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Background:Gliomas are common aggressive brain tumors with poor prognosis.

Dephosphorylation-related biomarkers are in a void in gliomas. This study aims

to construct a validated prognostic risk model for dephosphorylation, which will

provide new directions for clinical treatment, prognostic assessment, and

temozolomide (TMZ) resistance in glioma patients.

Methods: Screening dephosphorylation-related genes (DRGs) and transcriptome

expression data from The Cancer Genome Atlas (TCGA), Molecular signatures

database (MSigDB) and constructing risk scoring models. Kaplan-Meier (K-M),

nomogram and ROC curve were used to assess the predictive efficacy of the

model. Gene set enrichment analysis (GSEA), immune cell infiltration,

immunotherapy response and chemotherapeutic drug sensitivity analysis were

performed in this study. The correlation between chemotherapeutic drugs and

the half maximal inhibitory concentration (IC50) values of 12 DRGs was analyzed.

Cell division cycle 25A (CDC25A) and TMZ were screened and verified by

experiments. Quantitative Real-Time PCR (qRT-PCR) detection of mRNA

expression of 12 genes in human normal glial cells and two glioma cell lines.

Transfection techniques overexpressed and knocked down CDC25A. qRT-PCR

and Western Blot (WB) were used to detect the mRNA and protein expression

levels of CDC25A. Subsequently, verify the effect of CDC25A on TMZ resistance

in glioma cells.

Results: The model established in this study was able to accurately predict the

prognosis of glioma patients. Besides, there were significant differences in GSEA,

immune cell infiltration, immunotherapeutic response and chemotherapeutic
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drug sensitivity analysis between glioma patients in the high and low risk groups.

The results of CCK8 experiments showed that overexpression of CDC25A

increased the susceptibility of U251 and LN229 cells to TMZ, and knockdown

of CDC25A attenuated the susceptibility of U251 and LN229 cells to TMZ.
KEYWORDS

dephosphorylation-related genes, glioma, biomarkers, prognosis, temozolomide,
chemotherapy drug sensitivity, drug resistance
1 Introduction

According to the latest global cancer statistics report, there are

nearly 9.7 million deaths from cancer worldwide, including about

320,000 new cases of brain and nervous system tumors, and 250,000

deaths (1). It is estimated that about 600,000 people in the United

States will die of cancer by 2024. The mean annual adjusted

incidence of central nervous system tumors was 25.34/100,000,

and the 5-year relative survival rate after diagnosis of malignant

brain tumors or other central nervous system tumors was 35.7% (2).

At present, the main treatment methods of tumor include surgical

resection, radiotherapy, chemotherapy, immunotherapy and

targeted therapy (3). Glioma is a common malignant brain

tumor. Due to the invasive growth characteristics of gliomas, low

sensitivity to radiation, chemotherapy, and mostly late stage

diagnosis (4–8). It is difficult to achieve complete curative

resection, and the survival rate of patients is still limited. Further

research and exploration of more effective treatment methods are

needed to improve the survival rate of patients.

Phosphorylation and dephosphorylation are classical reversible

post-translational modifications of proteins in eukaryotes, which

are mainly catalyzed by protein kinases and phosphatases (9).

Nearly one third of biological functions in cells are regulated and

controlled by protein flow acidification, such as cell division, cell

growth and development, proliferation and regulations (10–14).

Currently, phosphorylation and dephosphorylation of many

signaling pathways, including tyrosine kinases, calreticulin-linker

complexes, etc., and dysregulation of their phosphorylation/

dephosphorylation cascades has been shown to manifest in

various types of cancers (10, 13, 15–19).

In recent years, with the deepening of molecular pathology,

biomarkers have played a pivotal role in the diagnosis and treatment

of glioma (20–22). The research of new biomarkers for glioma is

gradually increasing, such as multicellular biomarkers of drug

resistance, biomarkers of voltage-gated sodium channel b 3 subunit,

cyclin dependent kinase 2, Insulin-like growth factor-binding proteins,

MUC16 mutation (23–28). Studies on biomarkers related to protein

post-translational modification, including glycosylation, ubiquitination

and palmitoylation, to predict the prognosis of glioma patients have

gradually increased. However, studies on biomarkers related to

phosphorylation and dephosphorylation in glioma are still blank.
02
Our study is the first paper to investigate biomarkers related to

glioma and dephosphorylation, and we hope that our study will fill

this research gap and inspire others.

Therefore, we started from dephosphorylation, searches for

dephosphorylation related biomarkers and constructs a

dephosphorylation-related genes (DRGs) model to predict the

survival and prognosis of glioma patients, explored potential

molecular mechanisms and hope to inspire others. The strength

of this study is to fill the gap of DRGs in glioma biomarkers. In

addition, we analyzed the differences in immune cell infiltration,

immunotherapy and chemotherapeutic drug sensitivity in glioma

patients in high and low risk groups. Finally, it is worth mentioning

that this study was conducted to experimentally validate the effect of

gene CDC25A on temozolomide (TMZ) resistance, which is hoped

to provide a reference for the individualized treatment of

temozolomide-resistant glioma patients in the clinic.
2 Methods

2.1 Data extractions

Transcriptome expression data of 511 glioma patients and

clinical survival data of 515 glioma patients were downloaded from

TCGA database and the data profiles were extracted and normalized

(FRKM to TPM) using R software. 9 of the 515 glioma patients did

not have transcriptome expression data, and after elimination, we

ended up with 506 glioma patients who had both transcriptome

expression data information and survival data. Screening of DRGs

from the Molecular Signatures Database (MSigDB) database

(GOBP_Dephosphorylation.v.7.5.1), and 8 genes not included in

the TCGA database were removed, which was finally collated into

417 dephosphorylation-related candidate gene set.
2.2 Construction and verification of risk
score modle

Least Absolute Shrinkage and Selection Operator (LASSO)

regression analysis compresses the variable regression coefficient

in the regression model by generating a penalty function lambda
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value (l) to prevent over-fitting and solve the problem of

multicollinearity. In our study, 417 DRGs were included in

LASSO regression. With the increase of l, the regression

coefficient b of 417 DRGs decreased, and some of them would

become 0, indicating that the DRGs contributed little to the model

at this time and could be eliminated. The “Glmnet” package in R

software was utilized for cross-validation to determine the optimal

l value. The results indicated that there were two penalty values.

One was the l value when the mean square error was at its

minimum, namely l.min. The other was the l value of the

simplest model obtained within a variance range of l.min,

namely l.1se. In this study, when l was screened out as 17, the

model fitting effect was the highest. Next, a multifactor Cox

regression analysis was performed on the results of the LASSO

regression analysis, from which 12 genes associated with

dephosphorylation with prognostic significance were identified,

and a prognostic risk model was constructed accordingly. The

risk score was calculated by multiplying the multivariate Cox

proportional hazards regression coefficients by their gene

expression levels for each patient. The formula for risk score:

Risk score  ¼  on
i  Coef  (i) X (i) (Coef stands for regression

coefficients, which can also be represented by b, where b<0 is a

protective variable, and b>0 is a risk factor. X represents the

expression level of this dephosphorylated gene in glioma patients).

The risk score for each glioma patient was calculated using the

previously described mathematical formula. Based on the median

risk score, all glioma patients within the model were categorized

into high-risk and low-risk groups. Kaplan-Meier (K-M) survival

analysis was performed using the “survival” package in R and the

“survminer” package to compare the Overall Survival (OS)

differences between the two risk subgroups. The validity of the

risk model was assessed by plotting the Receiver Operating

Characteristic (ROC) curve using the “timeROC” package in R

and calculating the Area Under Curve (AUC) value. The closer the

AUC value is to 1, the more accurate the prediction model is.
2.3 Genetic variations in 12 selected genes
in glioma

Mutation data of the DRGs selected for inclusion in the glioma

prognostic risk model were queried online using the cBioPortal

database. Using the R a waterfall plot of mutation information was

produced, and the frequency and frequency of mutation occurrence

were counted sequentially by mutation type and mutated gene,

which was used to examine the mutation distribution of DRGs

included in the risk model in gliomas. Meanwhile, heat maps were

drawn to analyze the differences in expression of 12 DRGs in high

and low risk groups.
2.4 Independent prognostic value of risk
score model

According to the clinicopathological features, patients were

divided into subgroups including age, gender, grade, new-event,
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cancer-status. The Chi-square test was applied to calculate the

association between risk scores and clinicopathological

parameters. In addition, univariate and multivariate Cox

regression analyses were used to explore whether risk scores were

independent prognostic indicators for glioma patients.
2.5 Construction and evaluation of
a nomogram

In our study, clinicopathological factors such as risk score, age,

gender, grade, new-event and cancer status were incorporated into the

prognostic risk model. Column line plots were developed using the

“rms”, “survival”, “survivor”, “surviminer”, and “timeROC” software

packages were used to create line plots to predict the OS of glioma

patients at 1, 3, and 5 years. In addition, ROC curves were plotted in

this study to assess the excellence of the risk score among the many

predictors. Calibration curves were plotted using R software for

assessing the closeness between actual and predicted survival.
2.6 Gene set enrichment analysis

In order to explore the potential molecular mechanisms

underlying the different prognoses of glioma patients in the high-

risk and low-risk groups, GSEA was conducted separately to gain a

deeper understanding of the differences in biological processes (BP),

cellular components (CC), and molecular functions (MF) involved

in gene sets between the two groups of patients. Gene set files were

downloaded from the GSEA Database (v4.3.3), including 7608 gene

sets for BP, 1026 gene sets for CC and 1820 gene sets for MF. After

1000 repetitions of the analysis, data with NOM P value<0.05 and

FDR<0.25 were considered informative. The top five most active

biological processes or signaling pathways were selected for

presentation in this study.
2.7 Analysis of immune cell infiltration
and immunotherapy

The tumor microenvironment (TME) is the microenvironment

surrounding a tumor and consists of a protective microecosystem of

tumor cells and surrounding stromal cells. To gain insight into the

differences in immune cell infiltration between the high and low risk

groups, three different deconvolution algorithms (EPIC,

QUANTISEQ, and CIBERSORT) were used in this study to

analyze the glioma cohort samples for immune cell infiltration,

and the results of the analyses are represented by violin plots.

In addition, the ESTIMATE algorithm was used to predict the

Immune Score and Stromal Score for each sample. In our study, we

calculated the TumorMutation Burden (TMB) of glioma patients in

the high- and low-risk groups based on somatic mutation data, and

assessed whether there was a difference in TMB scores between the

two groups of glioma patients. Tumor Immune Dysfunction and

Exclusion (TIDE) scores were used to assess the ability of patients in

the high- and low-risk groups to escape from tumor immunity.
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2.8 Chemotherapy drug sensitivity analysis

Potential chemotherapeutic agents for the treatment of glioma

were screened from Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/). Bortezomib, Erlotinib,

Etoposide, Imatinib, Tamoxifen, Temozolomide, and Vincristine

were selected as candidate chemotherapeutic agents. The half

maximal inhibitory concentration (IC50) of the chemotherapeutic

drugs was calculated using the pRRophetic package in R. The IC50

was estimated by ridge regression with all parameters set at default

values, using the batch effect of COMBAT and the tissue type of

ALL, and duplicate gene expression was summarized as the mean

value. Subsequent correlation analysis was performed between the 7

chemotherapeutic candidates and the IC50 values of the 12 DRGs

for which risk score models were constructed.
2.9 Cell culture

The human U251 and LN229 cell lines with STR identification

certificates used in this experiment were purchased from Sichuan

Yuankangsheng Technology Co., Ltd. CDC25A overexpression

plasmid and siRNA purchased from Linmei Biotechnology Co.,

Ltd. The complete medium used for cell culture was prepared by

mixing 10% fetal bovine serum with 1% double antibody

(penicillin-streptomycin mixture). The specific parameters of the

cell culture incubator were 5% CO2 and kept constant, 37°C, and

constant humidity. Passaging operations were performed

approximately every three days depending on the density under

the microscope, the current state, and the needs of the experiment.
2.10 Quantitative Real-Time PCR detection
of mRNA expression of 12 DRGs

RNA was extracted from human brain normal glial cells (HEB)

and glioma U251, LN229 cell lines using Foregene mRNA kit, and

reverse transcription was performed with TaKaRa Reverse

Transcription Kit. Real-time qPCR assay for the mRNA expression

of 12 DRGs in HEB, U251 and LN229 cell lines. According to the

SYBR Green qPCR Master Mix instructions, the two-step method

was chosen to analyze the results using comparative Ct values with

GAPDH as an internal reference. Histograms were plotted using

GraphPad Prism 8 software, and t-tests were performed to analyze

the results for significance. The primers for the 12 DRGs are shown in

Table 1, in which the primer for CDC25A was quoted from Liang

Huang et al. The primers for the remaining 11 genes were designed in

the Sangon Biotech (https://store.sangon.com/).
2.11 qRT-PCR and western blot validation
of transfection models

U251 and LN229 cells were transfected according to the

instructions of Lipo3000 transfection reagent, and overexpression
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and knockdown cell models were constructed. The method of qRT-

PCR was used to analyze whether the overexpression and

knockdown cell models were constructed successfully. In

addition, protein samples were extracted using RIPA lysis buffer,

SDS-PAGE gels were prepared, samples were uploaded for

electrophoretic separation, and then treated with CDC25A

antibody or b-actin antibody at 4°C temperature overnight. The

next day, the samples were exposed to a matching dilution of the

secondary antibody and incubated at room temperature for 2h.

Subsequently, the samples were developed using the ECL kit, and

the protein expression levels were analyzed using ImageJ software.
2.12 Measurement of IC50

U251 and LN229 cells in logarithmic growth phase were

inoculated into 96-well plates at 5×103 cells per well and

transfected. After 48h, TMZ was dissolved in dimethyl sulfoxide

and diluted using complete medium to formulate it into a

concentration gradient of 0, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 mg/
mL. When the glioma cells grew to a density of about 70%, 100mL of
configured TMZ was added to the cells according to the

concentration gradient, and three replicate wells were set up for

each concentration and a blank group was set up as the background.

After continuing the incubation for 48h, 10mL of CCK-8 reagent

was added to continue the incubation for 1h. Based on the effects of

different drug concentrations on cell growth, the cell viability

graphs were plotted and the IC50 values of the two cell lines were

calculated separately.
2.13 Statistical analysis

All data processing, statistical analysis, and plotting in this

experiment were performed using R software version 4.2.2 (version

4.2.2, https://www.r-project.org/). Experimental data were drawn

and analyzed by GraphPad (Prism 8). T-test is used to compare

whether there is a significant difference between the mean values of

the two groups of data, which is expressed as mean ± standard

deviation SD (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, Ns,

there was no statistical difference).
3 Results

3.1 Screen of DRGs in patients with glioma

The flow chart of this study is shown in Figure 1. All the genes

expressed by glioma patients after standardized processing were

combined with the expression data of the latest released

transcriptome of glioma patients in the TCGA database and the

clinical data of the corresponding patients. LASSO regression

analysis (Figures 2A, B) and multifactorial COX regression analysis

were used to conduct an in-depth study of DRGs and 12 genes were

successfully identified as closely related to the prognosis of glioma

patients genes that are closely related to the prognosis of glioma
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patients (BMP2, CDC25A, CDC25B, CDCA2, DUSP21, DUSP4,

GNA12, HDDC2, LPIN3, LRRK2, MTMR11, PLPPR3) (Table 2).
3.2 Establishment and validation of the 12
DRGs prognostic signature

According to the standardized gene expression values and their

coefficients, a risk score was created. Risk score = (-0.2825×BMP2) +

(0.6210×CDC25A) + (0.3898×CDC25B) + (-0.413292995×CDCA2) +

(7.350161893×DUSP21) + (0.115914978×DUSP4) + (0.329334452×

GNA12) + (-1.094422324×HDDC2) + (0.263233031×LPIN3) +

(0.220752276×LRRK2) + (0.2185904×MTMR11) + (-0.177032997×

PLPPR3). Using the above formula, the risk scores of all glioma

patients were calculated, and the median risk value was selected to

classify the patients into high-risk and low-risk subgroups (Figure 3A).

The survival scatter plot of the risk scores showed that the number of

deaths continued to increase with the gradual rise of the risk scores

(Figure 3B). K-M survival analysis showed that patients in the low-risk

group had a significantly higher OS than those in the high-risk group,

and the prognosis was significantly different (Figure 3C, P<0.0001). The

AUC value is the geometric area at the bottom right of the ROC curve,

and the value range is 0 to 1, which means that the AUC is effective for

testing the accuracy of the model. In general, an AUC of 0.5 indicates

no difference, accuracy is low at 0.50-0.70, 0.7 to 0.8 is considered

acceptable, 0.8 to 0.9 is considered excellent, and greater than 0.9 is

considered excellent (29). By applying the ROC curve to assess the

predictive ability of the risk score, we found that the AUC reached

0.854 over a 5-year period (Figure 3D). This indicates that the

prognostic model constructed from 12 DRGs has high accuracy for

prognosis prediction in glioma patients.
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3.3 Genetic variation and gene expression
of 12 DRGs

Among the 511 patients included in this study, 49 (9.59%) of all

queried genes altered. Of these, 28 cases (5.48%) had amplification, 17

cases (3.33%) had homdel, 2 cases (0.39%) had mutation, 1 cases

(0.20%) had fusion, and 1 (0.20%) had multiple alterations, with

amplification being the most common type of mutation among them

(Table 3). Simultaneously, the waterfall plot showed that PLPPR3 had

the highest mutation rate of 4.31%. Among the 511 glioma patients,

21 patients developed amplification, and 1 patient developed fusion.

The mutation rate of CDC25A gene was 1.57%. Among 511 glioma

patients, 6 had HOMDEL, 1 had Amplification and 1 had Fusion

(Figure 4A). Details of the specific mutations in the 12 DRGs are

shown in Table 4. The heat map results show that these 12 genes in

the two groups have a remarkably differences in expression. The

expression of CDC25A, CDC25B, CDCA2, DUSP21, DUSP4,

GNA12, LPIN3, LRRK2, MTMR11 in low-risk group was lower

than that in hieg-risk group. The expression of BMP2, HDDC2 and

PLPPR3 in low-risk group was higher than that in high-risk group

(Figures 4B, C).
3.4 Independent prognostic value of risk
scoring models

The chi-square test found that age, tumor grade, tumor status,

and new-event were significantly associated with risk scores in

patients with glioma (Table 5). Among them, the results of

univariate COX regression analysis suggested that patient’s age,

grade, new event and tumor status were significantly associated with
TABLE 1 Primer Sequences.

Gene FORWARD REVERSE

LRRK2 CGGATGTTGGTGATGGAGTTAGC GTTCTAGTGAGGCTGGCTTTGTC

PLPPR3 ATCGAATGGGACCCACCTGT TTTGGATGGACTCGGAGGCA

MTMR11 ACAGCGGAAGACTGGGAGACTG TGGTGGCTACGTCGAACCTCTC

LPIN3 CGCCTCTCCTCCGATCAGATCC TGCCCTGGTACTGAGTGGTCAC

HDDC2 TGTGAAGCAGCTAGACCAATGTG GCAGTCTCCCAGGTTTGTGTTC

GNA12 TCAGAGGCTGCTTGTGGTCT AAGAGCCCTTGTGTGCTACTG

DUSP4 GCTGATGAACCGGGACGAGAATG CAGTCCAGCAGCAGGCACTTG

DUSP21 CAACAACGGCTTTTGGGAACAGC CTACCGGCGAGTTGATCATGCG

CDCA2 GCTGACTGTGTAGTGGGCAAAGG TGGTGACCTGACATCAGGGACTG

CDC25B GGAACGAGACCGTGCTGTCAAC TCGGGTGCTGAGGGAAGAACTC

BMP2 TGACGAGGTCCTGAGCGAGTTC ACCACGGCGTCCCTGCTG

CDC25A TTCCTCTTTTTACACCCCAGTCA TCGGTTGTCAAGGTTTGTAGTTC

GAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA
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OS in glioma patients (P<0.001) (Figure 5A). Subsequently,

multifactorial COX regression analysis further revealed that risk

score (P<0.001), age (P<0.001), tumor grade (P<0.001), cancer

status with tumor (P<0.001) were independent risk factors for OS

in glioma patients and all of them were positively associated with

the risk of death in glioma patients (Figure 5B).
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3.5 Construction and correction
of nomogram

Nomogram is an important tool for the combined diagnosis or

prediction of the onset or progression of a disease by multiple

indicators. In our research, nomogram was constructed to predict
FIGURE 1

Flow chart of this study.
FIGURE 2

(A) LASSO regression modelling of cvfit. (B) LASSO regression modelling of lambda functions.
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the OS of glioma patients at 1, 3 and 5 years based on age, gender,

grade, new-event, cancer status and risk score (Figure 6A). The

calibration curves for the 1-, 3- and 5-year forecasts showed a high

degree of fit to the standard curve, indicating a high degree of
Frontiers in Immunology 07
consistency between the forecasts and the actual results

(Figures 6B–D). In addition, the AUC values for the risk score,

age, gender, grade, new event, tumor status established in this study

were 0.854, 0.708, 0.520, 0.705, 0.576, 0.629, respectively, indicating
TABLE 2 The 12 DRGs details in the prognostic risk model.

mRNA Ensemble ID Chromosome location b(Cox) HR(95%CI) p

BMP2 ENSG00000125845 Chr20: 6,767,686-6,780,246 -0.283 0.75(0.64-0.89) <0.001

CDC25A ENSG00000164045 Chr3: 48,157,146-48,188,417 0.621 1.86(1.24-2.79) <0.001

CDC25B ENSG00000101224 Chr20: 3,786,772-3,806,121 0.390 1.48(0.97-2.24) 0.068

CDCA2 ENSG00000184661 Chr8: 25,459,199-25,507,911 -0.413 0.66(0.45-0.97) 0.036

DUSP21 ENSG00000189037 ChrX: 44,844,021-44,844,888 7.350 1556.45(16.29-148747.1) 0.002

DUSP4 ENSG00000120875 Chr8: 29,333,064-29,350,684 0.116 1.12(0.97-1.3) 0.116

GNA12 ENSG00000146535 Chr7: 2,728,105-2,844,308 0.329 1.39(1.01-1.91) 0.043

HDDC2 ENSG00000111906 Chr6: 125,219,962-125,302,078 -1.094 0.33(0.18-0.64) <0.001

LPIN3 ENSG00000132793 Chr20: 41,340,821-41,360,582 0.263 1.3(1.05-1.62) 0.018

LRRK2 ENSG00000188906 Chr12: 40,196,744-40,369,285 0.221 1.25(1.04-1.5) 0.019

MTMR11 ENSG00000014914 Chr1: 149,928,651-149,936,879 0.219 1.24(0.97-1.6) 0.089

PLPPR3 ENSG00000129951 Chr19: 812,488-821,955 -0.177 0.84(0.72-0.97) 0.021
FIGURE 3

Evaluation of prognostic risk model. (A) Risk score plot. (B) Scatter plot of survival status. (C) K-M survival plot for patients in the high and low risk
group. (D) 5-year diagnostic efficacy ROC plot.
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that the AUC values for the risk score were higher than the other

predictors and the predictive effect was more excellent (Figure 6E).
3.6 Gene enrichment analysis results

The results of BP, CC, and MF analyses showed that the high-

risk group was more active in biological processes such as regulation

of glutamate receptor signaling pathways, inhibitory postsynaptic

potential, actin cytoskeleton, phagocytic vesicles, cysteine-type

endopeptidase activity in the apoptotic execution phase, and

binding of SH3 structural domains (Figures 7A–C), and the low-

risk group was enriched in biological processes such as modulation
Frontiers in Immunology 08
of cellular receptor signaling pathways, positive modulation of the

organization of extracellular matrix, negative modulation of

immune effector processes negative regulation, glutamate receptor

complex, glycinergic synapses, NADPH dehydrogenase quinone

activity, oxidoreductase activity activation of paired donors, and

other biological processes were enriched (Figures 7A–C). The above

differences in the results of GSEA analysis between the two groups

may reveal the intrinsic reasons leading to the differences in the

prognosis of glioma patients in the high- and low-risk groups, and

the specific mechanisms need to be further investigated.
3.7 The landscape of tumor
microenvironment immune cell
infifiltration in the two risk groups

B cell plasma, T cell CD4+ naïve, T cell follicular helper, mast

cell resting and neutrophils infiltrated significantly more in the low-

risk group than in the high-risk group in the CIBERSORT

algorithm (P<0.05) (Figure 8A). monocyte, NK cell and

uncharacterized cell infiltrated significantly more in the low-risk

group than in the high-risk group in the QUANTISEQ algorithm

(Figure 8B). B cell, T cell CD4+, T cellCD8+ and uncharacterized

cell in the EPIC algorithm were infiltrated higher in the low-risk

group than in the high-risk group (Figure 8C). The above results
FIGURE 4

(A) Waterfall diagram displaying mutated gene names and mutation types in glioma patients. (B) Heatmap of 12 DRGs expressed in high and low risk
groups. (C) Violin plot of 12 DRGs expressed in high and low risk groups.
TABLE 3 Alterations of 12 query DRGs in detailed mutation type.

Alteration Number of casea Frequency

Amplification 28 5.48%

HOMDEL 17 3.33%

Mutation 2 0.39%

Fusion 1 0.20%

Multiple alterations 1 0.20%

Total 49 9.59%
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suggest that there is a difference in the level of immune cell

infiltration in glioma patients in the high- and low-risk groups,

which in turn affects the tumor immune microenvironment.
3.8 Immunotherapy analysis results

Immunotherapy correlation analysis showed that the TIDE

Score, TME Score, and TMB Score of glioma patients in the high-

risk group were significantly higher than those in the low-risk group

(P<0.05) suggesting that the high-risk patient group possessed

higher immune evasion and relatively poorer immunotherapy
Frontiers in Immunology 09
(Figure 9A). The Immune Score, Stromal Score and ESTIMATE

Score were all significantly higher (P<0.0001) than those of the low-

risk group, revealing a significant difference in TME between the

two groups, suggesting that the high-risk group had a higher

percentage of immune and stromal cells (Figure 9B).
3.9 qRT-PCR results of 12 DRGs in 3
groups of cells

The results revealed that CDC25A, CDC25B, DUSP21, DUSP4,

GNA12, LPIN3 and MTMR11 mRNA expression levels in U251
TABLE 5 The relation between risk score and clinical features.

Variables Total(n=506) Highrisk(n=253) Lowrisk(n=253) p

Age, Median (Q1,Q3) 41(32.25,53) 43(33,57) 39(32,50) 0.01

Gender, n (%) 0.245

FEMALE 226(45) 120(47) 106(42)

MALE 280(55) 133(53) 147(58)

Grade, n (%) <0.001

G2 245(49) 88(35) 157(62)

G3 260(51) 164(65) 96(38)

New_Event, n (%) <0.001

NO 231(46) 96(38) 135(53)

YES 275(54) 157(62) 118(47)

Cancer_Status, n (%) 0.002

Tumor free 175(39) 72(32) 103(47)

With tumor 271(61) 154(68) 117(53)
TABLE 4 Details of mutations in 12 DRGs in glioma patients (n=511).

mRNAs No
Alterations

Amplification HOMDEL Mutation Fusion Altered/Profiled(%)

BMP2 509 2 0 0 0 0.39%

CDC25A 503 1 6 0 1 1.57%

CDC25B 508 2 0 0 1 0.59%

CDCA2 509 2 0 0 0 0.39%

DUSP21 505 1 5 0 0 1.17%

DUSP4 508 2 0 0 1 0.59%

GNA12 506 1 4 0 0 0.98%

HDDC2 510 0 0 0 1 0.20%

LPIN3 510 1 0 0 0 0.20%

LRRK2 505 1 3 1 1 1.17%

MTMR11 509 1 0 0 1 0.39%

PLPPR3 489 21 0 0 1 4.31%
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glioma cancer cells were significantly higher than those in HEB

cells, and that BMP2, PLPPR3 mRNA expression levels were

significantly lower than those in HEB cells. LN229 cells showed

significantly higher expression levels of CDC25A, CDC25B,

CDCA2, DUSP21, DUSP4, GNA12, LPIN3, LRRK2 and

MTMR11 mRNA expression levels were significantly higher than

those in HEB cells, BMP2, HDDC2 and PLPPR3 mRNA expression

levels were significantly lower than those in HEB (Figure 10).
3.10 Drug sensitivity analysis and
correlation results

The results of drug sensitivity analysis showed that the IC50

values of bortezomib, etoposide, tamoxifen, TMZ and vincristine

were significantly lower in the high-risk scoring group compared

with the low-risk scoring group (P<0.05) (Figure 11A), indicating

that glioma patients in the high-risk group were more sensitive to

bortezomib, etoposide, tamoxifen, TMZ and vincristine.

Therefore, the model based on DRGs may have potential

predictive value for the sensitivity to chemotherapeutic agents,

providing assistance for clinical individualized treatment of

glioma patients. In addition, this study performed a correlation

analysis of the 7 chemotherapeutic agents commonly used in the

clinical treatment of glioma and the 12 DRGs included in the risk

model. The analysis showed that the IC50 value of the commonly

used chemotherapeutic drug TMZ had the highest and negative

correlation with the gene CDC25A (correlation: -0.44, P=-
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log1024.96) (Figure 11B). In addition, qPCR results has

confirmed that the gene CDC25A was significantly higher

expressed in glioma cells U251 and LN229 than in HEB cells

(P<0.001, P<0.0001). Therefore, the genes CDC25A and TMZ

were selected in this study for subsequent experimental validation.
3.11 Models of cells overexpressing and
knocking down CDC25A

The qRT-PCR results showed that the mRNA expression levels

of CDC25A were significantly higher in the U251 and LN229 OE

groups compared to the NC group (P<0.0001, P<0.01)

(Figures 12A, C). mRNA expression levels of CDC25A were

significantly lower in the U251 and LN229 knockdown groups,

and the best knockdown effect was observed in the si2 group

(P<0.0001, P<0.0001) (Figures 12B, D). Western Blot results are

shown in the Figures 11E, F. The protein expression level of

CDC25A in OE group of U251 and LN229 cells was significantly

increased (P<0.0001, P<0.05) (Figures 12G, I). si2 protein expression

level was significantly decreased in U251 and LN229 cells (P<0.01,

P<0.05) (Figures 12H, J). The above results showed that U251 and

LN229 cell models with overexpression and knockdown of CDC25A

were successfully constructed. Subsequently, the cell model was used

for subsequent TMZ drug sensitivity experiments. The results showed

that overexpression of CDC25A reduced the resistance of U251 and

LN229 to TMZ, and knockdown of CDC25A increased the resistance

of U251 and LN229 to TMZ.
FIGURE 5

(A) Univariable analyses for clinical feature and risk score. (B) Multivariable analyses for clinical feature and risk score.
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3.12 CDC25A affects the drug sensitivity
of TMZ

The IC50 values of U251 and LN229 cells OE group were

significantly decreased compared with NC group, suggesting that

overexpression of CDC25A significantly increased the sensitivity of

U251 and LN229 cell lines to TMZ (Figures 13A, B). In addition, the

IC50 values of the U251 and LN229 cells si2 group were significantly

increased compared with the NC group, suggesting that knockdown
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of CDC25A significantly decreased the TMZ sensitivity of the U251

and LN229 cell lines (Figures 13C, D).
4 Discussion

The strength of this research lies in being the first to establish a

risk scoring model for glioma patients associated with DRGs which

can precisely predict the prognosis of glioma patients. Additionally,
FIGURE 6

(A) Nomogram constructed by combining risk score and clinicopathologic characteristics. (B-D) Standard versus calibrated graphs for predicting 1-,
3-, and 5-year OS in glioma patients. (E) Standard ROC plots of risk scores and clinicopathologic features.
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in contrast to the existing glioma biomarkers (such as IDH

mutation, 1p/19q code deletion, TERT promoter mutation,

H3F3A mutation, etc.) and previous studies on glioma

dephosphorylation, the novelty of this study is that it has been

experimentally verified that CDC25A influences the TMZ resistance

of glioma U251 and LN229 cells, potentially providing a reference

for the clinical treatment of glioma patients with TMZ.

Among the 12 DRGs screened in this study CDC25A, CDC25B,

CDCA2, DUSP11, DUSP4, GNA12, LPIN3, MTMR11, and LRRK2

were deleterious genes, whereas BMP2, HDDC2, and PLPPR3 were

protective genes. Erna Raja et al. confirmed that BMP-2 is a putative

tumor suppressor in Glioblastoma (GBM) (30). In addition, BMP2

was a protective factor in the prognostic models established in both

studies by Xin Fan et al (31, 32). The above studies are consistent

with the results of the present study. Phosphorylation level of

CDC25A was correlated with malignancy and prognosis of

gliomas in a study by Ji Liang et al (33). In a prognostic model

developed by Melih Özbek et al. CDC25A was correlated with poor

prognosis in patients with low-grade gliomas (34). YongJung et al.
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demonstrated that CDC25B can be used as a predictive biomarker

for GBM (35). A pan-cancer analysis showed that high CDCA2

expression was associated with poor prognosis in low-grade gliomas

(36). Two additional studies suggest that DUSP-4 may be a

diagnostic and prognostic marker for IDH1 mutant gliomas,

GNA12 signaling regulation promotes transcriptional and

phenotypic responses to GBM tumor invasion (37, 38). Jing Yan

et al. indicated that LRRK 2 increased the risk of low-grade gliomas,

and that the lack of LRRK2 leads to impaired macrophage function

and affects tumor progression in a cancer type-specific manner (39).

The above related studies are consistent with the findings of the

present study, further supporting the reliability of the prognostic

model established in this study. Moreover, DUSP11, LPIN3,

MTMR11, HDDC2, and PLPPR3 have not been queried for

glioma-related studies. Therefore, they may become new

biomarkers for the diagnosis and prognosis of glioma.

Presently, multiple studies have illustrated that the TME plays a

pivotal role in the development of gliomas (40–42). The TME

consists of tumor cells and surrounding stromal cells, which
FIGURE 7

(A-C) BP, CC and MF enrichment analysis of glioma patients in the high-risk group and low risk group.
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FIGURE 8

(A) Immune cell infiltration analysis in CIBERSORT. (B) Immune cell infiltration analysis in QUANTISEQ. (C) Immune cell infiltration analysis in EPIC.
Blue for low-risk group, red for high-risk group.
FIGURE 9

(A) TMB score, TME score and TIDE score in high and low risk groups. (B) Tumor microenvironment scores (ESTIMATE Score, Stromal Score and
Immunity Score) in the high and low risk groups.
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together form a protective microecosystem for its own proliferation,

invasion, generation of therapeutic sensitivity, and immune escape

(42–46). Despite significant clinical advances in tumor therapies,

the survival rate of glioma patients has not been significantly

improved, and the reason for this may be related to immune

escape caused by TME (42, 44). The TME scores of the high-risk

group were higher than those of the low-risk group and the

percentage of immune cells and stromal cells was higher in the

high-risk group in the results of the present study. The above may

be potential factors contributing to the different prognoses of

patients with high- and low-group gliomas. Furthermore, TMB is

widely recognized as a predictive biomarker of immunotherapy
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efficacy. In this study, the TIDE score and TMB score of glioma

patients in the high-risk group were significantly higher than those

in the low-risk group, suggesting that the high-risk patient group

had a stronger immune evasion potential and relatively poorer

immunotherapy efficacy. In recent years, immune cells also play an

important role in tumorigenesis and development. Neutrophils, an

important component of TME, have been reported to be associated

with malignant progression and immunosuppression in gliomas

(47). Additionally, Macrophages have been shown to be actively

involved in tumor growth and are the most extensively infiltrated

immune cells in the TME (48). For example, Anna Gieryng’s study

claimed that macrophages M2, play an immunosuppressive role in
FIGURE 10

Real-time qPCR detection of mRNA expression of 12 DRGs in the HEB, U251 and LN229. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, Ns, there
was no statistical difference.
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TME (49), and Hao Zhang et al. showed a negative correlation

between survival and macrophages in glioma patients (50). The

immune cell infiltration analysis in our study showed that both

neutrophils and macrophages were infiltrated in the high-risk

group. The above related studies further confirm the accuracy of

the predictive model in this study. In addition, high infiltration of

NK cells and CD4+ T cells, among others, in the low-risk group has

also been reported for support. Chemotherapeutic drug sensitivity

analysis showed that patients in the high-risk group were more

sensitive to bortezomib, etoposide, tamoxifen, TMZ and vincristine

demonstrating that the model developed in our study may have

potential predictive value for chemotherapeutic drug sensitivity.

Additionally, researchs on the gene CDC25A and chemotherapy

drug resistance are gradually increasing. A study have shown that

CDC25A promotes resistance to cisplatin and paclitaxel in ovarian

cancer. Research by Liang Huang et al. revealed that Let-7 c-5p

inhibits cisplatin resistance in lung adenocarcinoma cells by
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targeting CDC25A. Research by Yumi Ito et al. showed that

inhibiting PCBP4 can reduce the resistance of human maxillary

cancer cells to cisplatin (51–53). Our subsequent experiments

confirmed that CDC25A may become a biomarker for evaluating

TMZ resistance in gliomas, providing a new clinical treatment

direction for drug-resistant glioma patients.

However, this study has some limitations and the established risk

prognostic model has not been validated by an external database; in

the future, it is hoped to be validated in a multicenter clinical trial.

The experiments are relatively shallow and need to be further verified

by more rigorous molecular biology experiments. In addition,

previous cancer studies have suggested that the high expression of

specific genes plays a key role in tumorigenesis. This view mostly

underestimates the contribution of genes with lower expression levels.

Such biases can have a profound impact on scientific understanding

and clinical outcomes, as they can obscure the true complexity of

cancer biology and limit the potential for discovering new therapeutic
FIGURE 11

(A) Differences in IC50 values among the seven chemotherapeutic agents in the high- and low-risk groups. (B) Correlation analysis of 7
chemotherapeutic agents and 12 dephosphorylation-related genes.
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targets. The data extracted from the TCGA database in this study, a

series of bioinformatics analysis and experimental verification results

may also have such bias (54, 55). The association of high expression

of CDCD25A with glioma does not necessarily imply a direct causal

relationship and requires follow-up studies.
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5 Conclusion

The DRGs risk model has a good prediction efficiency, which

provides a valuable new direction for the prognosis prediction of

glioma patients and the clinical use of TMZ chemotherapy drugs.
FIGURE 12

(A-D) qRT-PCR detection of CDC25A expression in U251 and LN229 cell line after overexpression/knockdown transfection. (E-F) Validation of
overexpression and knockdown of CDC25A protein expression in U251/LN229 cell line. (G-J) Comparative histogram of proteins in the OE, NC, si2
and NC in the U251 and LN229 cell line. (*P<0.05, **P<0.01, ****P<0.0001.
FIGURE 13

(A-B) Survival of U251/LN229 cell line in NC and OE groups after transfection. (C-D) Survival of U251/LN229 cell line in NC and si2 groups after
transfection. ***P<0.001, ****P<0.0001.
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CDC25A affects TMZ resistance in glioma cells U251 and

LN229. We will next continue to investigate the application of

CDC25A in other glioma subtypes or therapeutic combinations.
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