded

researchers a previously unattainable level of cellular resolution in
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the field of cancer research. This has enabled scientists to conduct

in-depth investigations into the heterogeneous nature of tumors

and the intricate interactions within the tumor microenvironment

(9). Single-cell sequencing allows for a comprehensive analysis of

gene expression, genomic variations, and epigenetic states at the

individual cellular level, thereby elucidating differences among

tumor cells and their responses to therapeutic interventions. In

the field of malignant tumor research, single-cell sequencing has

emerged as a pivotal technique for identifying novel molecular

subtypes, pinpointing prospective therapeutic targets, and

characterizing prognostic biomarkers.

In this study, we obtained publicly available data on triple-

negative breast cancer (TNBC) from the TCGA and GEO databases.

A novel prognostic model was developed through comprehensive

bioinformatics analysis, utilizing nine MRGs. Patients with TNBC

were stratified according to their risk profiles, resulting in the

formation of two distinct groups: high-risk and low-risk.

Moreover, the expression of mitophagy-related genes enabled the

detection of alterations in immune infiltration and immune

checkpoints in TNBC patients. The findings of our research may

provide a novel perspective for the diagnosis and management

of TNBC.
2 Methods

2.1 Data acquisition and preprocessing for
model construction and validation in TNBC

The RNA expression profiles, gene mutation information, and

clinical data for TNBC patients were sourced from the TCGA

database. To build the model, the training set was utilized, while the

validation set was employed to evaluate the model’s stability and

accuracy. Additionally, expression profiles were retrieved from the

Gene Expression Omnibus datasets GSE21653, GSE58812, and

GSE65194, along with data from the Molecular Taxonomy of

Breast Cancer database, to serve as external, independently

validated cohorts. All datasets were formatted in TPM and log-

transformed for subsequent analysis. To address potential batch

effects across datasets, the “sva” package was utilized.
2.2 Acquisition and processing of scRNA-
seq data

The single-cell RNA sequencing (scRNA-seq) dataset

GSE161529, consisting of ten TNBC samples, was obtained from

the Gene Expression Omnibus (GEO) database. The quality of the

scRNA-seq data was evaluated using the “Seurat” and “SingleR” R

packages. To maintain the integrity of the scRNA-seq data, cells

with less than 10% mitochondrial gene content, more than 200 total

genes, or those expressed in fewer than three cells with expression

levels between 200 and 7,000 were excluded. Given the diverse

sample origins, the “FindIntegrationAnchors” function from

canonical correlation analysis (CCA) was utilized to eliminate any

potential batch effects that could impact downstream analyses.
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Subsequently, the “IntegrateData” and “ScaleData” functions were

used to ensure comprehensive data integration and scaling.

Principal component analysis (PCA) was then employed to

determine the anchors for dimensionality reduction, and the t-

distributed stochastic neighbor embedding (t-SNE) method was

used to examine the first 20 principal components (PCs) to identify

meaningful clusters. The variability in the cell cycle among clusters

was assessed using cell cycle markers integrated within the

“Seurat” package.
2.3 Acquisition of mitophagy-related genes

MRGs were identified from the GeneCards database, with a

relevance score exceeding 1.5 employed as the criterion for selecting

MRGs for subsequent investigation (see Supplementary Table).
2.4 Using AUCell

The most relevant genes impacting mitophagy were identified

from the single-cell RNA-sequencing data using the AUCell R

package. AUCell is a computational tool that assesses the activity

status of gene sets within single-cell RNA sequencing data,

assigning a mitophagy activity score to each cell. The area under

the curve (AUC) values for the selected MRGs were used to

determine the proportion of highly expressed gene sets within

each cell based on the gene expression rankings. Cells with a

higher number of selected genes exhibited higher AUC values.

The “AUCell explore thresholds” function was employed to identify

cells actively participating in mitophagy. The cells were then

categorized into two groups—high mitophagy AUC and low

mitophagy AUC—based on the median AUC value. The results

were graphically represented using the “ggplot2” R package.
2.5 Single-sample gene set
enrichment analysis

ssGSEA is a frequently utilized method for calculating precise

scores for enriched gene sets within a given sample. In this study,

the ssGSEA method was employed to ascertain the mitophagy score

(MM score) for each TNBC patient within the TCGA cohort.
2.6 Construction of mitophagy-related
risk signatures

The process began with univariate Cox analysis to identify

MRGs that had prognostic significance. These MRGs were further

refined using Lasso regression, leading to the creation of a

prognostic model. Each TNBC patient was then assigned a risk

score based on the algorithm. The TCGA-TNBC cohort was divided

into high-risk and low-risk groups according to the median value.

The differences in prognosis between these two groups were then

analyzed, and the model’s accuracy was evaluated.
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2.7 Evaluation of the independence and
validity of the prognostic model

To estimate the one-year, three-year, and five-year overall survival

(OS) probabilities, a nomogramwas constructed using risk scores, age,

gender, pathological stage, and other clinical parameters as

independent prognostic factors. Kaplan-Meier survival curves were

generated to assess the prognostic implications, with their statistical

significance evaluated using the log-rank test. The accuracy of the

nomogram was further validated through calibration curves and

receiver operating characteristic (ROC) curves. Additionally, a

decision curve analysis (DCA) was performed to assess the net

benefit of the nomogram alongside individual clinical features. A

stratified analysis was also conducted to evaluate the prognostic

relevance of the risk score concerning various clinical characteristics,

including age, gender, clinical stage, and pathological T stage.
2.8 Correlation analysis of the prognostic
model with tumor immunity
and immunotherapy

We assessed the extent of immune infiltration in TNBC patients

using data from the TCGA database, specifically from the TIMER

2.0 database, which includes results from seven distinct assessment

methods. This data was utilized to generate heatmaps that illustrate

the relative levels of immune cell infiltration within the tumor

stroma. Following this, the genes in the prognostic risk assessment

model were analyzed using ssGSEA via the GSEABase R package,

which is related to immune-associated attributes. The “estimate” R

package was then employed to calculate the relative abundance of

stromal cells, immune cells, and tumor cells, and these values were

compared across various risk categories.
2.9 Genomic mutation profile and
drug sensitivity

The genomic mutation profiles of TNBC patients were obtained

from the TCGA database and visualized using the “maftools” R

package. These comprehensive gene mutation data were then

integrated with the risk scores. Additionally, the “pRRophetic” R

package was utilized to calculate the half-maximal inhibitory

concentration (IC50) of commonly used chemotherapy drugs,

allowing for an evaluation of the correlation between risk scores and

drug sensitivity. TheWilcoxon signed-rank test was used to determine

if there were any statistically significant differences in IC50 values

between the two risk groups.
3 Results

3.1 Single-cell sequencing data analysis

Using dimensionality reduction algorithms (tSNE), we

identified 18 distinct cell clusters characterized by different gene
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expression profiles (Figure 1A). Through cell annotation, nine

different cell types were identified, including fibroblasts, myeloid

cells, and tumor cells (Figure 1B). To explore the expression

characteristics of MRGs, we evaluated the MM activity of each

cell using the AUCell R package. An AUC score was attributed to all

cells corresponding to the MRGs to categorize them into high- and

low-AUC expression groups based on the established AUC score

thresholds. Cells with elevated gene expression demonstrated

elevated AUC values, a phenomenon predominantly observed in

the orange-colored myeloid cells, fibroblasts, and tumor cells

(Figure 1C). To ascertain the biological mechanisms that may be

responsible for the observed differences in AUC scores, we

conducted a differential expression and functional analysis. The

differential expression analysis revealed that these genes were

primarily associated with oxidative phosphorylation, mTORC1

signaling, fatty acid metabolism, PI3K-AKT-mTOR signaling,

apoptosis, and the P53 pathway (Figure 1D). To further elucidate

the association between MRGs and the outcome of TNBC patients,
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we performed an in-depth analysis of the most relevant genes

affecting the activity of mitophagy obtained from single-cell data.

We constructed a prognostic model using the TCGA-BC training

set and identified 63 prognostic genes by univariate analysis (P <

0.01). Subsequently, we utilized LASSO Cox regression analysis to

construct the prognostic model. Under the optimal regularization

parameter, nine model genes were selected: MRPS5, C20orf27,

PSMB5, PYCR1, HEBP1, CBR1, PTMS, LSM2, and NDUFS3

(Figure 1E). The calculation method for the prognostic model is

as follows:

risk   score =o
k

n=i
(Coefi exp i)

Coefi represents the coefficient of each model gene and Expi

represents the expression level of each model gene. Accordingly, a

risk score was calculated for each sample and categorized into

high-risk and low-risk groups. Of the nine genes used to construct
FIGURE 1

Identify differentially expressed genes and annotate cell subsets. (A) The tSNE plot shows the results of the dimension reduction cluster analysis. (B)
The cells have been annotated into 9 different types of cells. (C) All cells were scored into high and low groups according to mitophagy-related
genes (MRGs). (D) Analyze differentially expressed genes between high and low groups. (E) LASSO Cox regression analysis to develop the prognostic
model. (C) The role of seven model genes. (F) The role of nine model genes.
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the model, four were risk factors and five were protective

factors (Figure 1F).
3.2 Construction and validation of the
mitophagy-related prognostic model

Principal component analysis (PCA) of the nine model genes

across the TCGA, MetaBric, GSE58812, GSE2653, and GSE65194

datasets revealed that the model effectively stratified TNBC patients

into two risk groups. To ascertain the precision of the MRGs in

prognosticating the outcome of TNBC patients, we conducted a

receiver operating characteristic (ROC) curve analysis on both the

trainingand testingdatasets. In the training setTCGAdatabase, TNBC

patients can be effectively categorized into two risk groups (Figure 2A).

Meanwhile, there was a significant difference in the prognosis of

patients in the two groups (P=0.0017, Figure 2B). In the MetaBric

test set, it was possible to distinguish well between the two groups of

patients while there was a significant difference in prognosis between

the two groups (P=0.00028, Figures 2C, D). In the GSE58812 test set,

theAUCwas consistently above 0.8, indicating thehigh accuracyof the

model in assessing patient prognosis (Figures 2E, F). In the GSE2653

test set, PCA did a good job of separating patients into high-risk and

low-risk groups (Figure 2G), and a similar pattern was observed for

both patient survival and AUC (Figure 2H). Although the PCA in the

GSE65194 cohort effectively stratified patients into high- and low-risk

groups (Figure 2I), and a trendof poorer prognosiswas observed in the

high-riskgroup, thedifference inprognosis between the twogroupsdid

not reach statistical significance (P=0.056, Figure 3J). This result

suggests that the relatively small sample size or cohort-specific

variability may have limited the ability to detect a statistically

significant difference. Further validation with larger cohorts may

help confirm these findings. In conclusion, the prognostic model

based on MRGs demonstrated high predictive accuracy in all four

independent cohorts.
3.3 Prognostic value of mitophagy-related
genes in triple-negative breast cancer:
correlations with survival and risk scores

The aim of this research is to analyze the potential association of

expression levels of nineMRGswith survival outcomes and risk scores

in TNBC patients. Kaplan-Meier survival analysis showed a difference

in overall outcome between individuals with high and low expression

of thesegenes. Inparticular, elevated expressionof genes suchasCBR1,

HEBP1, and PTMS was markedly linked to diminished survival rates,

withP-values of 0.002, 0.006, and0.018, respectively. This suggests that

these genes may serve as crucial prognostic predictors for TNBC.

Although the P-values for some genes, such as MRPS15 and PYCR1,

were slightly above the traditional significance level (p<0.05), they still

exhibited a general trend associated with poor prognosis (Figure 3A).

In addition, scatterplot analysis showed the association between

the expression level of eachgeneand the risk score. ExpressionofCBR1

and HEBP1 was significantly negatively correlated with risk scores,

with Pearson correlation coefficients of -0.42 (q = 5.8e-15) and -0.53 (q
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=0), respectively. This indicates that high level of these gene expression

may be associated with lower risk scores, further supporting their

potential protective role in prognosis. Conversely, the expression of

LSM2andMRPS15 showedapositive correlationwith risk scores,with

correlation coefficients of 0.14 (q=0.016) and 0.48 (q=0), respectively.

These results indicate that high expression levels of these genesmay be

linked to increased risk scores and poorer prognosis (Figure 3B).

The results indicate that the analysis of mitophagy-related gene

expression patterns may serve as an effective stratification method

for TNBC patients into distinct risk groups and for predicting their

survival outcomes. The findings suggest that these genes may be

critical in the progression of TNBC and provide new potential

targets for personalized therapy.
3.4 Construction of a nomogram model
and drug sensitivity analysis

Based on the TCGA data, we selected several key variables (such

as risk score, age, and cancer stage) and constructed a nomogram

model to more precisely quantify the risk for breast cancer patients

(Figure 4A). As an intuitive and practical tool, the nomogram plays

an important role in cancer prognosis prediction and personalized

treatment (10). By integrating multiple predictive variables, the

nomogram provides accurate assessments of survival probability

and recurrence risk, thereby aiding clinicians in making more

optimized treatment decisions, which in turn enhances patient

outcomes and quality of life. To ascertain the veracity and

predictive efficacy of the nomogram model, we conducted a

calibration curve analysis, which demonstrated that the predicted

values of the model were highly consistent with observed values at

different time points, indicating high predictive accuracy.

Furthermore, a clinical heatmap was generated using the

prognostic model genes to evaluate the associations among the

model genes and clinicopathologic features (such as lymph node

positivity, recurrence status, tumor size, etc.) (Figure 4B). The

results showed significant differences between the two groups,

especially in terms of tumor size and recurrence status (p < 0.05).

A notable meaningful positivity was detected between multidrug

sensitivity (IC50) and TNBC risk score. This suggests that an elevated

risk score is indicativeof heightened sensitivity amongpatients to these

pharmaceutical agents. The drugs in question are Dasatinib, AP-

24534, AZD7762, Cisplatin, BEZ235, and Talazoparib (Figure 4C).

These findings are of considerable clinical significance. Patients with

higher risk scoresmay exhibit greater sensitivity to thesedrugs, thereby

warranting their prioritization in the treatment regimen. Of the drugs

under consideration, talazoparib demonstrated the highest correlation

(R = 0.39), indicating its potential efficacy in high-risk TNBC patients.
3.5 Impact of tumor mutational burden: a
comprehensive study of risk scores and
survival analysis

TMB is a biomarker that has been widely accepted as an

essential factor in cancer research and treatment, particularly in
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the setting of immunotherapy. This metric is increasingly being

acknowledged as a potential indicator of responsiveness to immune

checkpoint inhibitors (ICIs) (11). A high TMB is associated with an

elevated number of mutations, which has the potential to generate

an enhanced generation of neoantigens that can be recognized by

the immune system, thereby improving ICIs’ efficacy (12). Our

study found that in the MetaBric database, the high-risk group

exhibited a higher mutation frequency, which was statistically

significant (P = 0.0042, Figure 5A). Correlation analysis revealed

a positive relationship between risk score and mutation frequency,

with higher risk scores associated with higher mutation frequencies

(Figure 5B). Previous studies have shown that tumors with a high

mutational burden generally have a worse prognosis. This view has

also been confirmed in breast cancer research. A study by Barroso-

Sousa et al. found that high TMB is not only common in breast

cancer, especially TNBC, but is also associated with worse survival

(13). Our results provide further evidence to support the hypothesis

that high mutational load may serve as a negative prognostic

indicator. In terms of survival analysis, the low-risk and high-

TMB groups had the most favorable prognosis for survival, whereas

the high-risk and low-TMB groups had the worst prognosis, with a

statistically significant difference between them (Figure 5C). Similar

prognostic differences were observed in the TCGA database,

although no statistical difference was found between TMB and

risk rating in this database (Figures 5D–F).
3.6 Analysis of tumor microenvironment
and immune cell infiltration

The level of immune cell infiltration in each test specimen was

assessed according to seven different methods to gain a deeper

understanding of the distribution and correlation of 18 types of

tumor-infiltrating immune cells (TICs) in the TCGA-BC cohort.

The high-risk group showed increased levels of immune cell

infiltration compared to the low-hazard group (Figure 6A). In

particular, the high-risk group showed increased amounts of

immune cell infiltration, particularly macrophages, neutrophils,

and cancer-associated fibroblasts. The low-risk group had

significantly enhanced stromal, immune, and ESTIMATE scores,

suggest ing increased general immune status and the

immunogenicity of the tumor microenvironment (TME) (P <

0.05). Additionally, a positive correlation with tumor purity was

observed (Figure 6B). The expression levels of 29 immune cells were

further analyzed in the training and validation sets, and the box plot

results demonstrated that two types of cells in the training set

exhibited high infiltration in the high-risk group: CD8+ T cells and

Tfh (Figure 6C). The cytolytic activity represents a crucial

mechanism through which the immune system can control and

eliminate harmful cells within the body. Our findings revealed

elevated cytolytic activity in the high-risk group (Figure 6E). In

the validation set (Metabric), macrophages, neutrophils, and Treg

exhibited high infiltration in the high-risk group (Figure 6D).

Additionally, they demonstrated heightened activity in CCR,

HLA, and other biological processes (Figure 6F).
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3.7 Insights into immune therapy efficacy
through checkpoint analysis

Tumors have two distinct immune escape mechanisms: on the

one hand, some immunosuppressive factors prevent T-cell

infiltration; on the other hand, some tumors are functionally

inactivated despite high levels of cytotoxic T-cell infiltration.

TIDE (Tumor Immune Dysfunction and Exclusion) is a

computational tool for evaluating the tumor immune escape

mechanism and a computational tool for predicting immune

checkpoint inhibitor (ICI) treatment response. Tumor immune

escape is predicted by a combined assessment of the activity of

these two mechanisms. Higher TIDE scores were associated with

poorer immune checkpoint inhibition therapy. The results of the

violin plot showed higher TIDE scores in the high-risk group than

in the low-risk group, which was consistent but not statistically

significant and may be related to the small sample size (Figure 7A).

Meanwhile, the bubble plot showed the model genes correlated with

immune checkpoints, in which PYCR1 was significantly negatively

correlated with immune checkpoints (Figure 7B). We further

analyzed the expression levels of immune checkpoints in high

and low-risk groups, in which TNFSF15, ADORA2A, TNFSF4

and CD160 were expressed at higher levels in high-risk

groups (Figure 7C).
3.8 Differential pathway enrichment in
high- and low-risk TNBC patients: insights
from GSEA and GSVA analysis

Gene Set Enrichment Analysis (GSEA) was employed to

categorize TNBC patients into high-risk and low-risk groups

based on the risk model constructed from mitophagy-related

genes. The results demonstrated notable discrepancies in

numerous signaling pathways between the two groups. The high-

risk group exhibited enrichment of the TGF-b signaling pathway.

The transforming growth factor-beta (TGF-b) signaling pathway

plays a pivotal role in regulating a multitude of cellular processes,

including proliferation, differentiation, and apoptosis. Additionally,

it plays a pivotal role in the tumor microenvironment, influencing

processes such as tumor cell proliferation, immune evasion, and

metastasis (14). The upregulation of the TGF-b signaling pathway

in the high-risk group may facilitate tumor cell invasion and

metastasis while simultaneously impeding the immune system’s

anti-tumor response. The high-risk group exhibited an enrichment

of epithelial-mesenchymal transition (EMT), which suggests an

elevated propensity for tumor cell invasion and metastasis.

Epithelial-mesenchymal transition (EMT) is a process by which

epithelial cells gain a mesenchymal phenotype, a transformation

that is closely associated with cancer metastasis (15). The PI3K/

AKT/mTOR signaling pathway, which plays a pivotal role in cell

growth, proliferation, and survival, was also found to be upregulated

in the high-risk group. The aberrant activation of the PI3K/AKT/

mTOR pathway is a common occurrence in a multitude of cancers,

and it serves to promote tumor growth and drug resistance (16).
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The observed upregulation of this pathway in the high-risk group

may contribute to the rapid proliferation of tumor cells and their

anti-apoptotic capabilities, thereby increasing tumor aggressiveness

and resistance to therapy. In contrast, the DNA repair pathway was

found to be more active in the low-risk group, indicating that the
Frontiers in Immunology 07
DNA repair capacity may be compromised in the high-risk group,

which could result in increased genomic instability. The results

demonstrate a notable enrichment of multiple critical biological

pathways in triple-negative breast cancer. Among these pathways

are those associated with cell cycle regulation, genomic stability,
FIGURE 2

The validation of the Mitophagy-related Prognostic Model. (A) PCA analysis in the TCGA training set. (B) The area under the curve (AUC) values for
the TCGA train cohort. (C) PCA analysis in the MetaBric validation set. (D) The areas under the curve at 1, 3, and 5 years for the MetaBric test group.
(E) PCA analysis in the GSE58812 validation set. (F) The areas under the curve at 1, 3, and 5 years for the GSE58812 test group. (G) PCA analysis in
the GSE2653 validation set. (H) The areas under the curve at 1, 3, and 5 years for the GSE2653 test group. (I) PCA analysis in the GSE65194 validation
set. (J) The areas under the curve at 1, 3, and 5 years for the GSE65194 test group.
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cellular metabolism, tumor invasion, and metastasis (Figure 8A). To

validate these results, we conducted further analysis using gene set

variation analysis (GSVA). The results of GSVA were also consistent,

with thehigh-riskgroupbeing enriched inpathways suchas theTGF-b
signaling, PI3K/AKT/mTOR signaling, and others, further supporting

the conclusions drawn by GSEA (Figure 8B).
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4 Discussion

TNBC is distinguished by its high degree of heterogeneity and

intricate molecular composition, which collectively contribute to its

generally poor prognosis. Conventional classification techniques

frequently prove inadequate for encompassing the full spectrum of
FIGURE 3

Model gene survival and risk assessment. (A) Model gene survival analysis. (B) Model genes correlate with risk scores.
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TNBC, resulting in considerable obstacles in clinical management

and a significant burden on patients and society alike. The

heterogeneous nature of TNBC is evident not only in its molecular

characteristics, but also in the significant variability observed in its

clinical presentation and response to treatment (17). The current

classification methods are inadequate for capturing the full spectrum

of molecular diversity observed in TNBC, leading to considerable

uncertainty in patient prognosis. Consequently, reliance on a single

classification standard is inadequate for the effective prediction of

TNBC treatment response and survival outcomes. In light of these

considerations, we proposed a novel perspective based on the analysis

of mitophagy-related gene expression as a means of evaluating TNBC

prognosis, thereby providing a more reliable foundation for

personalized treatment. This approach not only enhances patient

prognosis but also offers guidance for the development of novel

therapeutic strategies.
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Mitophagy is a selective form of autophagy, a process by which

cells degrade mitochondria. It is a vital mechanism for maintaining

cellular health and function, playing a pivotal role in processes such

as cellular stress, aging, and cancer (18). Mitophagy has been

demonstrated to play a complex and dual role in cancer, with the

potential to either promote cancer cell survival or to inhibit cancer

initiation and progression (4). Despite the growing body of research

on mitophagy in breast cancer in recent years, with notable

advances in TNBC, the majority of these studies remain confined

to fundamental mechanistic investigation (19). The precise role of

mitophagy in TNBC and its clinical applications remain to be fully

elucidated through rigorous scientific inquiry. Notably, there is a

significant deficit in the construction of prognostic models based on

mitophagy. This is the first instance in which a prognostic model for

TNBC has been constructed using mitophagy-related genes. Our

study not only addresses this gap in the literature but also
FIGURE 4

The construction of a nomogram and clinical correlation analysis. (A) Nomogram to assess the risk of BC patients. (B) There were significant
differences in tumor size and recurrence status between high and low-risk groups. (C) Potential drug screening in high-risk patients.
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establishes a foundation for further, more in-depth research in

the future.

The study employed single-cell sequencing to examine the

function of MRGs in TNBC. Through Cox and Lasso regression

analyses, nine MRGs were identified and used to construct a TNBC

prognostic model. This model was validated in four independent

datasets (METABRIC, GSE58812, GSE2653, and GSE65194) and

exhibited strong predictive accuracy and robustness. While current

prognostic models like MammaPrint®, Breast Cancer Index (BCI),

and Oncotype DX are effective for certain breast cancer subtypes,

they lack optimization for TNBC. As a result, their predictions for

TNBC patients are not as reliable (20–22). Existing TNBC-specific

models frequently fail to consider the pivotal function of

mitophagy, which is essential for cellular metabolism, stress

response, and tumor survival. A prognostic model based on

MRGs thus offers greater biological and clinical relevance. Our

study represents an innovative application of single-cell sequencing,

which has been instrumental in uncovering the heterogeneity of

TNBC and in the development of a more precise prognostic model.

Our findings indicate that patients classified as high-risk by our

model are more likely to develop larger tumors and experience

recurrence, thereby demonstrating the model’s utility in predicting

outcomes in TNBC.
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TNBC is characterized by the absence of specific hormone

receptors and HER2 expression, which restricts the range of

available treatment options and renders chemotherapy the most

commonly employed systemic therapy. To further validate the

clinical utility of our model, we conducted an analysis of

chemotherapy drugs. Five drugs were identified as particularly

effective in the high-risk group: BEZ235, AZD7762, dasatinib,

cisplatin, and talazoparib. AZD7762, a Chk1 inhibitor, has

demonstrated considerable promise in the treatment of breast

cancer, particularly in cases where p53 mutations and TNBC are

present. This is due to its ability to enhance the efficacy of

radiotherapy and chemotherapy (23, 24). Dasatinib has also been

shown to possess notable therapeutic potential in the treatment of

breast cancer, particularly in the TNBC and HER2-positive

subtypes. This is achieved by targeting breast cancer stem cells

and enhancing the sensitivity of cancer cells to chemotherapy (25,

26). Cisplatin, a traditional platinum-based chemotherapy drug, has

demonstrated efficacy against TNBC by inhibiting the EMT process.

Furthermore, it has been shown to enhance the efficacy of other

drugs, such as paclitaxel, in treating TNBC (27). Talazoparib, a

recently developed PARP inhibitor, has demonstrated remarkable

efficacy in patients with HER2-negative advanced breast cancer and

BRCA mutations. This treatment has demonstrated marked
FIGURE 5

Gene mutation analysis. (A) Differences in Tumor Mutational Burden (TMB) levels between the two risk groups in the MetaBric database. (B) The
correlation between TMB and risk score. (C) Correlation analysis between TMB and prognosis. (D) Differences in Tumor Mutational Burden (TMB)
levels between the two risk groups in the TCGA database. (E) The correlation between TMB and risk score. (F) Correlation analysis between TMB
and prognosis.
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improvements in both OS and PFS, as well as quality of life (28, 29).

Therefore, Talazoparib may become a crucial element in

personalized treatment plans for high-risk patients. Clinicians

may consider integrating Talazoparib into treatment regimens

based on the patient’s BRCA mutation status, to optimize

therapeutic outcomes while reducing adverse effects. For other

drugs (such as dasatinib, AZD7762, and cisplatin), it is

recommended that clinicians personalize drug selection based on

the patient’s molecular characteristics (such as gene mutations or

expression profiles).

In cancer research, immune infiltration is a key concept as it

involves the immune system’s response to tumors or lesions. The

degree and type of immune infiltration can significantly influence
Frontiers in Immunology 11
disease progression, patient prognosis, and treatment response (30).

In recent years, immunotherapy, particularly immune checkpoint

inhibitors, has made remarkable progress in various types of tumors

(31). However, triple-negative breast cancer (TNBC), due to its high

aggressiveness and lack of effective targeted therapies, often does

not respond well to traditional treatments. In this context,

immunotherapy has become a critical research focus for TNBC

treatment. Currently, the application of immunotherapy in TNBC

has shown some efficacy. Clinical trials such as KEYNOTE-355 and

IMpassion130 have found that PD-L1-positive TNBC patients

respond better to immune checkpoint inhibitors combined with

chemotherapy, significantly prolonging PFS and OS (32, 33).

However, the efficacy of immunotherapy varies among
FIGURE 6

Analysis of immune microenvironment. (A) The distribution and association of tumor-infiltrating immune cells (TICs) in two risk groups. (B)
Correlation analysis of immune score and risk score, ESTIMATE score and risk score, Stromal score and risk score, tumor purity and risk score. (C, D)
Analysis of immune cell infiltration. (E, F) Analysis of the immunization process.
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FIGURE 7

Risk gene and immune checkpoint analysis. (A) The difference in TIDE scores between high and low-risk groups. (B) Risk gene and immune
checkpoint correlation. (C) Differences in the abundance of immune-checkpoint-related genes between high and low-risk groups. *P<0.05, **P<
0.01, ***P<0.001, ns indicates No significance.
FIGURE 8

Analysis of GSEA and GSVA. (A) GSEA pathway enrichment analysis. (B) GSVA pathway enrichment analysis.
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individuals, and not all patients benefit (34). Additionally, the

occurrence of immune-related adverse events presents a

significant challenge, requiring further optimization of

treatment strategies.

In this study, we found that the infiltration levels of cancer-

associated fibroblasts (CAFs) and endothelial cells were significantly

higher in the high-risk group compared to the low-risk group. This

finding is consistent with existing literature and further validates the

critical role these cells play in tumor progression and patient

prognosis. Specifically, CAFs not only promote tumor growth and

metastasis by secreting growth factors and cytokines, but they also

interact with immune cells, altering the tumor microenvironment

and thereby enhancing the malignancy of the tumor (34).

Additionally, endothelial cells significantly facilitate breast cancer

cell invasion and metastasis through metabolic reprogramming and

the secretion of specific factors (35). These mechanisms may

elucidate the association between higher endothelial cell

infiltration in the high-risk group and a poorer prognosis.

Furthermore, we conducted a comprehensive investigation into

the composition of immune cells, immune infiltration, and

immune scoring in TNBC. These studies provide crucial

theoretical support and potential therapeutic targets for

immunotherapy in TNBC. These findings not only enhance our

comprehension of the immune microenvironment in TNBC but

also provide direction for prospective treatment strategies.

This study employed TIDE analysis to further elucidate the

impact of immune escape mechanisms on immunotherapy in

high-risk TNBC patients. Although the TIDE scores were higher in

the high-risk group, indicating that these patients may respond

poorly to immune checkpoint inhibitors (ICI), the difference in

TIDE scores was not statistically significant, likely due to the small

sample size or data heterogeneity. Nevertheless, the observed trend in

TIDE scores suggests that immune escape mechanismsmay bemore

active in high-risk patients. It is recommended that future research

should aim to increase the sample size or incorporate additional

immune marker analysis to improve the ability to predict responses

to immunotherapy. Furthermore, the model gene PYCR1 was found

to be negatively correlated with immune checkpoints, indicating

that PYCR1 may play a pivotal role in immune escape. The

elevated expression of immune checkpoints, including TNFSF15,

ADORA2A, TNFSF4, and CD160, in the high-risk group indicates

that these checkpoints may represent promising therapeutic targets

in the future.

While this study makes a notable contribution to the

understanding of the immune microenvironment in TNBC, it is

not without limitations. First, due to the limitations of the

experimental design, we were unable to conduct in vivo and in

vitro experiments to validate these findings. Instead, we relied on

data analysis. Although our results were validated using multiple

external datasets, the lack of our dataset may limit the

generalizability of the findings. It is therefore recommended that

future research should include experimental validation to solidify

these findings and explore more precise immunotherapy strategies.
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5 Conclusion

This study developed a mitophagy-related prognostic model for

TNBC using single-cell sequencing data, effectively stratifying patients

into high- and low-risk groups. Patients at high risk exhibited

diminished survival, increased tumor size, and elevated recurrence

rates. A drug sensitivity analysis identified chemotherapeutic agents,

including talazoparib, as potentially more effective in high-risk

patients. The immune analysis revealed an increased infiltration of

macrophages, neutrophils, and cancer-associated fibroblasts in

patients at high risk, which has been linked to tumor progression.

The correlation between PYCR1 and immune checkpoints indicates

its involvement in immune evasion, thereby offering potential targets

for immunotherapy. The model offers insights into TNBC prognosis

and provides a foundation for personalized treatment strategies.
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