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Epigenetic mechanisms
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activation in chemical-
induced acute lung injury
Shama Ahmad*, Wesam Nasser and Aftab Ahmad

Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham,
AL, United States
Airways, alveoli and the pulmonary tissues are themost vulnerable to the external

environment including occasional deliberate or accidental exposure to highly

toxic chemical gases. However, there are many effective protective mechanisms

that maintain the integrity of the pulmonary tissues and preserve lung function.

Alveolar macrophages form the first line of defense against any pathogen or

chemical/reactant that crosses the airway mucociliary barrier and reaches the

alveolar region. Resident alveolar macrophages are activated or circulating

monocytes infiltrate the airspace to contribute towards inflammatory or

reparative responses. Studies on response of alveolar macrophages to noxious

stimuli are rapidly emerging and alveolar macrophage are also being sought as

therapeutic target. Here such studies have been reviewed and put together for a

better understanding of the role pulmonary macrophages in general and alveolar

macrophage in particular play in the pathogenesis of disease caused by chemical

induced acute lung injury.
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1 Introduction

The respiratory system is at the frontline of constant encounter by environmental

components such as non-toxic or toxic environmental gases and particulates. These can

include occasional massive exposures to noxious chemical vapors or gases during

accidental/occupational spills or deliberately released poisonous chemicals during

terroristic attacks or wars. The type of chemical, its concentration and duration of

exposure determine the extent of airway damage, edema, activation of immune cells and

inflammation that may often lead to respiratory dysfunction and death. Various pulmonary

cells including those of airway and alveolar epithelium, interact with and respond to such

toxicants via a cascade of events that include sloughing of epithelial cells, loss of alveolar

capillary membrane integrity, and subsequent activation and infiltration of immune cells.

Human lungs were originally thought to be composed of about 40 different types of cells
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(1–4). Emerging technologies like those of single cell sequencing

have transformed this information and according to currently

published findings, pulmonary tissues were noted to have about

61-62 cell types which may change their identity with altered

respiratory health conditions (Figure 1) (2). Pulmonary

macrophages are the most abundant myeloid cells of the immune

system which are the primary controllers of both innate and

adaptive immunity and attain several phenotypes to respond to a

wide variety of stimuli/insults including environmental pollutants,

pathogens (microbes such as fungi, bacteria, virus, their products

etc.) or other inhaled toxicants/threat agents (5–13).

Inhaled stimuli such as the toxic vapors or gases induce an

immune response which is initiated by both macrophages and the

airway epithelium, however the macrophages produce the most

potent local proinflammatory response in the lungs which

subsequently results in the systemic response (11, 14, 15).

Previous studies have shown that the lung microenvironment is

important in shaping the distinct transcriptional and epigenetic

landscape of the cellular identity and function of resident

macrophages (16, 17). Macrophages are the first kind of immune

cells that appear during embryogenesis and are essential for early

stages of organism development (18). Two types of macrophages

populate the lung the a) alveolar macrophage and b) the interstitial

macrophage. Alveolar macrophages (AMs) and interstitial

macrophages (IMs) reside in different anatomical compartments

in the lungs. IMs are monocyte derived uniform cell population that

reside in the interstitium (the space between alveolar and vascular

endothelium) and are often found to be associated with the airways,

nerves and vessels (Figure 1). They are less well studied and have

been implicated in maintenance of lung homeostasis and in

prevention of immune-mediated allergic airway inflammation

(19). Macrophages can sense the danger signals from their

microenvironment via specific receptors such as the pattern

recognition receptors. Both AMs and IMs are activated by various

stimuli to polarize and form activated (M1 or M2) macrophages

that determine the progression of acute lung injury (20). The

nomenclature of such activated macrophage subsets is dynamic

and has seen many revisions and now considered too complex with

overlapping characteristics, to be defined by these two terms (21). In

this review we will cover the mechanisms by which toxic inhaled

chemicals and gases affect the alveolar macrophages.
1.1 Alveolar macrophages

Alveolar macrophages (AMs) have been shown via lineage

tracing studies to originate from the embryonic precursors that

populate the alveolar space soon after birth (22). They are the major

macrophage population found attached on the epithelial surface,

where they not only replicate and self-maintain but also protect the

gas exchange function and barrier immunity of the lung. The high
Abbreviations: AM, alveolar macrophage; IM, interstitial macrophage; GM-CSF,

granulocyte macrophage colony stimulating factor; TGF-b, transforming growth

factor beta; CD, cluster of differentiation; 12-HETE, hydroxyeicosatetraenoic

acid; MARCO, macrophage receptor with collagenous structure.
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self-replicating ability, development, maintenance and function of

AMs was shown to be dependent on the neutrophil derived 12-

HETE and type II alveolar epithelial cell derived GM-CSF (22, 23).

Once damaged or depleted, AMs can be restored by circulating

monocytes that are often referred to as monocyte derived alveolar

macrophages to distinguish them from the regular tissue resident

AMs (9).

1.1.1 Alveolar macrophage identifying markers
Macrophage phenotypes are identified by a combination of

multiple markers that enable understanding of their heterogeneity

and plasticity in reference to their microenvironment (21, 24, 25).

The high degree of diversity observed in the pulmonary resident

macrophages (AMs and IMs) is due to their different activation

states and contribution of infiltrating monocytes to their

populations (Table 1) (25, 62). At steady state alveolar

macrophages are maintained by epithelial GM-CSF and TGF b
(63). When injury occurs, monocytes are recruited to the alveolar

lumen and interstitium and develop into the activated monocyte

derived macrophages that may further contribute to damage by

secreting cytokines or perform reparative function. Alveolar

macrophages have been shown to interact with the monocyte

derived macrophages and other lymphoid cells to modulate their

function (64).

Many cluster of differentiation (CD) markers or cell surface

molecules on the macrophages enable their identification within the

pulmonary tissues of humans and mice (Table 1). Alveolar

macrophages under normal conditions can be identified by the

presence of CD11c and interstitial macrophages by CD11b on their

surface (21). CD11c, CD169 and MARCO are expressed by the

alveolar macrophages of both mice and humans (24, 65). Additional

species-specific (human and mice) markers are utilized to identify

the alveolar macrophages (Table 1). Although, many different

(common or unique) macrophage markers have been identified in

rodent and human tissues very little information is found for other

mammals (66). In alveolar macrophage samples from healthy

humans of different geographical areas, high expression of CD64,

CD80, CD86, CD163 and CD206 was observed although normally

these markers are associated with polarized M1/M2 macrophages

(67). Some of these markers (CD206) are altered by the lung

microenvironment such as surfactant protein content (68). On

the other hand, some markers (e.g. MARCO) may act as target of

therapy for alleviating pulmonary fibrosis (69). In general, the

resident alveolar macrophages are characterized by F4/80+,

CD64+, MerTK+, SiglecFhi, CD11chi, CD11blo and CD206hi

markers. The monocyte derived alveolar macrophages

demonstrate F4/80+, CD64+, MerTK+, SiglecF-, CD11c-, CD11bhi

and CD206lo markers and is generally proinflammatory and

involved with pathogen phagocytosis and cytokine production.

There are two kinds of interstitial macrophage populations a)

MHCIIhi Lyvelo with F4/80+, CD64+, MerTK+, SiglecF-, CD11c-,

CD11bhi, CD206lo and CX3CR1hi markers that represents the

antigen presenting and proinflammatory macrophage population

and b) MHCIIlo Lyvehi with F4/80+, CD64+, MerTK+, SiglecF-,

CD11c-, CD11bhi, CD206hi and CX3CR1lo markers, which

represents the wound healing and tissue repair population (62).
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TABLE 1 Common pulmonary (alveolar) macrophage markers utilized for their identification.

Name/Expression Mouse/
Human

Macrophage type Function Reference

F4/80 (pan marker) Mouse Macrophages Cell surface antigen of mononuclear phagocytic cells (26)

CD68 (pan marker) Human/
Mouse

Macrophages Cell surface antigen and promotes phagocytosis (27, 28)

Mer/TK Mouse Alveolar macrophage Clearance of apoptotic cells (29–31)

CD169 Human/
Mouse

Alveolar and Interstitial macrophage Cell surface lectin that promotes immune response (21, 32, 33)

Siglec F/CD170 (high) Mouse Alveolar macrophages Cell surface lectin that promotes adhesion and
immune response

(21)

CD10 (MME) Human Alveolar macrophages, monocyte
derived macrophages

Membrane metal loendopeptidase, negatively regulates
peptide hormones

(34–36)

CD206 (high) Human Alveolar macrophages
(activated AMs)

A pattern recognition receptor and plays a role in
immune response

(34, 37)

CD11c (high) Human/
mouse

Alveolar macrophages Integrin molecule that enables adhesion to other cells (34, 38)

CD86 (high) Human/
Mouse

Alveolar macrophages Stimulatory molecules involved in adaptive immunity (34, 39)

CD88 Human/
Mouse

Alveolar macrophages (activated) A complement receptor (C5a) that modulates
inflammatory response

(40, 41)

CD80 (high) Human Alveolar macrophages (activated) An inducible costimulatory molecule involved in
immune activation

(39)

CD163 (high) Human Alveolar macrophages (activated) An anti-inflammatory molecule involved in integrin
and hemoxygenase production

(34, 42)

CD141 Human Alveolar macrophages Also called thrombomodulin and plays a role in
anticoagulation system

(43)

CD64 (high) Human/
Mouse

Alveolar macrophages An FC Gamma receptor and triggers immune
responses upon binding to IgG

(8, 44)

HLADR Human Alveolar macrophages MHCII cell surface receptor, initiates
immune response

(45, 46)

(Continued)
F
rontiers in Immunology
 03
FIGURE 1

Different cell types and sub-types and their potential distributions in the human pulmonary tissues (2, 3).
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However, antibody specificity, origin and detection method can

greatly affect the identity of the cells (70, 71).

1.1.2 Alveolar macrophages and inhaled
chemical-induced acute lung injury

Alveolar macrophages are one of the first cells to encounter the

inhaled chemicals. As mentioned earlier toxic vapors or gas initiate

responses by both macrophages and the airway epithelial cells,

however the macrophages produce the most potent local

proinflammatory response in the lungs which subsequently

results in the systemic response (11, 14, 15). Toxic chemicals and

environmental agents may not only be affecting the macrophage

function but may often lead to their decreased clearance and

subsequent accumulation to cause long term consequences (72).

Adverse effects of inhaled pharmaceutical agents delivered for

therapy are not covered here but can be read elsewhere (73, 74).

Inhaled anesthetics also modulate the macrophage function and

may alter pulmonary disease outcomes (75–78). Similarly, AMs

contribute to the inflammatory response induced by cigarette

smoke and environmental pollutants (14, 79–81). Common toxic

environmental pollutants and gases like sulfur dioxide damage and

reduce AM function (82–88). Immune cell development and their

responses are highly susceptible to environmental factors.

Many highly toxic chemicals such as sulfur mustard, chlorine

gas, ammonia, and phosgene exert their harmful effects through

direct toxicity to the pulmonary epithelium and endothelium

leading to cell death, loss of barrier function, and increased

permeability (89, 90). Reactive oxygen species (ROS) generated

either directly by the toxic agent or because of cellular injury also

play a significant role in the pathophysiology of chemical-induced
Frontiers in Immunology 04
lung damage (91). The imbalance between ROS and the antioxidant

defenses leads to oxidative stress damaging cellular proteins, lipids,

and DNA (92). Chemical exposure also triggers a robust

inflammatory response, characterized by the recruitment of

immune cells, including macrophages and neutrophils, to the

lung (93). While initially aimed at clearing the injury, persistent

inflammation can lead to further tissue damage and fibrosis (94).

Macrophages play an essential role as critical regulators in the early

response to chemical injury, repair, or progression towards fibrosis.

When exposed to noxious chemicals, macrophages are among the

first responders, releasing pro-inflammatory cytokines and

chemokines that mediate the acute inflammatory phase (95).

However, dysregulated activation of macrophages can further

exacerbate tissue damage and lead to fibrosis through the release

of various profibrotic factors (96).

Alveolar macrophages are strategically situated at the tissue-air

interface where they play important role in regulating the

pulmonary immune response (97). This has been demonstrated

by several studies where depletion of alveolar macrophages caused

increased immune response to particulate antigens (98), reduced

neutrophil influx (99), decreased clearance of antigens (100) and

increased lung injury (101). Depletion of macrophages on the other

hand facilitated efficient absorption of therapeutic macromolecules

(102) and reduced inflammatory response after acid and radiation-

induced lung injury in experimental models (103, 104). Currently,

studies to clarify the role of monocyte derived circulating

macrophages and the resident alveolar macrophages, where

monocytes/macrophages were depleted from circulation

demonstrated protection from adverse lung conditions resulting

from inhaled endotoxic exposures (105). Thus, AMs are the
TABLE 1 Continued

Name/Expression Mouse/
Human

Macrophage type Function Reference

MHCII Mouse Alveolar macrophages Antigen processing and presentation, initiates
immune response

(47, 48)

CD40 Human/
Mouse

Alveolar macrophages
(activated)

Mediates proinflammatory response (49, 50)

MARCO Human/
Mouse

Alveolar macrophages Host defense, ingestion and opsonization
of particulates

(21, 51)

CD43 Human/
Mouse

Alveolar macrophages Cell adhesion, migration and signaling (52–54)

CD11b (high) Human Alveolar macrophages and interstitial
macrophages (activated)

Mediation of inflammation (21, 38)

CD36 Human/
Mouse

Alveolar macrophages (activated) Promotes inflammatory response and phagocytosis,
lipid uptake

(55, 56)

SPP1/Osteopontin (high) Human/
Mouse

Alveolar and Interstitial
macrophages (activated)

Promotes fibroblast cell attachment, migration
and proliferation

(21, 57, 58)

CX3CR1 Human/
Mouse

Monocytes, macrophages dendritic cells,
T cells, NK cells etc

Mediate chemotaxis of immune cells (21, 59)

FOLR2 Human/
Mouse

Interstitial macrophages Internalize folate and increase cell delivery to
promote proliferation.

(21)

C1Q Human/
Mouse

Alveolar and Interstitial macrophages Binding and ingestion of opsonized targets, resolution
of inflammation

(21)
(60) (61)
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primary immune cells of the lung at steady state where their

function is to dampen inflammatory response, but this immune

balance can be easily disturbed by perturbations in surrounding

microenvironment. In the lungs, the AMs are constantly bathed by

the surfactant containing airway lining fluid layer. Inhaled noxious

substances can also damage the airway lining fluid and destroy or

inhibit the factors that promote macrophage function (106). The

outcome of tissue responses to such toxic agents depends on the

balance of the mediators produced by the normal quiescent alveolar

macrophages and those from the activated alveolar macrophages

exposed to the toxic compounds (107).

1.1.2.1 Inhaled halogens and phosgene

Elemental halogens such as chlorine (Cl2) and bromine (Br2)

and phosgene (COCl2) are common toxic industrial chemicals and

have been used historically in warfare and currently in various

armed conflicts (108–111). They are highly reactive oxidizing and

corrosive agents and cause acute lung injury (ALI), acute

respiratory distress syndrome (ARDS) and even cardiac damage

to the exposed individuals when present in high dose and prolonged

duration (109, 112–122). One of the earliest case report of bronchial

brushings from patients exposed accidently to chlorine

demonstrated increased presence of non-pigmented alveolar

macrophages 5 days after exposure (123). A dose dependent

increase in bronchoalveolar lavage fluid alveolar (BALF)

macrophage content was observed at 24h post chlorine exposure

in mice (124). Increased inducible nitric oxide and 3-nitrotyrosine

content was detected in the macrophages by these authors. Chlorine

exposure causes TRPV activation which can result in formation of

ROS and NO leading to peroxynitrite formation and tyrosine

nitrosylation of proteins (125–127). In another study using

relatively lower concentrations of chlorine the macrophage

content was unaltered in the BALF up to 48h post exposure

(128). These investigators did observe increase in the genes (e.g.

Arg1) related to alternative macrophage activation. Damage to the

airway lining fluid as demonstrated by loss of surface-active

function by chlorine exposure was also demonstrated in this

study (128). Chlorine exposure did not alter the number of

resident macrophages and anti-inflammatory macrophages in the

BALF collected 24h after exposure (129). However, the number of

COX-2 or iNOS expressing proinflammatory macrophages were

increased in this study. With repeated chlorine exposure a

pulmonary adaptation to oxidative stress was observed which

could be related to a specific alveolar macrophage population

which was dependent on TGF-b and prostaglandin E2 (130).

Hemeoxygenase dependent increase in pulmonary macrophages

24h after bromine exposure were recently reported (131–133).

Phosgene exposure in mice reduced the BALF macrophage

content when evaluated 24h after exposure (134). This could be

related to the interaction of phosgene with surfactant and the role

AMs play in endocytosis of dysfunctional surfactant proteins and

subsequent efferocytosis of these overloaded AMs (135). Not

surprisingly, inhibition of phosgene-induced AM galectin-3

production reduced alveolar epithelial cell death and lung

damage (136).
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1.1.2.2 Inhaled mustard vesicants

Exposure to vesicants like sulfur mustard (SM) and nitrogen

mustard (NM) activate the pulmonary macrophages by ensuing

inflammation which furthers the tissue damage by production of

ROS and proinflammatory mediators (137–140). Dermally applied

vesicants also cause increased macrophage content in the lungs of

mice after exposure (141, 142). A nonsignificant decrease in BALF

macrophage content after exposure to half mustard (2-chloroethyl

ethyl sulfide, CEES) was reported in rats 18h after exposure (143).

Inhaled nitrogen mustard caused increased inflammatory cytokine

(TNFa) production and infiltration of CD11b+ macrophages in the

lungs of exposed mice 3 days after exposure (144). The resident

alveolar macrophages decreased upon NM treatment and were

replaced by the infi l trat ing proinflammatory CD11b+

macrophages of M1 phenotype that matured later into profibrotic

M2 macrophages suggesting a role of alveolar macrophages in the

pathogenesis of NM injury (145). Treatment with anti-TNFa
antibody not only reduced the macrophage infiltration in the

lungs but also reduced injury, inflammation and subsequent

fibrosis in this model and in similar SM model (144, 146, 147).

Macrophage derived TNFa has been described as a major pathway

in vesicant induced lung injury (148, 149). NM induced

macrophage activation and lung injury could also be mitigated by

antioxidants like N-acetyl cysteine (NAC) and surfactant protein D

administration (137, 150). NAC was also protective against CEES

induced lung injury in a guinea pig model (151). A role of histones,

miRNA and histone acetylase and deacetylase in the phenotype

switching of the alveolar macrophages was demonstrated in this

model (152, 153). Transcriptional profiling of the early

inflammatory phase and later profibrotic/resolution phase of

alveolar macrophages from NM treated animals identified

cytokine genes involved in cell migration and significant

enrichment of canonical pathways related to STAT3 and NFkB
signaling (154). Farnesoid X receptor (FXR) that regulates lipid

homeostasis and inflammation was shown to limit alveolar

macrophage inflammatory response in a mouse model of IT

administered NM (155). Many studies with cutaneous or inhaled

vesicant demonstrate increased HMGB1 in the BALF (121, 141,

156–159). HMGB1 causes increase in IL6 and TNF-a that switch

the macrophage phenotype (160). Macrophage polarization,

polarization phenotypes and their intermediates can be potential

new targets to reduce inflammatory responses and tissue injury

caused by inhaled vesicants and other toxic stimuli (161, 162).

1.1.2.3 Inhaled ammonia and acids

Ammonia is a highly reactive irritant gas and a toxic industrial

chemical, which quickly forms caustic ammonium hydroxide on

moist surfaces. Exposure to ammonia causes burns on skin and acute

respiratory tract injury, pulmonary edema and respiratory failure.

The survivors have long term pulmonary complications and develop

bronchiectasis, AHR, BO, COPD (163–166). Long term ammonia

exposure in occupational settings causes lower airway diseases and

ILD which sometimes even need lung transplantation (167). High

dose ammonia inhalation can be lethal and the extent of lung injury

and damage is a predictor of fatal outcome (168, 169). Intratracheal
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ammonia administration in animal models causes severe lung injury,

respiratory acidosis and alveolar and interstitial damage (170–172).

Increased infiltration of pulmonary macrophages was observed on

day 7 after exposure, although neutrophils and inflammatory

mediators were significantly increased at day 1 postexposure (171).

Others also reported increased inflammatory cells in animals exposed

to various concentration of inhaled ammonia (172, 173). Sensitivity

of various mice strains to pulmonary toxicity by ammonia has also

been demonstrated and many candidate genes were identified that

determined the susceptibility to ammonia (174). Exposure to

ammonia causes oxidative stress and increased mRNA levels of

glutathione peroxidase, COX-2, iNOS, TNF-a and TGF-b (175–

177). Whether the TNF-a is macrophage derived in this model is

unknown but genes related to macrophage infiltration were increased

upon ammonia exposure in a swine model (176).

Exposure to acids such as sulfuric acid may alter the clearance

from the alveolar region by affecting the alveolar macrophage

function (106, 178). HCl administration in mice causes both

acute and chronic lung injury and HSP70 and HSP90 were shown

to play regulatory role in causing endothelial barrier disruption and

dysfunction (179–186). HCl administration increased BAL

macrophages and proinflammatory cytokines like TNF-a, MCP-1

and IL-1b (187, 188). HCl administration into rabbit trachea caused

increased neutrophil influx in the lungs and reduced alveolar

macrophage adherence function (189). Acid induced lung injury

and fibrosis was alleviated by a TLPQ-21 derivative which is an

activator of alveolar macrophage function (190). Thus, alveolar

macrophages are activated upon acute exposure to toxic chemicals

and acids causing tissue damage and inflammation which may

eventually lead to chronic effects including fibrosis.

1.1.3 Epigenetic mechanisms driving
macrophage functions

Macrophages are pivotal to the innate immune system,

especially within the lung environment, where they are primarily

responsible for detecting, engulfing, and destroying pathogens

through phagocytosis (191). They also secrete various cytokines

and chemokines that mediate inflammation and recruit other

immune cells to infection sites, crucial for controlling infection

spread and initiating tissue repair processes (192). Macrophages

display remarkable versatility in their activation; they respond to a

variety of cytokines and pathogen-associated signals, which can

drastically alter their behavior and function, adapting to the needs

of the host defense and repair mechanisms (193). Macrophages are

important in initiating immune responses through their role as

antigen-presenting cells, which is critical for linking the innate and

adaptive sides of the immune system (194).

Phenotypic plasticity results in macrophages that can convert

from one functional phenotype to another in response to local

microenvironment signals (195). This plasticity allows them to

adopt various roles, from pro-inflammatory (activated, M1)

phenotypes, which are essential during the initial phases of

infection and inflammation, to anti-inflammatory and tissue

repairing resident (M2) phenotype, crucial for resolution of

inflammation and tissue healing (196). Macrophages switch
Frontiers in Immunology 06
between these phenotypes under the influence of environmental

cues and cytokines, a process that is essential for the balanced

immune response required to resolve infections while minimizing

tissue damage efficiently (197). The plasticity of macrophages in

function is such a key point that significantly assists in

understanding their complete involvement in either disease

progression or resolution within the lung. The ability of

macrophages to switch phenotypes is not only essential in the

resolution of different phases of diseases but also provides potential

therapeutic targets through manipulating these transitions in

diseases such as asthma and COPD (65, 198).

Epigenetic regulations are essential in controlling the functions of

cells of innate immunity, including macrophages. Epigenetic changes

to genes have the ability to change their expression without altering the

sequence, significantly impacting the actions of macrophages and, thus,

affecting the overall immune response (199). Genes are generally

repressed by DNA methylation, which is crucial for the

differentiation and functioning of cells. DNA methylation has been

shown to impact the expression of specific cytokines and other proteins

in macrophages. Abnormal methylation patterns are related to changes

in macrophage activities, which influence the immune response to

microbes and injury (200). Histone modifications, such as acetylation

and methylation, can act to either promote or inhibit gene expression.

Histone acetylation in macrophages is necessary for the transcriptional

activation of inflammatory genes after infection (201). At the same

time, the expression of these genes can be inhibited by histone

deacetylases (HDCAs), enabling dynamic suppression of

inflammatory responses. Histone lactylation is another fairly recent

concept linking metabolic changes to epigenetic modifications in cells

including macrophages (6). Histone lactylation was shown to affect the

polarization of macrophages and release of lactylated DAMPS like

HMGB1 from such macrophages promoted endothelial permeability

and pathogenesis of sepsis (202, 203).

Non-coding RNAs, including microRNAs (miRNAs) and long

non-coding RNAs (lncRNAs), also play a significant role in regulating

gene expression in innate immunity. miRNAs can fine-tune the

immune response by targeting mRNA transcripts for degradation or

inhibiting their translation. miR-155 enhances the inflammatory

response by modulating pathways that affect cytokine production in

macrophages (204). lncRNAs contribute to the regulation of immune

gene expression by interacting with chromatin-modifying complexes,

thereby influencing the epigenetic landscape of immune cells (65, 205).

These miRNAs and lncRNAs are often packaged in extracellular

vesicles (EVs) released from macrophages and can influence the

course of injury or disease process.

1.1.4 Alveolar macrophages and epigenetic
mechanisms in inhaled chemical injury

Extracellular vesicles (EVs) are cell derived membranous

structures that are shed in the extracellular microenvironment

that is a critical component of the epigenetic landscape where

inflammatory signaling including those of the inflammatory cells/

activated macrophages establish crosstalk with chromatin leading to

transcription of inflammatory genes (65, 206). EVs and their

cargoes are generated by multiple cell types including the alveolar
frontiersin.org
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macrophages after exposure to toxicants (207). The cargoes of EVs

and their cargoes generated from exposure to toxic gases can

potentially be transferred to other cells to promote their effects.

EVs especially those from the macrophages mediate epigenetic

pathways that regulate injurious and inflammatory responses of

inhaled toxicants (208–211). It was demonstrated that the

imbalance of histone acetylase and deacetylase contributes to lung

macrophage activation following inhaled nitrogen mustard

exposure (152). Additional alterations such as DNA methylation

could be contributed by metabolic changes during macrophage

activation by inhaled toxicants (212). Additional epigenetic

mechanisms may be involved in general lung injury caused by

inhaled poisonous gases like sulfur mustard (213).

1.1.5 Alveolar macrophages activating pathways
and therapeutic targets for chemical induced ALI

Resident alveolar macrophages are highly influenced by their

local pulmonary microenvironment which includes the airspace

and the vasculature. Despite their protective roles in normal

conditions, once activated during injury they play diverse roles in

both initiating and driving inflammatory pathways post chemical

exposure in the lung making them the ideal therapeutic target (214).

Alveolar macrophages have several attributes that make them

attractive and effective therapeutic targets viz; their position at the

airway-tissue interface, they mediate early innate immune response,

availability of inhalable products designed to target them and their

long life and immune training (215, 216). Chlorine exposure

increased activated proinflammatory alveolar macrophages that

expressed COX-2 and iNOS (129, 217). Treatment with

corticosteroids like dexamethasone or budesonide reduced

inflammation and fibrosis in the lungs of chlorine exposed mice

(217, 218). Chlorine-induced airway hyperreactivity was reversed

by inhibition of inducible nitric oxide synthase (iNOS) which was

potentially contributed by resident alveolar macrophages (124).

Phosgene exposure increased inflammatory cytokines like IL-6

and impaired macrophage function and reduced viral clearance in

influenza-infected rats (219, 220). Single cell RNA sequencing

studies revealed that macrophages and macrophage proliferating

cells were prominent clusters of cells in the BALF of chemical

(phosgene) induced acute lung injury in rats (221, 222). Phosgene

exposure enhanced galectin 3 expression on alveolar macrophages

causing enhanced interaction with alveolar epithelial cells leading to

membrane damage and death. Galectin 3 inhibition or elimination

of alveolar macrophages protected the alveolar epithelial cells and

reduced alveolar damage after phosgene exposure (136). Another

important aspect of alveolar macrophage activation is formation of

foamy or lipid laden macrophages (LLMs) (223, 224). The

formation of LLMs is enhanced in inflammation where lipid

accumulation compromises the macrophage function.

Dysregulated lipid metabolism most commonly due to oxidative

stress during lung injury contributes to LLM formation and can be

an important therapeutic target. Accordingly, it was shown that
Frontiers in Immunology 07
antioxidants like NAC reduced LLM formation (225). Therefore, it

is critical to explore the interactions of macrophages and other cells

and to understand the mechanisms underlying macrophage

phenotype development in order to evaluate therapies for diseases

associated with acute lung injury caused by chemical exposures.
2 Discussion

Alveolar macrophages have important roles in host defense against

environmental pathogens, particulates and toxic chemicals that enter

through the airways into the alveolar space. Macrophages play an

essential role as key regulators in the early response to chemical injury,

influencing repair, or progression towards fibrosis. When exposed to

noxious chemicals, macrophages are among the first responders,

releasing pro-inflammatory cytokines and chemokines that mediate

the acute inflammatory phase (39). However, dysregulated activation of

macrophages can further exacerbate tissue damage and lead to fibrosis

through the release of various profibrotic factors (96). DNA

methylation, histone modification, and noncoding RNAs are some of

the key epigenetic mechanisms that have been demonstrated to have a

considerable impact on the macrophage’s response to chemicals. These

mechansims along with others will help bridge the gap in

understanding that exists in the development of chronic lung

diseases resulting from chemical exposure-induced acute lung injury.
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