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Introduction

Cancer immunotherapy has revolutionized the treatment of various malignancies,

particularly with the advent of immune checkpoint inhibitors and CAR-T cell therapies

(1–3). These approaches have yielded impressive outcomes in a subset of patients, yet many

still fail to achieve durable responses (4). One of the key reasons for this disparity in treatment

outcomes is the presence of an immunosuppressive tumor microenvironment (TME), which

plays a crucial role in limiting the effectiveness of immune-based therapies (5, 6). The TME

comprises a complex network of cellular and molecular components, including tumor-

associated macrophages (TAMs), regulatory T cells (Tregs), and myeloid-derived suppressor

cells (MDSCs), all of which contribute to immune evasion and tumor progression (7–9).

The STING (stimulator of interferon genes) pathway has emerged as a promising target

for cancer immunotherapy due to its ability to bridge innate and adaptive immune responses

(10, 11). Upon activation by cytosolic DNA, the STING pathway triggers the production of

type I interferons and other pro-inflammatory cytokines, leading to the activation of dendritic

cells (DCs) and subsequent priming of T cells (12). This process is crucial for initiating a

robust anti-tumor immune response. However, despite the potential of STING agonists to

stimulate powerful immune responses, their efficacy in clinical settings has been limited,

primarily due to the immunosuppressive nature of the TME, which can dampen the immune

activation initiated by STING (13). This TME comprises various cellular components,

including TAMs, regulatory Tregs, and MDSCs, which together contribute to a hostile

immune environment that inhibits effective anti-tumor responses.
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TAMs often adopt an M2-like phenotype within the TME,

characterized by anti-inflammatory and tissue-remodeling activities

that promote tumor growth and suppress effective immune responses

(14). Recent studies have shown that activation of the STING pathway

can lead to a shift in TAM polarization fromM2 to M1, enhancing the

secretion of pro-inflammatory cytokines such as TNF-a and IL-12,

which are crucial for T cell activation and anti-tumor immunity. Tregs

play a dual role in maintaining immune homeostasis but can hinder

effective anti-tumor immunity by inhibiting cytotoxic T cell functions.

Targeting Tregs through STING agonists may lead to a decrease in

their suppressive effects, allowing for a more robust T cell response

against tumor cells (15).

MDSCs represent a significant barrier to successful

immunotherapy due to their ability to produce reactive oxygen

species (ROS) and other immunosuppressive factors that inhibit T

cell activation. Emerging evidence suggests that STING agonists may

reduce MDSC levels or impair their function, thereby alleviating the

suppression of T cell activity within the TME (16, 17). The

extracellular matrix (ECM) and the physical characteristics of the

TME, such as hypoxia and acidosis, also contribute to immune

suppression. STING activation can enhance the remodeling of the

ECM, thereby facilitating better immune cell infiltration and

improving the therapeutic efficacy of STING agonists (18). Given

these challenges, there is a growing interest in exploring synergistic

combination strategies that not only modulate the TME but also

enhance the overall effectiveness of STING agonists (19, 20). For

instance, targeting specific components of the TME that contribute to

immune suppression, such as TAMs, regulatory Tregs, and MDSCs,

can create a more favorable environment for STING-mediated

immune activation (21, 22). Recent studies have demonstrated that

combining STING agonists with therapies like checkpoint inhibitors

or bispecific antibodies leads to enhanced T cell responses and

improved tumor regression. This synergistic approach has shown

great promise not only in improving the efficacy of STING agonists

but also in overcoming resistance mechanisms associated with

current immunotherapies. By leveraging multiple therapeutic

modalities, researchers aim to achieve more durable and effective

anti-tumor responses, ultimately leading to better patient

outcomes (23).

This article will delve into the characteristics of the TME, the

role of the STING pathway in tumor immunotherapy, and how

combining TME modulation with STING agonists can lead to more

effective cancer treatments. This article uniquely contributes to the

field by systematically evaluating the synergistic potential of STING

agonists combined with TME-modulating therapies, which is often

overlooked in current literature. Moreover, it emphasizes the

critical need for personalized therapeutic strategies that consider

the distinct characteristics of individual tumor microenvironments,

thereby optimizing treatment efficacy. Additionally, the manuscript

outlines future research directions that aim to elucidate the specific

mechanisms by which STING pathway activation interacts with

various TME components, paving the way for innovative clinical

applications. Unlike previous studies that primarily focus on

isolated therapeutic interventions, this manuscript provides a

comprehensive overview of how the combination of STING
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agonists with diverse TME-targeting strategies can significantly

optimize the immune response and improve patient outcomes.
Characteristics and challenges of the
tumor microenvironment

TME is a complex and dynamic entity that plays a critical role in

tumor progression and the response to cancer therapies (24, 25). It

consists of various cellular components, including cancer cells,

immune cells, fibroblasts, endothelial cells, and ECM components

(26). Among the immune cells, TAMs, regulatory Tregs, and

MDSCs are key players that contribute to the immunosuppressive

nature of the TME (7–9).

TAMs often adopt an M2-like phenotype within the TME,

characterized by anti-inflammatory and tissue-remodeling activities

that promote tumor growth and suppress effective immune

responses (27). These cells secrete cytokines such as IL-10 and

TGF-b, which inhibit the activation and proliferation of cytotoxic T

cells and natural killer (NK) cells, thereby fostering an environment

that protects the tumor from immune attack (28). Tregs are another

crucial component of the TME, functioning to maintain immune

tolerance and prevent autoimmunity. However, in the context of

cancer, Tregs suppress anti-tumor immunity by inhibiting the

activity of effector T cells and secreting immunosuppressive

cytokines like IL-10 and TGF-b. This contributes to the immune

escape of cancer cells, allowing them to proliferate unchecked (29).

MDSCs are a heterogeneous population of immature myeloid

cells that expand during cancer and other chronic inflammatory

conditions. Within the TME, MDSCs suppress T cell function

through the production of ROS, nitric oxide (NO), and arginase,

further contributing to the suppression of anti-tumor immune

responses (30). The immunosuppressive characteristics of the

TME present significant challenges for effective cancer

immunotherapy. The TME not only inhibits the function of

immune effector cells but also creates physical barriers, such as

dense ECM, that impede the infiltration of immune cells and

therapeutic agents into the tumor. Moreover, the hypoxic and

acidic conditions commonly found in the TME further exacerbate

immune suppression and promote resistance to therapy (31).

In addition to the previously discussed immune cells such as

TAMs, Tregs, and MDSCs within the TME, other cellular and non-

cellular components also play significant roles. Endothelial cells,

which line tumor blood vessels, are essential for tumor growth by

supplying nutrients and oxygen (32). However, they also

overexpress adhesion molecules and secrete chemokines,

attracting immunosuppressive cells like Tregs and MDSCs, thus

suppressing anti - tumor immune cells. Their abnormal vessel

structure impairs drug delivery and favors tumor survival and

metastasis (33). Stroma cells, especially fibroblasts, secrete ECM

components, creating a fibrotic barrier that restricts immune cell

infiltration (34, 35). They also secrete factors affecting tumor and

immune cells’ behavior, and understanding their crosstalk is key

for devising strategies with STING agonists. Tumor cells, as the

root of the problem, downregulate MHC expression, secrete
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immunosuppressive factors like TGF - b and IL - 10, and undergo

alterations for immune evasion and resistance to therapies (36). A

comprehensive understanding of these TME components and their

interactions is crucial for developing effective combination

therapies, particularly those integrating STING agonists, to

improve cancer immunotherapy outcomes.

Addressing these challenges requires innovative strategies that

can modulate the TME to restore immune function and enhance

the efficacy of cancer treatments. By targeting key components like

TAMs, Tregs, and MDSCs, it may be possible to reprogram the

TME from an immunosuppressive state to one that supports robust

anti-tumor immunity, thereby improving the outcomes

of immunotherapy.
Role of the STING pathway in
tumor immunotherapy

The STING pathway is a crucial component of the innate

immune system, playing a pivotal role in detecting cytosolic

DNA, which often originates from viral infections or damaged

tumor cells. Upon recognition of cytosolic DNA, the cyclic GMP-

AMP synthase (cGAS) enzyme produces cyclic GMP-AMP

(cGAMP), a second messenger that directly activates the STING

protein (37). Once activated, STING translocates from the

endoplasmic reticulum to the Golgi apparatus, where it triggers a

signaling cascade leading to the phosphorylation of interferon

regulatory factor 3 (IRF3) and the subsequent production of type

I interferons (IFNs) and other pro-inflammatory cytokines (38).

Type I IFNs, such as IFN-a and IFN-b, are critical for bridging
the innate and adaptive immune responses. They activate DCs,

enhance antigen presentation, and promote the priming and

activation of cytotoxic T lymphocytes (CTLs), which are essential

for targeting and destroying tumor cells (39). This makes the

STING pathway an attractive target for cancer immunotherapy,

as it can initiate a robust immune response capable of overcoming

the immunosuppressive TME. Preclinical studies have

demonstrated that STING agonists can induce potent anti-tumor

immunity by enhancing the infiltration and activation of effector

immune cells within tumors. These agonists have shown the ability

to convert “cold” tumors—those with low immune cell infiltration

—into “hot” tumors that are more responsive to immunotherapy. In

addition to promoting immune cell infiltration, STING activation

can also lead to the direct induction of cell death in certain tumor

types, further contributing to tumor control (40).

However, despite these promising effects, the clinical translation

of STING agonists has encountered chal lenges . The

immunosuppressive nature of the TME can dampen the immune

response initiated by STING activation, limiting the therapeutic

efficacy of STING agonists when used as monotherapy (41).

Furthermore, the systemic administration of STING agonists

carries the risk of inducing excessive inflammation, leading to

potential toxicity (42). To overcome these challenges, there is

increasing interest in combining STING agonists with other

therapeutic strategies, such as immune checkpoint inhibitors or
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agents that modulate the TME (43). Such combination therapies

aim to enhance the immune-stimulating effects of STING agonists

while mitigating the suppressive influences of the TME, thereby

maximizing the therapeutic potential of STING pathway activation

in cancer immunotherapy.
Synergistic effects of tumor
microenvironment modulation and
STING agonists

TME plays a crucial role in determining the success or failure of

cancer immunotherapies. As a highly immunosuppressive milieu,

the TME inhibits the effective activation and function of immune

cells, including those recruited by therapeutic interventions. This

suppression poses a significant challenge to the efficacy of STING

agonists, which rely on robust immune activation to exert their anti-

tumor effects. Therefore, combining STING agonists with strategies

that modulate the TME has emerged as a promising approach to

enhance therapeutic outcomes (44, 45).

One of the primary strategies for modulating the TME is

targeting TAMs, which often adopt an M2-like phenotype within

tumors, characterized by immunosuppressive and pro-tumoral

activities (46). Reprogramming TAMs from an M2 phenotype to

a pro-inflammatory M1 phenotype can significantly enhance the

immune-stimulating effects of STING agonists. M1-like TAMs

produce pro-inflammatory cytokines such as TNF-a and IL-12,

which support the activation of T cells and other effector immune

cells. This shift in macrophage polarization can reduce the

immunosuppressive burden of the TME, making it more

permissive to the immune activation induced by STING

agonists (47).

In addition to targeting TAMs, modulating the activity of

regulatory Tregs within the TME is another promising approach.

Tregs suppress the activity of cytotoxic T cells and other effector

immune cells, thus contributing to immune evasion by tumors (29).

By reducing the number or suppressive function of Tregs, the anti-

tumor immune response can be enhanced. Combining Treg

depletion strategies with STING agonists could lead to a more

robust activation of the immune system, promoting a stronger and

more sustained anti-tumor response (48).

MDSCs represent another key target within the TME. MDSCs

inhibit T cell function through the production of ROS and NO,

among other mechanisms (49). Reducing MDSC levels or blocking

their suppressive activities can alleviate one of the major barriers to

effective immunotherapy. When combined with STING agonists,

MDSC-targeting strategies can further enhance immune activation

by removing a significant source of suppression within the

TME (50).

As we have explored the various ways to modulate the TME by

targeting key cellular components such as TAMs, Tregs, and

MDSCs, it becomes evident that other aspects of the TME also

require attention. For endothelial cells, combining STING agonists

with anti - angiogenic therapies is promising as it normalizes tumor

vasculature, improving STING agonist delivery (51, 52).
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Engineering endothelial cells or using drugs to induce immune -

promoting molecules on their surface, like enhancing adhesion

molecule expression for immune cell transmigration, can also boost

the anti - tumor immune response (53). Regarding stroma cells, a

multi - pronged approach is viable. Inhibiting ECM overproduction

by fibroblasts, promoting fibrotic matrix degradation, and

modulating cytokine/growth factor secretion can create a

favorable environment for STING agonist - induced immune

activation (54). For tumor cells, strategies include upregulating

MHC expression, blocking immunosuppressive factor secretion,

and targeting genetic/epigenetic alterations. These approaches,

when combined with STING agonists, have the potential to

overcome resistance and enhance overall anti - tumor efficacy.

Beyond cellular components, the ECM and the physical

characteristics of the TME, such as hypoxia and acidosis, also

contribute to immune suppression. Strategies that normalize the

ECM or alter the metabolic environment of the TME can facilitate

better infiltration of immune cells and improve the delivery and

efficacy of STING agonists. For example, reducing ECM stiffness or

targeting factors that promote hypoxia can enhance the penetration

and activity of both immune cells and therapeutic agents within

tumors (55). The synergy between TME modulation and STING

agonists has been demonstrated in preclinical models, where

combining these strategies leads to improved anti-tumor

responses compared to either approach alone. By reprogramming

the TME to be more immunologically active, STING agonists can

induce stronger and more durable immune responses, increasing

the likelihood of tumor eradication (10). To summarize the key

strategies for modulating the TME and their potential synergy with

STING agonists, please refer to Table 1.

In conclusion, the combination of TME modulation with

STING agonists represents a powerful strategy for overcoming the

immunosuppressive barriers of the TME and enhancing the efficacy

of cancer immunotherapy. This synergistic approach has the

potential to convert resistant tumors into responsive ones,

offering new hope for patients who do not respond to current

treatment modalities. As research in this area progresses, it will be

crucial to identify the most effective combinations and optimize
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their application in clinical settings to maximize patient outcomes.

F igure 1 i l lust ra tes the key e lements of the tumor

microenvironment, the STING pathway, and their synergistic

interactions as described in this section.
Clinical advancements in STING
agonists and tumor
microenvironment modulation

Recent clinical advancements have demonstrated the potential

of STING agonists in combination with therapies that modulate the

TME to enhance anti-tumor immunity (56). STING agonists

activate innate immune responses by inducing the production of

type I interferons and other pro-inflammatory cytokines, which

play a crucial role in bridging innate and adaptive immunity.

However, their efficacy as monotherapies has been limited due to

the immunosuppressive nature of the TME. As a result, clinical

trials have focused on combining STING agonists with agents that

target key components of the TME to overcome these barriers (57).

One of the most notable clinical advancements involves the

STING agonist ADU-S100, which has shown promising results

when combined with pembrolizumab, a PD-1 immune checkpoint

inhibitor, in patients with advanced solid tumors (58). The

combination led to increased T cell infiltration within tumors and

a higher overall response rate, suggesting that STING agonists can

convert immunologically “cold” tumors into “hot” tumors that are

more responsive to immunotherapy. In addition to immune

checkpoint inhibitors, preclinical studies have explored combining

STING agonists with other immune-modulating therapies, such as

anti-CTLA-4 antibodies (59, 60). For example, the combination of

the STING agonist DMXAA with anti-CTLA-4 therapy in murine

models resulted in complete tumor regression in some cases, further

highlighting the synergistic potential of these approaches.

In addition to the mentioned STING agonists, a novel agent

MSA - 2 has emerged as a promising candidate in cancer

immunotherapy. MSA - 2 is a potent non - CDN STING agonist
TABLE 1 Strategies for modulating the TME to enhance the efficacy of STING agonists.

TME Component Modulation Strategy Effect on Immune Response Synergy with STING Agonists

Tumor-Associated
Macrophages (TAMs)

Reprogramming TAMs from M2 to
M1 phenotype

Enhances pro-inflammatory cytokine
production (e.g., TNF-a, IL-12)

Reduces immunosuppressive burden, promotes T
cell activation

Regulatory T Cells (Tregs)
Depletion or suppression of

Treg function
Reduces inhibition of cytotoxic T cells,

enhances anti-tumor immunity
Strengthens immune activation induced by

STING, sustains anti-tumor response

Myeloid-Derived
Suppressor Cells (MDSCs)

Inhibition of MDSC recruitment
or function

Decreases suppression of T cell activity,
reduces ROS and NO production

Alleviates immune suppression, enhances
STING-mediated immune activation

Extracellular
Matrix (ECM)

Normalization of ECM stiffness,
targeting ECM components

Improves immune cell infiltration and
drug delivery

Enhances penetration and activity of immune
cells and STING agonists

Hypoxia Targeting hypoxia-inducing factors
Reduces hypoxia-

associated immunosuppression
Improves efficacy of STING activation in hypoxic

tumor regions

Acidosis
Buffering tumor acidity, altering

metabolic environment
Mitigates acid-mediated immune suppression

Facilitates immune cell function and STING-
induced responses
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with significant bioactivity. In preclinical investigations, it has

demonstrated remarkable potential. For instance, in the context

of cervical cancer, when combined with anti - PD - 1, it has shown

synergistic efficacy. This combination has led to enhanced anti -

tumor immune responses, including increased activation and

infiltration of immune cells within the tumor microenvironment

(61). Moreover, in studies involving TGF - b/PD - L1 bispecific

antibody, MSA - 2 has also exhibited synergistic effects (62). These

findings suggest that MSA - 2 could be a valuable addition to the

arsenal of cancer immunotherapy strategies, potentially offering

new avenues for treating various malignancies and improving

patient outcomes.

In order to further enrich the landscape of cancer

immunotherapy, several novel STING agonists and related

approaches have emerged. TAK - 676, developed by Takeda, has

shown notable promise. In preclinical investigations, it has

demonstrated the ability to robustly activate the STING pathway,

leading to a significant increase in interferon production. This, in

turn, activates dendritic cells, which are crucial for antigen

presentation. In the context of tumor microenvironment

modulation, TAK - 676 induces the polarization of tumor -

associated macrophages (TAMs) from the immunosuppressive

M2 phenotype to the immunostimulatory M1 phenotype. The M1

- polarized TAMs secrete pro - inflammatory cytokines such as TNF

- a and IL - 12, which enhance the anti - tumor immune response.

Moreover, TAK - 676 affects the extracellular matrix (ECM),

remodeling it in a way that promotes the infiltration of immune

cells into the tumor. This compound is currently in the pipeline of

clinical development, and its potential to improve cancer

immunotherapy is being actively explored (63).

E7766 is another compound that holds great promise. It is

engineered to selectively activate the STING pathway within the

tumor microenvironment, minimizing off - target effects. In

preclinical models, it effectively promotes the secretion of

cytokines like type I interferons and interleukin - 12, creating an

immunostimulatory milieu. Additionally, it has been shown to

enhance the infiltration of cytotoxic T lymphocytes and natural

killer cells into tumors. In terms of modulating the tumor

microenvironment, E7766 can inhibit the activity of regulatory T

cells (Tregs), which are known to suppress anti - tumor immunity.

It also impairs the immunosuppressive functions of myeloid -

derived suppressor cells (MDSCs), reducing their production of

reactive oxygen species and nitric oxide. By targeting these

immunosuppressive cell populations, E7766 helps to create a

more favorable environment for the anti - tumor immune

response. It is currently advancing through the stages of clinical

development (64, 65).

ExoSTING utilizes exosomes as carriers for STING agonists,

providing precise delivery. Preclinical investigations reveal that it

activates the STING pathway, increasing the production of pro -

inflammatory cytokines and enhancing anti - tumor immune

responses. In the tumor microenvironment, ExoSTING - loaded

exosomes interact with TAMs, inducing their polarization to the

M1 phenotype and reducing immunosuppressive factors. It also

modifies the ECM to promote immune cell infiltration and may

influence the metabolic environment to enhance immune cell
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function (66). Mersana’s XMT - 2056, an antibody - drug

conjugate, targets tumor - associated antigens. After binding, it

releases the STING agonist, killing cancer cells and activating the

STING pathway. This leads to the recruitment and activation of

immune cells, disrupting the immunosuppressive network within

the tumor. XMT - 2056 not only directly eliminates cancer cells but

also initiates an immune - mediated attack, reshaping the tumor

microenvironment to favor anti - tumor immunity. It is an

important addition to the evolving landscape of STING - targeted

cancer therapies (67–69).

In addition to the clinical efficacy, the modality of STING

agonists plays a crucial role in their application. TAK - 676 and

E7766, as potential small molecule drugs, may offer good

bioavailability and dosing convenience. Their small size could

enhance tissue penetration for direct interaction with the STING

pathway and TME modulation, yet they might face challenges like

rapid clearance. ExoSTING, a nanoparticle - based modality using

exosomes, provides targeted del ivery with enhanced

biocompatibility. It can effectively target TAMs and modify the

ECM and metabolic environment, though its production and

characterization need optimization. XMT - 2056, an ADC,

combines antibody specificity with cytotoxicity, ensuring targeted

agonist delivery and disrupting the tumor immunosuppressive

network. Despite manufacturing complexity and potential

immunogenicity, it has shown remarkable preclinical activity.

Understanding these modality - related characteristics is essential
FIGURE 1

Schematic illustration of the TME and the STING pathway, and their
synergy. The TME consists of various components including tumor
cells, macrophages (TAMs, with M1 and M2 phenotypes), regulatory
Tregs, MDSCs, and ECM. The STING pathway is activated by
cytosolic DNA, leading to the production of IFNs and activation of
DCs and T cells. The synergy between TME modulation (such as
reprogramming TAMs from M2 to M1, and targeting MDSCs) and
STING agonists is shown, with arrows indicating the interactions and
effects on immune responses and tumor cells.
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for maximiz ing the potent ia l of STING agonis ts in

cancer immunotherapy.

These clinical advancements underline the importance of

integrating STING agonists with TME-targeting therapies to

enhance immune activation and improve patient outcomes. As

ongoing trials continue to investigate the safety and efficacy of these

combinations, they hold significant promise for overcoming the

limitations of current immunotherapies and achieving more

durable responses in patients with refractory tumors.
Conclusion

Combining TME modulation with STING agonists holds

significant promise for enhancing cancer immunotherapy. This

approach addresses the immunosuppressive nature of the TME,

potentially converting “cold” tumors into “hot” ones that are more

responsive to treatment. Clinically, this strategy offers a powerful

tool for overcoming resistance to existing therapies. However,

challenges such as the heterogeneous nature of the TME across

different tumors and the risk of systemic inflammation due to

STING activation must be carefully managed. Future research

should focus on optimizing combination strategies, understanding

the specific interactions within different TMEs, and developing

targeted delivery systems to maximize efficacy while minimizing

side effects. This integrated approach could lead to more effective

and personalized cancer therapies.
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