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combination immunotherapy
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and Hubert Hackl1*
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Pathology, Innpath GmbH, Innsbruck, Austria, 4Department of Obstetrics and Gynecology, Medical
University of Innsbruck, Innsbruck, Austria
Background: The efficacy of immunotherapies in high-grade serous ovarian

cancer (HGSOC) is limited, but clinical trials investigating the potential of

combination immunotherapy including poly-ADP-ribose polymerase inhibitors

(PARPis) are ongoing. Homologous recombination repair deficiency or

BRCAness and the composition of the tumor microenvironment appear to play

a critical role in determining the therapeutic response.

Methods: We conducted comprehensive immunogenomic analyses of HGSOC

using data from several patient cohorts. Machine learning methods were used to

develop a classification model for BRCAness from gene expression data.

Integrated analysis of bulk and single-cell RNA sequencing data was used to

delineate the tumor immune microenvironment and was validated by

immunohistochemistry. The impact of PARPi and BRCA1 mutations on the

activation of immune-related pathways was studied using ovarian cancer cell

lines, RNA sequencing, and immunofluorescence analysis.

Results:We identified a 24-gene signature that predicts BRCAness. Comprehensive

immunogenomic analyses across patient cohorts identified samples with BRCAness

and high immune infiltration. Further characterization of these samples revealed

increased infiltration of immunosuppressive cells, including tumor-associated

macrophages expressing TREM2, C1QA, and LILRB4, as specified by single-cell

RNA sequencing data and gene expression analysis of samples from patients

receiving combination therapy with PARPi and anti-PD-1. Our findings show also

that genomic instability and PARPi activated the cGAS-STING signaling pathway in

vitro and the downstream innate immune response in a similar manner to HGSOC

patients with BRCAness status. Finally, we have developed aweb application (https://

ovrseq.icbi.at) and an associated R packageOvRSeq, which allow for comprehensive

characterization of ovarian cancer patient samples and assessment of a vulnerability

score that enables stratification of patients to predict response to the

combination immunotherapy.
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Conclusions: Genomic instability in HGSOC affects the tumor immune

environment, and TAMs play a crucial role in modulating the immune

response. Based on various datasets, we have developed a diagnostic

application that uses RNA sequencing data not only to comprehensively

characterize HGSOC but also to predict vulnerability and response to

combination immunotherapy.
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1 Introduction

Despite newer therapeutic concepts, ovarian cancer, particularly

high-grade serous ovarian cancer, is still the deadliest gynecologic

malignancy, with 13,270 expected deaths in 2023 in the U.S (1).

While immunotherapy, such as immune checkpoint inhibition

monotherapy (e.g., antibodies against PD-1 or PD-L1), has

dramatically changed the therapeutic concepts of different cancer

types, especially those with mismatch repair deficiency (2), the

benefit for ovarian cancer patients with an objective response rate of

approximately 10% was found to be rather modest (3–6). However,

poly-ADP-ribose polymerase inhibitors (PARPis) and

antiangiogenic therapy have improved the survival outcomes of

ovarian cancer patients beyond standard care, namely, debulking

surgery and platinum-based therapy (7). Furthermore, a number of

clinical trials of combination therapies, including immune

checkpoint blockade, are underway (8–12). Whereas the recent

primary analysis of the double-blind placebo-controlled ENGOT-

Ov41/GEICO 69-O/ANITA phase III trial showed that the addition

of the anti-PD-L1 antibody (atezolizumab) did not significantly

improve the clinical outcome (12), early analysis of the MEDIOLA

phase II study adding the PD-L1 inhibitor (durvalumab) and the

angiogenesis inhibitor (bevacizumab) to a PARPi (olaparib) was

promising, with an objective response rate >90% for a specific

patient group with platinum-sensitive relapsed ovarian cancer

harboring germline BRCA mutations (11).

PARP is involved in DNA damage and repair, binds to single-

strand DNA breaks, and performs posttranslational modifications of

histones and DNA-associated proteins by poly-ADP-ribosylation,

also known as parylation. PARP inhibitors trap PARP and stall the

replication fork, which can subsequently cause DSBs. PARP

inhibition is synthetic lethal with deleterious BRCA1 and BRCA2

mutations because homologous recombination repair (HRR) cannot

restore these double-strand breaks, introducing genome instability by

nonhomologous end joining or leading to tumor cell death (13). In

high-grade serous ovarian cancer, approximately 14% harbor a

germline and 6% a somatic mutation in the BRCA1 or BRCA2

gene, and approximately 50% are HRR deficient (HRD), indicating

that they are favorable for PARPi therapy (14, 15). Sequencing
02
approaches enable researchers to detect mutations in other genes

involved in HRR. However, the concept of HRD or BRCAness goes

beyond, as it encompasses instabilities and genomic scars, including

large-scale transitions, loss of heterozygosity, telomeric allelic

imbalance and specific mutational processes with uneven base

substitution patterns (mutational signature 3). Several diagnostic

assays from commercial providers for the detection of HRD have

already been approved (16). However, further efforts are undertaken

to identify various biomarkers based on different modalities, such as

gene expression or methylation, in the context of different cancer

types (17–21). Deleterious BRCA1mutations and/or PARP inhibition

can trigger an immune response at least in part through the cGAS-

STING pathway (22–26), suggesting advantages for combined

immunotherapies. However, biomarkers or phenotypes to predict

the response to therapies, including PARPis and immune checkpoint

blockers, are lacking.

In this study, we conducted comprehensive immunogenomic

analyses of HGSOC using data from multiple patient cohorts.

Integrated gene expression analysis and machine learning on bulk

and single-cell RNA sequencing data enabled the 1) development of

a 24-gene expression classification model for BRCAness, 2)

stratification of patient samples with BRCAness and high

immune infiltration, whereby tumor-associated macrophages

(TAMs) proved to be an important suppressive component, 3)

identification of the activation of immune-related pathways such as

the cGAS-STING or JAK-STAT pathway and downstream

signaling by PARPi and BRCA1 mutation (BRCAness), and 4)

the development of a diagnostic application from RNA sequencing

data to comprehensively characterize HGSOC samples and predict

vulnerability and response to combination immunotherapy.
2 Methods

2.1 Patient cohorts and datasets

The analysis workflow and used datasets from various cohorts

are summarized in Supplementary Figure S1. Patient characteristics

for the TCGA-OV cohort (n=226) (15) and the new HGSOC cohort
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from the Medical University in Innsbruck (MUI) (n=60) are listed

in Supplementary Tables S1 and S2. RNA sequencing data and

clinical data for the validation cohort (Medical University of

Innsbruck; MUI) were deposited at https://doi.org/10.5281/

zenodo.10251467. Controlled access data for whole exome

sequencing and RNA sequencing data for the TCGA-OV cohort

were obtained through dbGaP access permission (phs000178).

Processed data (including methylation beta values) and clinical

data were downloaded from Firebrowse (firebrowse.org, BROAD

Institute). Additional clinical data were retrieved from the

supplementary data of another resource (27). Raw RNA

sequencing data and clinical annotations for the ICON7 cohort

(28) were downloaded from the EGA archive (EGAS00001003487).

Single-cell RNA-seq data (29) were downloaded from the Gene

Expression Omnibus (GEO) (GSE180661) as an annotated count

matrix (anndata-object) in h5ad-format. Data files from the

TOPACIO clinical trial (9) were retrieved from Synapse (https://

doi.org/10.7303/syn21569629). Data from the Clinical Proteomic

Tumor Analysis Consortium ovarian cancer cohort (CPTAC-OV)

(30) were downloaded from (https://proteomics.cancer.gov)

(n=71). Data from RNA sequencing analysis of OVCAR 3 and

UWB1.289 cancer cell lines performed in this study were deposited

in GEO (GSE237361). Only complete data sets were used, and

observations (rows) with missing values were deleted before specific

analyses were performed.
2.2 Cell line experiments

Two epithelial ovarian carcinoma cell lines, UWB1.289

harboring a deleterious BRCA1 and OVCAR3 with intact

BRCA1, were obtained from ATCC. OVCAR3 cells were grown

in RPMI 1640 with 0.01 mg/ml bovine insulin and 20% FBS,

whereas UWB1.289 cells were grown in a mixture of 48.5%

MEGM Bullet Kit medium (Lonza) and 48.5% RPMI 1640 with

3% FBS. Viability assays were used to determine the IC50 for

olaparib. Both cell lines were treated with olaparib or DMSO for

96 hours in four replicates. Treated and untreated UWB1.289 and

OVCAR3 cells were stained with indirect immunofluorescent

antibodies to detect gH2AX as an indicator of double-strand

breaks. To determine activated STING signaling, double-stranded

DNA and its presence in the cytosol, cGAS, STING, and

phosphorylated STING were detected. The antibodies used are

listed in Supplementary Table S3.
2.3 Immunohistochemistry analyses

Slices of 10 selected tumor blocks were subjected to

immunohistochemistry analyses performed on the BenchMark

ULTRA automated staining device (Ventana, Oro Valley, AZ/

Roche, Vienna, Austria). The examined markers were CD163 for

macrophages and CD8, PD-1, CD4, and FOXP3 for T cells.

Furthermore, the markers gH2AX and STING were analyzed. All

antibodies used are listed in Supplementary Table S4.
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2.4 RNA sequencing analyses

RNA from cancer cell line samples was isolated from 2x106 cells

each using the RNeasy Mini Kit (Qiagen) according to the

manufacturer’s protocols. RNA quantity and quality were

assessed using NanoDrop™ 2000c and Bioanalyzer 2100 with

Agilent 6000 Nano Kit and cDNA libraries were generated using

the QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen) according

to the manufacturer’s instructions. Paired-end sequencing (150 bp)

was performed on a NovaSeq 6000 sequencing device at

GENEWIZ/Azenta. RNA isolation from 60 fresh frozen tumor

samples from the MUI HGSOC validation cohort was conducted

in a similar manner resulting in sufficient quality (RIN factors from

6.4 to 9.9), and sequencing was performed at Novogene

(Cambridge, UK) for paired end sequencing (PE150) on an

Illumina NovaSeq 6000 sequencing device using TrueSeq

(Illumina) strand-specific total RNA libraries.
2.5 RNA sequencing data analyses

Raw reads were quality checked using FastQC. Reads were mapped

to the human reference genome version hg38 (GRch38) using STAR

(version 2.7.1) in 2pass mode (31). Gene level expression quantification

was performed with featureCounts (version 2.0.0) using GENCODE

annotations (v36). Raw counts were normalized using TPM

(transcripts per million). RNA sequencing raw data from the MUI

HGSOC cohort and the ICON7 cohort were analyzed in the same way.

For sequencing data of the cell lines, single-end reads were processed by

trimming adapter and low-quality sequences using BBDuk with the

parameters specified by Lexogen. The trimmed reads were mapped to

the human reference genome version hg38 (GRch38) using STAR

(version 2.7.9a) in 2-pass mode. Gene level expression quantification

was performed with featureCounts (version 2.0.0) and GENCODE

annotations (v38).
2.6 Whole exome sequencing analyses and
variant calling

Raw exome sequencing reads in fastq format were quality

checked using FastQC. Reads of paired tumor and normal

samples were mapped against the human reference genome

version hg38 (GRch38) using BWA. For the detection of germline

variants the HaplotypeCaller was used. To assess somatic variants in

the tumor samples, four different variant callers, Mutect2 (32),

SomaticSniper (33), Varscan2 (34), and Strelka2 (35) were used. If a

variant was called by two of four variant callers and the variant allele

frequency was ≥ 0.05 in the tumor sample and <0.05 in the normal

sample, the variant passed filtering. Variants were annotated using

VEP (36) with the ClinVar extension. Only pathogenic (class V)

and likely pathogenic (class IV) variants were considered to affect

the function of HRR genes such as BRCA1 or BRCA2. Tumor

mutational burden was calculated based on the number of

nonsynonymous single nucleotide variants per megabase for each
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tumor sample. For neoantigen prediction, from somatic mutation

derived peptide sequences with lengths between 8-11 amino acids -

taking phasing into account - were generated and tested for the

respective HLA alleles with NetMHCpan-4.0 (37), whereby %

rank<2 was considered a weak binder and %rank<0.5 was

considered a strong binder. Dissimilarity to the normal human

proteome (hg38) was identified by the antigen.garnish package.

Neoantigen load was calculated for each tumor based on predicted

weak and strong binding neoantigens – irrespective of their peptide

length and taking all HLA alleles into account – per megabase.
2.7 Functional analysis of gene expression
and the tumor immune environment

Differential gene expression analysis was conducted using the R

package DESeq2 (38). P values were adjusted for multiple testing based

on the false discovery rate (FDR) according to the Benjamini

−Hochberg method. Genes with more than a twofold change at an

FDR<0.1 and average expression across all samples (baseMean>10)

were considered significantly differentially expressed. To identify

functional annotation and affected biological processes, log2-fold

change preranked gene set enrichment analyses (GSEA) (39) using

hallmark and selected immune-related gene sets from MSigDB were

performed. ClueGO was used to build a network and group

significantly overrepresented pathways, which share genes (40). The

STRING database (https://string-db.org/) was used to identify an

interaction network within the differentially expressed genes, and

subnetworks were found by MCL clustering with inflation

parameter=3. Footprint analyses of response genes of perturbed

cancer signaling pathways were performed using PROGENy (41).

To assess tumor infiltration of immune cells quanTIseq (42) using

the immunedeconv R package was applied to bulk RNA sequencing

data. To characterize the immune-related processes, well-described

immune signatures, such as T-cell inflammation, IFN gamma

signature, cytolytic activity, cytotoxic T lymphocyte function, and

T-cell exhaustion (Supplementary Table S5), were analyzed. Based

on log2(TPM+1) normalized expression data, single sample gene

set enrichment using GSVA (43) was performed for signatures with

more than 10 genes or otherwise average expression was calculated.

The tumor-immune phenotype (infiltrated, excluded, desert) was

determined based on a previously developed classification model

based on 157 genes using digital pathology describing the presence

and position of CD8+ T cells relative to the center or margin of the

tumor (28) and a random forest model was used to characterize

samples from the TCGA and the MUI cohorts. To classify ovarian

cancer samples into molecular subtypes, the consensusOV R

package (44) was used. The immunophenoscore (IPS) was

determined as described previously (45).
2.8 Determination and classification
of BRCAness

BRCAness was determined based on HRD scores (46),

mutational signature 3 (47), mutations in homologous

recombination repair pathway genes and methylation of promoter
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regions of BRCA1. All HGSOC samples of the TCGA cohort for

which paired tumor and normal exome sequencing and matched

RNA sequencing data were available (n=226) were used. Samples

were classified with a BRCAness phenotype when they had either a

deleterious mutation in the homologous recombination pathway,

an ovarian cancer-specific HRD score of ≥ 63 (48), a mutational

signature 3 ratio > 0.25 or a methylation level beta value >0.7 of the

BRCA1 promoter. HRD scores were calculated as the unweighted

sum of the three genomic scar values, loss of heterozygosity (LOH)

(49), telomeric allelic imbalance (TAI) (50), and large-scale state

transitions (LST) (51). To compute the genomic scar values,

scarHRD (52) was used on genome segmentation files generated

with Sequenza (53). The mutational signature 3 score was

computed using MutationalPatterns (54) and we calculated the

ratio between mutational signature 3 supporting mutations and all

detected mutations. To classify BRCAness, genes expressed in at

least one ovarian cancer cell were identified using single-cell

RNAseq data. Normalized gene expression values (log2 (TPM+1))

of these genes in the TCGA dataset were then subjected to recursive

feature elimination in a balanced design with three different

machine learning models (random forest, AdaBoost and gradient

boosting) to identify the 50 most important features for each model.

Since ensemble methods and random subsampling (bootstrap) were

included, we did not use nested cross-validation to avoid overfitting.

Genes that were among the top 50 in at least two of the three models

(24 genes) were then used subsequently to train a random forest

classification model to discriminate between BRCAness and

noBRCAness samples based on gene expression data. The

performance of the classifier was evaluated by analysis of the

receiver operating characteristic curve with 10-fold cross-

validation. The area under curve (AUC) was used as a

performance measure. A cutoff for BRCAness (P>0.5266) was

selected using the Youden index. Furthermore, the classifier was

tested in 29 patients of the independent validation cohort (MUI)

with HRD information based on SNP arrays and further validation

using Myriad MyChoice CDx. Samplewise BRCA classification in

single-cell RNA sequencing data from 29 patients was performed

with an optimized cutoff (P>0.45) and based on the majority of

classified tumor cells. A method to detect mutational signature 3

(Sig3), termed SigMA, from clinical panel sequencing data have

been previously developed and associated with HRD (55). To

further compare our BRCAness classifier, which is based on a

BRCAness definition more completed as compared to the other

methods described in literature such as the SigMA score, using

available RNA sequencing and mutation data from the Clinical

Proteomic Tumor Analysis Consortium ovarian cancer (CPTAC-

OV) cohort (30).
2.9 Single-cell RNA sequencing analysis

All analyses of single-cell data were performed in Python using

scanpy (56) and scvi-tools (57). Since the samples were sequenced

separately for sorted CD45+ and CD45- cells, the raw read counts

were integrated using scvi-tools with a batch effect correction.

Counts were normalized to counts per million (CPM) and log2
frontiersin.org
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transformed, adding a pseudocount of 1. Quality metrics were

determined using scanpy and filtered for genes that are expressed

in at least one cell. The dataset was filtered for samples from the

primary tumor (adnexal tumor tissue). Principal component

analysis and nearest neighbor analyses were calculated with

default settings, and clustering was performed with the Leiden

algorithm. Super cell types were annotated as previously defined.

Subtypes of T-cell and myeloid cell clusters were assigned based on

the expression of marker genes using published marker genes for

different cell types and the PanglaoDB (58). Differentially expressed

genes between clusters were calculated using the Wilcoxon ranked

sum test. For visualization, we used uniform manifold

approximation and projection (UMAP) dimensional reduction.

Gene expression between cell types was compared by heatmaps,

violin plots, and bubble plots. Distribution of cell fractions for each

sample or combined for BRCAness and noBRCAness group were

compared by stacked barplots and two-sided Wilcoxon rank sum

test. Pseudobulk analyses and DESeq2 analyses was performed for

selected immune response markers to test effect of BRCAness versus

noBRCA samples on the immune response. To assess ligand

−receptor interactions between cancer cells and cells from the

TME, CellPhoneDB (59) analysis was used.
2.10 Gene expression analysis

Gene expression analysis in the TOPACIO cohort was

performed on the NanoString platform. We used the nSolver

software from NanoString (Seattle, US) to obtain normalized

data. Differential expression analysis was performed using the R

package limma (60), and genes with p<0.05 were considered

differentially expressed.
2.11 Vulnerability score and maps

Vulnerability maps consist of three variables: the vulnerability

score, the BRCAness score and the cytolytic activity (CYT) to C1QA

ratio. For the BRCAness score, the prediction probability from the

random forest classifier was used. The CYT to C1QA ratio was

calculated from the log2 (TPM+1) values of GZMB, PRF1, and

C1QA (Equation 1).

CYT   to  C1QA   ratio = 0:5 � (GZMB + PRF1)=C1QA (1)

The CYT to C1QA ratio was transformed to values between 0

and 1 using a sigmoid function with softmax transformation and

parameters derived from the TCGA cohort and termed C2C

(Equation 2).

C2C = 1= 1 + e−
CYT   to  C1QA   ratio−0:301

0:0433

� �
(2)

The vulnerability score was defined as the weighted sum of

BRCAness probability and C2C (Equation 3), whereby the weights

were identified using a logistic regression model on the CYT to

C1QA ratio using log2 intensity expression values and SigMA status

(mutational signature 3) as proxy for BRCAness from the
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TOPACIO cohort and the treatment response as a binary

dependent variable.

Vulnerability   score

= 2:597   *  BRCAness   probability + 1:166   *  C2C (3)

For visualization of the vulnerability map, a two-dimensional

map was created with C2C as one coordinate, BRCA probability as

the other coordinate, and the color-coded vulnerability score.
2.12 Statistical analysis

Survival analyses were performed for both HGSOC cohorts

(TCGA, MUI) for selected genes, immune parameters, or immune

cell fractions by dichotomization of patients based on the median or

maximum log-rank statistics using the R package survival. For the

TCGA cohort, overall survival (OS) and progression free survival

(PFS) survival status were derived from a clinical data resource for

TCGA (27) and for the cohort from Medical University Innsbruck

from the clinical data as provided by the Department of Obstetrics

and Gynecology. Univariate and multivariable Cox regression

analyses taking clinical parameters into account (age, FIGO stage,

residual tumor) were performed, Kaplan-Meier survival curves were

generated, and compared by log rank test. To determine the

association between continuous or binary variables, point biserial

correlation analysis was used. For the correlation between binary

variables, the Phi coefficient and chi-square test were used, and for

the correlation between continuous variables, Pearson’s correlation

coefficient was used. To compare parameters between two groups,

the Wilcoxon rank-sum test was used. For multiple group

comparisons the non-parametric Kruskal-Wallis test followed by

pairwise two-tailed Dunn posthoc tests with p-value adjustment

based on the false discovery rate (FDR) were used. Where indicated,

p values were adjusted for multiple testing based on the FDR

according to the Benjamini−Hochberg method. P<0.05 or

FDR<0.1 were considered significant.
3 Results

We performed immunogenomic characterization and

multimodal integrative analyses of data from several patient

cohorts, including the TCGA cohort (n=226), the MSK cohort

(n=29), the ICON7 cohort (n=327), the CPTAC cohort (n=71),

patients from the TOPACIO study receiving combination

immunotherapy (n=22), and a new MUI cohort for validation

(n=60). The used data modalities and complete analysis workflow

is outlined in Supplementary Figure S1.
3.1 A 24-gene signature predicts BRCAness
in HGSOC patients

Because the response to platinum-based chemotherapies or

therapy with PARP inhibitors in ovarian cancer is not limited to
frontiersin.org
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patients with tumors harboring BRCA1 or BRCA2 mutations, we

expanded the group of patients by using a genomic characterization

termed BRCAness, which has very much in common with

homologous recombination repair deficiency (HRD) status (61).

BRCAness status includes mutations of genes in the homologous

recombination DNA repair pathway (HRR), genomic scars, loss of

heterozygosity, telomeric allelic imbalance, or large-scale

transitions, mutational signature 3, or promoter methylation of

the BRCA1 or BRCA2 gene. We assessed these parameters based on

whole exome sequencing data and methylation data from the

TCGA OV cohort (Figure 1A). Very few patients harboring HRR

mutations or BRCA1 promoter methylation fell below the

combination of the HRD cutoff (HRD>63) and the MutSig3 ratio

cutoff (0.25), indicating a reasonable selection of the cutoff values
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(Figure 1B). To identify BRCAness solely based on gene expression

data, we developed a machine learning classifier that can

discriminate between BRCAness and non-BRCAness samples

using bulk and single-cell RNA sequencing data (Figure 1A).

Recursive feature elimination based on multiple models resulted

in a BRCAness gene expression signature with 24 genes, which was

used to train a random forest model discriminating between

BRCAness and noBRCAness . The receiver operat ing

characteristics with 10-fold cross-validation on the training

dataset showed an area under the curve (AUC) of 0.91 ± 0.04

(Figure 1C). To validate our BRCAness classifier we tested its

performance in two independent ovarian cancer cohorts. We

could classify BRCAness in a new HGSOC cohort from the

Medical University Innsbruck (MUI) (n=60) based on RNA
FIGURE 1

BRCAness classification based on the expression of 24 genes. (A) Determination of BRCAness in the TCGA-OV cohort and the development of a
gene expression-based BRCAness classifier. (B) Different BRCAness parameters in the TCGA cohort compared between the HRD score and the
mutation signature 3 ratio. Samples with mutated homologous recombination repair pathway genes are marked in red, BRCA1/2 promoter
methylation in blue and samples with an HRD score > 63 and/or a signature 3 ratio > 0.25 but no mutation or BRCA1/2 promoter methylation are
marked in yellow. Samples without BRCAness are marked in white. (C) Mean ROC curve with 10-fold cross-validation of the classifier tested on the
TCGA dataset. (D) Confusion matrices with correctly and incorrectly classified instances when the classifier was tested in independent test cohorts
of single-cell RNA sequencing and bulk RNA sequencing data. (E) Z scores of log2(TPM+1) normalized expression of the 24 genes of the BRCAness
signature in the TCGA cohort as a heatmap clustered by BRCAness and non-BRCAness samples.
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sequencing data with an accuracy of 0.79, an F1-score of 0.86, and a

positive prediction value of 0.86 (Figure 1D). Furthermore, we

demonstrated that in addition to classifying bulk RNAseq samples

the classifier is also capable of classifying samples from single cell

RNA-seq data at the sample level in the HGSOC MSK cohort

(n=29) with an accuracy of 0.86, an F1 score of 0.87 and a positive

prediction value of 0.87 (Figure 1D).

There was also good agreement with a recently defined gene

expression-based HRDness signature including 173 up- and 76

downregulated genes (62) using a single sample gene set enrichment

derived score in the TCGA cohort as well as the MUI validation

cohort with Spearman’s rank correlation of r=0.72 (P<0.001) and

r=0.63 (P<0.001), respectively (Supplementary Figures S2, S3).

Interestingly, six genes from our 24-gene signature (Figure 1E) to

classify BRCAness (CCDC90B, CRABP2, FZD4, GPAA1, PRCP,

SNRP1) were also among the upregulated and two genes (RAD17,

LTA4H) among the downregulated genes. The 24-gene BRCAness

signature was further compared to the SigMA score (mutational

signature 3) of the CPTAC-OV cohort (n=71). Although our

BRCAness signature is based on a more complete BRCAness

definition than the mutational signature, a significant correlation

was observed with a Spearman’s rank correlation of r=0.43
(P<0.001) (Supplementary Figure S4). We used this BRCAness

classification for all remaining analyses.

In summary, we developed a 24-gene-based BRCAness model

validated in several single-cell and bulk RNAseq datasets with

reasonable classification performance.
3.2 Genome instability is associated with
immune-related processes

To identify the relationship between genomic instability and

the activation of the immune system, we performed correlation

analyses between the BRCAness status and various immune-related

signatures in the TCGA cohort (n=226). BRCAness could

be significantly positively associated with the enrichment

of immune-related signatures, such as those for IFNG response

(rho=0.38, p=0.004) and T-cell inflamed tumor microenvironment

(rho=0.46, p=0.0014), even to a larger extent with high tumor

mutational burden (p<0.001) and high neoantigen load (p<0.001)

(Figures 2A, B). However, compared to other cancer types with

defective DNA mismatch repair the TMB or neoantigen load in

ovarian cancer is rather low. Thus, increased immune activity is

more indicative of deficient HRR. It is known that BRCAness is

associated with longer overall survival, indicating that those patients

are more responsive to platinum-based chemotherapy. In order to

determine to which extend this could be explained by higher

immune cell infiltration we estimated CD8+ T-cell infiltration

from RNA sequencing data using quanTIseq and divided patients

into 4 groups: BRCAness patients with high CD8 T cell fraction,

BRCAness patients with low CD8 T cell fraction, noBRCAness

patients with high CD8 T cell fraction, and noBRCAness patients

with low CD8 T cell fraction. We observed a significant association

with overall survival (p<0.0001; log rank test) (Figure 2C) and
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progression-free survival (p=0.0016; log rank test) (Figure 2D), with

the BRCAness group with a high proportion of positive CD8 T cells

being associated with the longest survival. Multivariable Cox

regression analysis showed a significant effect of BRCAness vs. no

BRCAness on overall survival (p=0.00062, HR=0.51with 95%-CI

0.35-0.75), while the impact of CD8 T cell was not significant

(Supplementary Table S6) indicating a more pronounced role of the

BRCAness status. Nevertheless, analyses of signaling pathways by

downstream target expression using PROGENy indicated for the

TCGA cohort (n=226) as well as the MUI validation cohort (n=60)

that immune-related pathways, including TNFa, NFkB, and JAK-

STAT, were activated in the BRCAness samples (Figures 2E, F).

Using STRING analyses in the MUI cohort (n=60), we also

identified a highly connected network including various

chemokines and interleukins and their respective receptors

(CCL7, CCL11, CXCL5, CXCL9, CXCL13, CCR2, CCR3, CCR4,

CCR8, CXCR3, and IL6), which were significantly higher expressed

in BRCAness tumors than in non-BRCAness tumors, indicating

attraction and interaction with various immune cells

(Supplementary Figure S5).

Essentially, we observed a correlation of BRCAness with various

immune-related processes and, in particular, a group of patients

with BRCAness and high CD8 T-cell proportion associated with

longer survival times in HGSOC patients.
3.3 PARP inhibition activates the cGAS-
STING pathway in vitro

To study the effect of PARPis on immune activation, we

performed in vitro analyses. As tumor models, an ovarian cancer

cell line with a proficient BRCA1 gene (OVCAR3) and a cell line

with a mutation in the BRCA1 gene (UWB1.289) were used. We

performed RNA sequencing analyses to identify differentially

expressed genes between olaparib (PARPi)-treated and control

(DMSO)-treated cell lines. Significantly upregulated genes

(Figures 3A, B) indicate activation of various processes

(Figures 3C, D), including pattern recognition receptor activation,

response to cytokine signaling, interferon alpha response (type I),

NFkB pathway, and cGAS-STING signaling. To further validate the

results at the protein level, we performed immunofluorescence

analyses indicating effects on gH2AX –a surrogate marker of

DNA damage - by mutation in the BRCA1 gene and an even

stronger effect by olaparib (PARPi) treatment (Figure 3E). Similarly,

we observed a different activation of cGAS and STING – and

indicating activation of the (innate) immune system – in the

BRCA1-deficient versus the BRCA1-proficient cell model

(Figure 3F). Furthermore, using gene set enrichment analyses, a

significant interferon alpha response was also observed in

BRCAness samples of both the TCGA cohort and the MUI

validation cohort (Figure 3C).

In summary, we observed cGAS-STING activation by olaparib

treatment in vitro and an interferon type I response as well as

chemokine expression in HGSOC patient cohorts with

BRCAness status.
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3.4 BRCAness and immune subtype
stratifies HGSOC patients

We next focused on characterizing the presence of cytotoxic T

lymphocytes and their spatial distribution in the tumor, following a

recent approach in which digital pathology could be linked to gene
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expression (28). With the reported list of 157 genes and using

random forest analysis, we were able to divide the patients of the

TCGA cohort into a group with infiltrated, excluded, or desert

tumor-immune phenotypes. Interestingly, the excluded phenotype

was associated with upregulation of TGFb and high expression of

markers for cancer-associated fibroblasts, such as FAP or PDPN,
FIGURE 2

Association between BRCAness and immune parameters. (A) Results of correlation analysis of selected immune signatures and BRCAness
parameters in the TCGA-HGSOC cohort (CYT, cytolytic activity; CTL, cytotoxic T lymphocytes; IFNG, interferon gamma signature; HRR mutations,
mutations in the homologous recombination repair pathway; NeoAG load, neoantigen load; TMB, tumor mutational burden); white dots indicate
significance (FDR<0.1). (B) Direct comparison of selected immune parameters between BRCAness and noBRCAness samples with significant
differences, Wilcoxon rank-sum test (FDR<0.1) in the TCGA cohort (n=226). (C) Kaplan−Meier curves according to overall survival (OS) and for 4
patient groups of the TCGA dataset (n=226) based on BRCAness information and median dichotomized estimated CD8 T cell fraction (quanTIseq):
patients with 1) BRCAness and high estimated CD8 T cell fraction, 2) BRCAness and low estimated CD8 T cell fraction, 3) noBRCAness and high
estimated CD8 T cell fraction, and 4) noBRCAness and high estimated CD8 T cell fraction (p-value is from logrank test). (D) Kaplan−Meier curves
according to progression free survival (PFS) for the same groups of patients from the TCGA cohort (n=226) as in (C). (E, F) Waterfall plot of
normalized enrichment scores (NES) for the footprint analysis of immune-related pathways with PROGENy between BRCAness and non-BRCAness
samples in the MUI (n=60) and TCGA (n=226) cohort.
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which could form a barrier to prevent T-cell infiltration (Figure 4A).

The immunoreactive molecular subtype (IMR) is very relevant to

delineate immunoreactivity because many of the immunity genes,

including cytotoxic effectors, factors involved in antigen processing

and presentation, or immune checkpoints, are highly expressed in

this condition (Figure 4A, Supplementary Table S7). We have
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selected a group of patients with tumor BRCAness, an infiltrated

tumor immune phenotype and an immunoreactive molecular

subtype called BRCAness immune type (BRIT), which we expect

to respond well to combination immunotherapy. When comparing

the estimated immune cell infiltrates in these cancer samples with

BRCAness cancers without immune type (noBRIT), we found that
FIGURE 3

Results from cell line experiments with olaparib treatment (A) Top up- and downregulated genes for the cell lines OVCAR3 and UWB1.289 under
olaparib treatment when compared to DMSO control. (B) General distribution of up- and downregulated genes after olaparib treatment compared
to the DMSO control in both cell lines as volcano plots. Red indicates significantly upregulated genes (FDR<0.1, log2-fold change>1), and blue
indicates significantly downregulated genes (FDR<0.1, log2-fold change<-1). (C) Normalized enrichment score of pathways associated with
activation of the cGAS STING pathway in BRCA1 mutated (cell lines) and BRCAness samples (cohorts) as well as olaparib-treated cell lines.
(D) ClueGO network indicating overrepresented biological processes in the olaparib-treated UWB1.289 cell line. (E) Immunofluorescence staining of
the DNA damage marker gH2AX in OVCAR3 and UWB1.289 cell lines with and without olaparib treatment. Comparing the different response to
PARPi treatment between BRCA1 mutation and wild type BRCA1 (F) Immunofluorescence staining of cGAS, double stranded DNA (dsDNA) and
STING in the OVCAR3 and UWB1.289 cell line comparing the difference between BRCA1 mutation and wild type BRCA1.
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not only cytotoxic T lymphocytes such as CD8+ T cells were

significantly more abundant (p=0.001) but also a number of

suppressive immune cells (M2 macrophages (p<0.001), regulatory

T cells (p=0.005), myeloid-derived suppressor cells; MDSCs

(p<0.001) (Figure 4B, Supplementary Figure S6). This is in line

with previous observations (63) and in order to identify an effect by
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BRCAness we additionally defined an immune type (IMT) with

noBRCAness, infiltrated tumor immune phenotype (INF), and an

immunoreactive molecular subtype (IMR). However no significant

difference between BRIT and IMT as well as noBRIT and noIMT

could be observed for the analyzed cell types (Figure 4B,

Supplementary Figure S6) indicating a more pronounced effect by
FIGURE 4

Profiles of immune parameters in the TCGA HGSOC cohort (n=226) (A) Heatmap of z scores of log2(TPM+1) expression of immune-related genes
and fraction of tumor infiltrating immune cells assessed with quanTIseq and patient samples categorized by BRCAness, tumor-immune phenotype,
molecular subtype and BRCA1/2 mutation. Furthermore, samples are stratified into four different tumor subtypes 1) BRCAness immune type samples
(BRIT), which show an immunoreactive molecular subtype and an infiltrated tumor-immune phenotype, 2) noBRIT samples, which only have
BRCAness but do not fulfill the other two requirements, 3) samples with an immune type (IMT) including an immunoreactive molecular subtype and
an infiltrated tumor-immune phenotype but noBRCAness, and 4) remaining noIMT samples. (B) Distribution of estimated CD8 T cell fractions and
estimated M2 macrophage fraction (from quanTIseq analyses) in the four different tumor subtypes. Benjamini-Hochberg adjusted p-values from
pair-wise two-sided Dunn’s posthoc test are indicated.
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immune infiltration than by BRCAness. Furthermore, we did not

observe a significant difference in overall survival between BRIT

versus noBRIT patients (p=0.56, HR =0.81, 95% CI 0.42-1.60).

These observations underscore the importance of the

suppressive immune environment and suggest that suppressive

immune cells may be an important factor, which is why ovarian

cancer patients have a limited response to immunotherapy.
3.5 Tumor-associated macrophages inform
therapy response

Single-cell RNA sequencing analyses allow a more

comprehensive characterization of the tumor environment and

evaluation of the cell interplay. Analyses of more than 300

thousand cells of adnexal ovarian tumor tissue from 29 patients

of the MSK cohort (29) allowed a clear separation between major

cell type populations by clustering and nonlinear projection

(UMAP) (Figure 5A, Supplementary Figure S7). In contrast to

cell types from the tumor microenvironment, tumor cells showed a

clear separation between BRCAness and noBRCness samples

(Figure 5A). To further investigate the effect of BRCAness on the

tumor microenvironment we compared the distribution of major

cell types between BRCAness and noBRCAness samples. We did

not observe any significant differences for the major cell types

between these patient groups (Supplementary Figure S8) but in a

summarized analysis (Figure 5A) the proportion of myeloid cell was

slightly higher and the proportion T/NK cells was slightly lower in

BRCAness compared to noBRCAness. Furthermore, we

investigated the differential expression of immune response

marker genes (Supplementary Table S7) in the BRCAness versus

the noBRCAness group by pseudobulk analysis with DESeq2.

Interestingly, 21 genes have been found significantly upregulated

in BRCAness compared to noBRCAness including immune

checkpoints such as CD274 and a number of antigen processing

and presentation genes (Supplementary Figure S9). Because cells

from the suppressive environment have a major impact, we focused

on the myeloid cell compartment and demonstrated that the

majority of these cells were macrophages, and we identified

subpopulations based on most dominant marker genes, including

CD169 (SIGLEC1) macrophages, CX3CR1 macrophages, and

MARCO macrophages (Figure 5B). One described hallmark

marker of TAMs is TREM2, which has been identified as an

attractive target for cell depletion therapy and is being tested in

an ongoing clinical trial (64). Notably, the expression patterns of

TREM2 and BRCAness are very similar, showing high expression in

all macrophage subtypes and, to a lesser extent, in monocytes

(Figure 5B). To search for further genes with similar expression

patterns in myeloid subpopulations, we analyzed known tumor-

associated macrophage and monocyte marker genes (65). As

indicated by this analysis, C1QA showed a similar but even more

pronounced expression pattern than TREM2 (Figures 5B, C). C1QA

was also recently described as a surrogate marker for the CD68

+CD163+ macrophage subset (66). We found that several genes are

highly expressed in macrophages (Supplementary Figure S10) and

that, based on marker genes, a polarization towards M2
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macrophages occurs (Supplementary Figure S11). The immune

suppressive effect of tumor associated macrophages were

underscored by a number of myeloid immune checkpoint genes,

which show a worse effect on overall survival (hazard ratio>1) in the

TCGA cohort (Supplementary Figure S12).

Since our main goal was to predict vulnerability to combination

immunotherapy we took advantage of the availability of gene

expression data from a clinical trial (TOPACIO) and could identify

7 upregulated genes and 22 down regulated genes between responder

and non-responder to PARPi-immune checkpoint inhibition

combination therapy (niraparib and pembrolizumab) (Figure 5D).

We next analyzed in which cell types these genes are generally

expressed using the results from our single cell RNA-sequencing

data analyses from the MSK cohort and found a number of

downregulated genes in responders, such as LYZ, LILRB4, and

ITGB2, were most highly expressed in myeloid cells (macrophages),

LILRB4 in dendritic cells, and integrin subunit beta 2 (ITGB2) in

other cell types, such as T/NK cells (Figures 5E, F). ITGB2 was also

found correlated in the TCGA cohort with estimated M2

macrophages and CD8 T-cell infiltration (Supplementary

Figure S13).

Interestingly, we identified various ligand−receptor interactions

with expressed ligands in tumor cells and respective receptors

expressed in tumor-associated macrophage subsets using

CellPhoneDB (59) (Supplementary Figure S14). The growth

arrest-specific protein 6 (GAS6) – AXL tyrosine kinase (AXL)

interaction, for example, which are both associated with poor

outcome, have already been evaluated in clinical trials in ovarian

cancer by inhibiting their interaction (67). LILRB1 and LILRB2

expressed in macrophage subsets were found to interact with the

nonclassical human leukocyte antigen HLA-F expressed in cancer

cells. Blocking macrophage colony-stimulating factor CSF1 and its

receptor CSF1R axis and several drugs that target these factors have

been under investigation (68).

These observations summarized together suggest that TAMs

may not only play a role in immunotherapy alone but are also

essential in informing about therapy response when combined with

PARP inhibitors.
3.6 Analyses of an independent cohort
indicate vulnerability to
combination immunotherapy

To validate the results, we performed RNA sequencing analyses

of an HGSOC cohort of patients from Medical University

Innsbruck (n=60). Stratification of these patients resulted in very

similar expression patterns evident from a number of immune

marker genes, which were highly expressed in the BRCAness

immune type patient group (BRIT) (Figure 6A). To further

characterize immune infiltrates in different patient groups, we

performed immunohistochemistry analyses on ten selected

samples for various markers and highlight the results from three

patient samples. One BRIT tumor sample showed high gH2AX

activity, STING activation, CD8+ T-cell infiltration, CD4+ T-cell

infiltration, and strong CD163+ tumor-associated macrophage
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1489235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gronauer et al. 10.3389/fimmu.2024.1489235
FIGURE 5

Single cell analysis of ovarian cancer adnexal samples from the MSK dataset (n=29) (A) UMAP showing the different cell types in of the ovarian
cancer samples and which cells and cell types are associated with BRCAness samples. Distribution of major cell types in the BRCAness and
noBRCAness are summarized as stacked bar plots. (B) UMAP plots of the myeloid cell compartment showing the association of macrophages with
BRCAness cells and the expression of the macrophage marker gene C1QA and the TAM marker gene TREM2 especially in cell clusters associated
with BRCAness. (C) Heatmap of expression of macrophage associated marker genes in the different cell types in the myeloid cell compartment.
(D) Log2 fold changes of differentially expressed genes between responder [R] and non-responder [NR] to PARPi-immune checkpoint inhibition
combination therapy (niraparib and pembrolizumab) from the TOPACIO clinical trial (n=22) (p<0.05) (E) Distribution of expression visualized by
UMAP and violin plots indicating in which (myeloid) cell types LYZ, LILRB, or ITGB2 are expressed (F) Dotplot indicating the distribution of expression
and fraction of cells in various cell type for genes up-regulated (red) or down-regulated (blue) in responders vs non-responders to combination
therapy as indicated in (D).
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populations (Figure 6B, left panel). These effects were even more

pronounced in one sample with no detected BRCA1 or BRCA2

mutation, underscoring the importance and validity of predicted

BRCAness (Figure 6B, middle panel). Another tumor sample with

no BRCAness, a desert tumor-immune phenotype, and a

differentiated molecular subtype was used as a negative control,

and in fact, no activity for any of the tested markers was observed

(Figure 6B, right panel). To better address the potential for

combination immunotherapy response, we again took advantage

of data from the TOPACIO trial and, based on the clinical response,

trained a logistic regression model and learned weights for three

surrogate variables: MutSig3 as an indicator for BRCAness, average
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expression of PRF1 and GZMB as indicators for cytolytic activity,

and expression of C1QA as an indicator for tumor-associated

suppressive macrophages. Based on the HGSOC samples from

TCGA, we developed a two-dimensional vulnerability map, with

the ratio of cytolytic activity and C1QA expression as one variable

(C2C) and the BRCAness prediction probability as the other

variable. The vulnerability score is indicated by color (Figure 6C).

When applied to the selected examples from the MUI validation

cohort, these differed significantly for areas with high vulnerability

scores (indicating response to combination immunotherapy)

compared to the negative control with low vulnerability scores

(Figure 6C). Furthermore, we observed a significant difference in
FIGURE 6

Expression profiles in the MUI cohort, immunohistochemistry validation, and vulnerability map (A) Heatmap of z-scores log2(TPM+1) expression of
immune related genes and fraction of tumor infiltrating immune cells assessed with quanTIseq in all samples (n=60) from the MUI cohort categorized by
BRCAness, tumor-immune phenotype, molecular subtype and BRCA1/2 mutation. (B) Immunohistochemistry images stained for CD8, CD4, CD163,
gH2AX, and STING for three selected patients from the MUI cohort. Two BRIT samples one with a BRCA1 mutation and one without and one other
sample without BRCAness, a deserted tumor-immune phenotype and a differentiated molecular subtype. (C) Vulnerability map showing the ratio
between cytolytic activity CYT and C1QA (C2C) on the x-axis and the BRCAness score on the y-axis colored by the vulnerability score. The three
selected samples were mapped to the vulnerability map based on their CYT to C1QA ratio (C2C) and BRCAness score.
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overall survival between patients with high and low vulnerability

scores (p<0.001, HR = 0.47, 95% CI 0.33-0.66) in the TCGA

HGSOC cohort (Supplementary Figure S15), indicating a positive

association of a high vulnerability score with longer overall survival.

For patients in the MUI validation cohort, no significant difference

in overall survival (p=0.368, HR = 0.78, 95% CI 0.45-1.34) could be

revealed (Supplementary Figure S16). To enable the

characterization of newly diagnosed HGSOC samples based on

RNA sequencing data, we developed an easy-to-use R package

(OvRSeq), which allows us to not only estimate the parameters to

determine the vulnerability score (and generate the vulnerability

maps) but also comprehensively annotate the sample for

BRCAness, tumor-immune phenotype, molecular subtype,

estimate immune infiltrates, enrichment of immune-related

signatures, and individual marker genes. This also includes other

clinically relevant parameters, such as the angiogenesis score we

previously defined, which might be useful for the prediction of anti-

VEGF therapy (69). The web application (https://ovrseq.icbi.at)

allows the generation of summary information as a report of

individual samples (Supplementary Figure S17).

The developed application should ultimately be useful to

identify vulnerabilities and support clinical therapy decisions for

HGSOC patients.
4 Discussion

Here, we described how genomic instability in HGSOC affects

the tumor immune environment and the consequences and

vulnerabilities of combination immunotherapy combining PARP

inhibitors with immune checkpoint inhibitors. A particular status in

which patients respond well to PARP inhibitors and platinum-

based chemotherapy is given when genes of the HRR pathway such

as BRCA1 or BRCA2 are mutated. Genomic scars are consequences

of HRD and are used to define an HRD score, often measured by

established commercial assays, which allows the assignment of a

responsive status beyond BRCA1 and BRCA2 mutations. The

applicability and associated cutoff values for different assays and

cancer types are under discussion, as the HRD algorithm has been

used in clinical studies including different cancer types, such as

breast cancer and ovarian cancer (46, 70, 71). Genomic scars are

predictive but do not allow direct functional interpretation, whereas

gene expression signatures could be an alternative in this regard.

Very few approaches have associated gene expression with HRD

status (18, 19, 62). Whereas a sixty-gene signature (18) and a two-

gene signature (CXCL1, LY9) (19) have focused on microarray data,

a recent approach using RNA sequencing data identified a 249-gene

signature to predict HRD (62). We observed a number of overlaps

with our 24-gene BRCA signature and a high concordance of

signature scores in our training (TCGA) and validation (MUI)

cohorts, indicating the reliability of our approach. This was

underscored by comparison with mutational signature 3 (SigMA)

in an independent cohort. The performance of the BRCAness

classifier is reasonable, with AUC=0.91 (10-fold cross-validation)

and positive predictive value for validation on both bulk RNA
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sequencing in the validation cohort (MUI) (PPV=0.86) and sample-

wise single-cell RNA sequencing data (PPV=0.87).

There is evidence that BRCA1/2-mutated tumors exhibit

significantly increased CD8+ TILs (22), although in breast cancer,

differential modulation between BRCA1 and BRCA2 mutations in

the tumor immune microenvironment has been found (72). We

found a significant association between BRCAness and several

immune-regulated signatures and evidence that several signaling

pathways and processes known to modulate the immune system are

activated by BRCA1 mutations or a BRCAness-related phenotype,

such as JAK-STAT signaling or an interferon type I response, which

are activated by free double-stranded DNA in the cytoplasm of

tumor cells via the cGAS-STING pathway and affect dendritic cells

(23–25). By expression and immunofluorescence analyses of

ovarian cancer cell lines and by treatment with PARPi, we

demonstrated that this axis is actually activated. Notably, the

STAT3 pathway, which is activated by PARP inhibition, may,

however, mediate treatment resistance by promoting the

polarization of protumor TAMs, which could be overcome by

STING agonism (26). STING, CSF1R, SREBP-1, and VEGFA

might also be targets to overcome resistance to PARPi-

immunotherapy combinations (73). The upregulation of many

chemokines and chemokine receptors indicates that BRCAness

tumors are actively involved in immune cell attraction and

interaction. For example, CCL5 produced by tumor cells or

CXCL9 and CXCL10 also expressed by tumor-resident myeloid

cells determine effector T-cell recruitment to the tumor

microenvironment (74). We detected significant upregulation of

CCL5 and CXCL10 by PARP inhibition, which was also identified as

a downstream target of STING (24). Another interesting chemokine

that is strongly upregulated in cancer cell lines, particularly by

olaparib treatment, is CCL20. CCL20 could be associated with

cancer metastasis and progression by interacting with its cognate

receptor CCR6 in an ovarian cancer mouse model. However, the

higher expression in the myeloid cell compartment, as evident from

single-cell analyses, overlies the intrinsic tumor effect.

One of our basic hypotheses was that samples with BRCAness

respond better to PARPi therapy and that hot tumors with an

activated immune milieu respond better to immune checkpoint

inhibition, as has been shown, for example, in melanoma for the

activated IFNG pathway (75). However, when we compared the

BRCAness immune type (BRIT) with other samples, we observed

by using deconvolution approaches that suppressive cell types such

as M2 macrophages, MDSCs, and Tregs were more abundant. In

particular, TAMs could be a major factor together with low

mutational burden, abnormal neovascularization, altered

metabolism, and failure to reverse T-cell exhaustion for the

limited immunotherapy response in ovarian cancer (76). By using

single-cell RNA sequencing data analyses of adnexal cancer tissue,

we demonstrated that myeloid cells are the most abundant immune

cells, and the majority were characterized as TAMs and rather

polarized towards M2-like macrophages compared to classical (M1-

like) macrophages, although these better described as continuum of

different stages than isolated cell types. A majority of these TAMs

are immune suppressive, as indicated by TREM2 expression.
frontiersin.org

https://ovrseq.icbi.at
https://doi.org/10.3389/fimmu.2024.1489235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gronauer et al. 10.3389/fimmu.2024.1489235
TREM2 is a promising therapeutic target for TAM depletion (68).

Inhibition of TREM2 has been shown to improve the anti-PD1

response in various mouse models and is currently being

investigated in a clinical trial (64, 77). Another recent study

underscored the role of TAMs and demonstrated that specifically,

the Siglec-9-positive TAM subset is associated with an immune-

suppressive phenotype and adverse prognosis in HGSOC

patients (78).

Interestingly, a previous work using cyclic immunofluorescence

highlighted the role of exhausted T cells in the response to niraparib/

pembrolizumab. In responders, particularly in extreme responders,

frequent proximity between exhausted T cells and PD-L1+ (CD163+,

IBA1+, CD11b+) TAMs was observed (9). Noticeably, based on the

selected marker expression, we observed an overlap with the CD169/

SIGLEC-1 macrophage cluster (Supplementary Figure S10). In

addition, in patients who responded to this combination therapy,

we identified a number of downregulated genes that were also highly

expressed in TAMs, such as LYZ, LILRB4, and ITGB2. Whereas

lysozyme (LYZ) is an antimicrobial ligand and is involved in central

macrophage function and is therefore nonspecifically and highly

expressed, LILRB4 is an immune checkpoint on myeloid cells,

indicating a more regulatory role. High expression of the integrin

ITGB2 was previously shown to be associated with poor survival

outcome (79), underscoring that high expression in TAMs is crucial.

In contrast, ITGB2 is also associated with CD8+ T cells, as it encodes

the beta chain of the LFA-1 protein, which has been shown to be

essential in the assembly of the immune synapse or to influence

lymphocyte extravasation and T-cell recruitment to the tumor and is

regulated by GDF-15 (80).

Because stratification of patients based on gene expression in our

validation cohort was very similar to the analysis on the TCGA cohort,

we set out to adapt our hypothesis and also include elements of the

suppressive environment. Already, it was shown that regulatory T cells

(Tregs) are an important component of the suppressive milieu and are

associated with unfavorable survival outcomes in ovarian cancer (81,

82). We performed immunohistochemistry analyses using FOXP3 and

CD163 antibodies in the validation cohort and found very pronounced

macrophage infiltration (CD163) but hardly Treg infiltration (FOXP3)

into the tumor site in some samples. The results of the single-cell RNA

sequencing analyses and the fact that various TAM marker genes were

associated with poorer overall survival also suggest that TAMs play a

more dominant role in ovarian cancer.

While infiltration of various cell types from the adaptive

immune system (83) and other markers, such as tumor

mutational burden (TMB) (84) or IFNG signature (75), have been

associated with good prognosis and immunotherapy response in

various cancer types, the suppressive immune environment with

tumor-supportive CD68+CD163+ macrophages is becoming more

important (66). Accordingly, a signature of the immune activation

ratio of CD8A/C1QA has been found to be prognostic and

predictive for immunotherapy response (66). We considered the

mean PRF1 and GZMB expression as a proxy for cytolytic activity

(45) as predominantly exerted by cytotoxic T lymphocytes. The

specific expression pattern of C1QA on TAMs was comparable to

that of TREM2 but at a much higher level. Therefore, we also used

the member of the complement system C1QA as a surrogate for
Frontiers in Immunology 15
TAMs and the suppressive tumor immune environment and finally

built a ratio of cytolytic activity (CYT) to the expression of C1QA

(C2C), indicating the pro- and antitumoral balance of the immune

environment. Finally, to build a predictive algorithm for

combination therapy response, we included both C2C on the one

hand and BRCAness on the other hand into one model. Since HRD

measured with companion diagnostic tests is not able to predict all

PARPi responders, as shown in several clinical trials, and since

PARPi treatment can activate a number of immune-related

pathways even in situations with proficient HRR, which is also

underlined by our in vitro analyses, this model is considered to be

relevant for combination immunotherapy.

Our studies have some limitations in that the training and

validation patient cohorts were retrospective studies, and RNA

sequencing was performed at a later time point. Additionally, only a

limited number of patients who received combination therapy could be

included; therefore, the conclusion about the predictive power for the

treatment is limited and requires further validation in larger cohorts.

One component that was not considered in this study is malignant

ascites, which has been shown to contain various cell types, such as

macrophages, many soluble factors and cytokines, that influence the

protumorigenic phenotype and promote metastatic spread of HGSOC

through transcoelomic dissemination (85).

In conclusion, our approach using RNA sequencing data to

comprehensively characterize both genome instability and the

tumor immune environment enabled us to stratify HGSOC

patients. Further analyses indicate that suppressive TAMs in the

tumor immune microenvironment may play an essential role in

understanding why receiving (combination) immunotherapy shows

limited efficacy in ovarian cancer. Based onmultiple datasets, we have

developed a methodology and corresponding easy-to-use diagnostic

application (https://ovrseq.icbi.at) and an R package OvRSeq that

uses RNA sequencing data not only to comprehensively

characterize newly diagnosed HGSOC patients but also to inform

therapy response. Ultimately, this approach will be very useful to

obtain comprehensive information about the phenotype of a tumor

sample, support clinical decisions, and stimulate further research.
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