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Background: Cell death plays an essential role in carcinogenesis, but its function

in the recurrence and postoperative prognosis of head and neck cancer (HNC),

which ranks as the 7th most common malignancy globally, remains unclear.

Methods: Data from five main subtypes of HNC related single-cell RNA

sequencing (scRNA-seq) were recruited to establish a single-cell atlas, and the

distribution of cell death models (CDMs) across different tissues as well as cell

subtypes were analyzed. Bulk RNA-seq from the Cancer Genome Atlas Program

(TCGA) dataset was subjected to a machine learning-based integrative

procedure for constructing a consensus cell death-related signature risk score

(CDRscore) model and validated by external data. The biofunctions including

different expression analysis, immune cell infiltration, genomic mutations,

enrichment analysis as well as cellchat analysis were compared between the

high- and low- risk score groups categorized by this CDRscore model. Finally,

samples from laryngeal squamous cell cancer (LSCC) were conducted by spatial

transcriptomics (ST) to further validate the results of CDRscore model.

Results: T cells from HNC patients manifested the highest levels of cell death

while HPV infection attenuates malignant cell death based on single-cell atlas.

CDMs are positively correlated with the tumor-cell stemness, immune-related

score and T cells are infiltrated. A CDRscore model was established based on the

transcription of ten cell death prognostic genes (MRPL10, DDX19A, NDFIP1,

PCMT1, HPRT1, SLC2A3, EFNB2, HK1, BTG3 and MAP2K7). It functions as an

independent prognostic factor for overall survival in HNC and displays stable and

powerful performance validated by GSE41613 and GSE65858 datasets. Patients

in high CDRscore manifested worse overall survival, more active of epithelial

mesenchymal transition, TGF-b-related pathways and hypoxia, higher
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transcription of T cell exhausted markers, and stronger TP53 mutation. ST from

LSCC showed that spots with high-risk scores were colocalized with TGF-b and

the proliferating malignant cells, additionally, the risk scores have a negative

correlation with TCR signaling but positive association with LAG3 transcription.

Conclusion: The CDRscore model could be utilized as a powerful prognostic

indicator for HNC.
KEYWORDS
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Introduction

Head and neck cancer is the seventh most common malignancy

globally. There are more than 890,000 new cases and 450,000 deaths

annually according to the 2020 global cancer statistics (1, 2). HNC

have several major subtypes like thyroid carcinoma (TH),

hypopharyngeal carcinoma (HP), oropharyngeal carcinoma (OP),

nasopharyngeal carcinoma (NP), laryngeal squamous cell cancer

(LSCC), oral squamous cell carcinoma (OC) and nasopharyngeal

carcinoma (NC) etc, which are discretely categorized based on their

anatomical origination and location (3). Various treatment

strategies such as surgery, radiation therapy (RT), chemotherapy

(CT), and immunotherapy (IT), are available in clinic settings,

unfortunately, most patients are frequently diagnosed at advanced

stages, and the five-year survival rate is only ~40% after standard

treatment (4). Therefore, it is important to identify novel strategies

or biomarkers that potentially provide precise diagnosis and

therapeutics for HNC.

Cell death is a fundamental physiological process that controls

various physiological phenomena including growth, development,

aging, and diseases. Different from accidental cell death (ACD),

related cell death (RCD), also known as programmed cell death

(PCD), can be triggered by specific signal transduction mechanisms

and/or metabolic reprogramming (5, 6). In 2018, twelve different

cell death modes (CDMs), including intrinsic apoptosis, extrinsic

apoptosis, mitochondrial permeability transition-driven necrosis

(mpt), necroptosis, ferroptosis, pyroptosis, parthanatos, entotic

cell death, NETotic cell death, lysosome-dependent cell death,

autophagy-dependent cell death, immunogenic cell death, cellular

senescence, and mitotic catastrophe, were approved by the

Nomenclature Committee on Cell Death (NCCD) (7). Recently,

some additional types of CDMs like autosis, cuproptosis, anoikis,

disulfidptosis, alkaliptosis, oxeiptosis, and mitotic cell death were

also described (8). Zou Y et al. screened twelve PCD genes in tissues

from triple-negative breast cancer and found that patients with high

cell death index present poorer postoperative prognosis (9). Gao Y

et al. suggested that autophagy, ferroptosis, pyroptosis and

necroptosis have synergistic anti-tumor effects (10). Moreover,
02
targeting mitochondrial apoptosis also increases the efficacy of

natural killer (NK) cell-based immunotherapy (11). Interestingly,

it seems that some forms of PCD, like necroptosis, pyroptosis,

ferroptosis, NETosis and cuproptosis, might play essential roles in

the invasion and metastasis of head and neck squamous cell

carcinoma (12, 13). HPV-positive HNC is more sensitive to

mitochondria-targeted treatment due to ferroptosis, therefore,

inducing ferroptosis by dyclonine and paclitaxel (PTX)

successfully prevent HNC recurrence after radiotherapy and/or

chemotherapy (14). Although multiple cell death genes have been

identified as diagnostic and/or prognostic biomarkers for some

cancers, unfortunately, the comprehensive analysis of CDMs in

HNC is unavailable till now.

The single-cell RNA sequencing (scRNA-seq) technique provides

a transcriptomic atlas at high resolution for exploring cellular

subpopulations and for dissecting specific molecules associated with

disease progression (15), however, the original interaction information

of cells-cells cannot be obtained due to the mechanical dissociation

and enzymatic digestion of tissues. Recent advances in spatial

transcriptomics (ST) have enabled acquisition of spatial information

and transcriptome data simultaneously (16, 17). Because it provides

high-quality genome-wide transcriptome data with intact two-

dimensional positional information, ST has been successfully applied

to analyze the spatial heterogeneity of human primary breast cancer

(18), prostate cancer (19) and pancreatic ductal adenocarcinomas, etc

(20). Therefore, ST can be used to decipher the characteristic genes or

cell-cell communication that might trigger malignant transformation.

In this study, scRNA-seq data from five major subtypes of HNC

were obtained from the GEO database. The distribution of eighteen

different types of CDMs on these samples at single-cell level was

investigated. Additionally, the cell death prognostic genes related to

HNC were selected to establish a consensus cell death-related

signature risk score (CDRscore) model using various machine

learning algorithms. The biofunctions in patients with the high-

and low- risk score that categorized by this CDRscore model were

also compared. Finally, samples from LSCC were recruited to

perform ST in situ to further validate the results predicted by our

CDRscore model.
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Result

The distribution of different CDMs in HNC
based on scRNA-seq atlas

scRNA-seq data from the major five subtypes of HNC,

including TH (n=5), OC (n= 18), HP (n= 25), OP (n= 6) and NP

(n= 10) were collected from six different datasets (GSE103322,

GSE148673, GSE150321, GSE162025, GSE172577 and GSE181919)

(Figures 1A, B). These scRNA-seq data were further used to

systematically analyze the distribution of eighteen different types

of CDMs based on the transcription of characteristic genes

(Supplementary Table S1). Fourteen kinds of CDMs were

observed in these samples. It seems that disulfidptosis,

necroptosis and pyroptosis might be the predominant CDMs in

HP, whereas pyroptosis is the major CDM in NP. The levels of

apoptosis, ferroptosis, autophagy and autosis were significantly

upregulated in OP samples, whereas OC tissues manifested the

highest levels of mpt, whereas TH cases showed extremely high

levels of anoikis and apoptosis (Figure 1C).

We also compared the status of these fourteen kinds of CDMs in

cells from normal larynx (NL, n=9), laryngeal leukoplakia (LP, n= 4),

tumor tissues (n=61), PBMCs of HNC patients (n=10), and

metastatic tumors in lymph nodes from HNC patients (tLN, n= 9).

Remarkably, LP manifested extremely higher levels of ferroptosis and

pyroptosis than other samples, conversely, NL samples present

stronger levels autophagy, autosis, immunogenic cell death,

ferroptosis and pyroptosis than tumor as well as tLN (Figure 1D).

The infection of high-risk HPV, particularly HPV-16, normally

deteriorates HNC carcinogenesis (21), therefore, we screened the

samples with annotations of HPV infection status and categorized

them into HPV-positive (n=7) and HPV-negative (n=16) groups.

Surprised, the tLN samples from HPV-positive patients manifested

extremely lower levels of cell death than NL controls, conversely, the

tumor and tLN samples from HPV-negative patients showed

significantly higher levels of cell death (Figure 1E). HNC are

classified into three different stages according to the tumor-node-

metastasis (TNM) systems (22), and patients in stage-I and -II

manifest higher levels of necroptosis, cuproptosis and anoikis than

that of cases in stage-III (Figure 1F), suggest that HNC manifest

different levels of cell death and HPV infection prevent cell death in

malignant cells.
The status of CDMs in different cell subsets
based on scRNA-seq atlas

The single cells from these HNC samples were further divided

into ten distinct subsets by unsupervised clustering based on the

expression of top variable feature genes (Figures 2A, B). We found

that utosis, disulfidptosis, and immunogenic cell death are the three

predominant CDMs across all cell subsets (Figure 2C). It seems that

oxeiptosis is the major CDM in fibroblasts from tLN, and the

immune cells (including B cells and NK/T cells) isolated from
Frontiers in Immunology 03
tumor and tLN tissues showed strong apoptosis, mpt, autophagy,

autosis, necroptosis, parthanatos, pyroptosis, ferroptosis,

immunogenic cell death and anoikis. Importantly, malignant

cells/epithelial cells from tumor tissues manifested significantly

lower levels of cell death (Figure 2D), demonstrating that

immune cells have high levels of cell death.

Subsequently, we used monocle to predict the developmental

trajectory of cells to assess the malignant degree of tumor cells. As

the quasi-temporal sequence value continued to increase, the

malignant degree of epithelial/malignant cells continued to

increase (Supplementary Figure S1A, B). We observed that

parthanatos and pyroptosis increased in malignant cells, while

apoptosis and disulfidptosis decreased (Supplementary Figures

S1C-T).
T cells from tumor patients manifested the
highest levels of cell death

Tumor-infiltrating lymphocytes (TILs) are the main cells in

tumor stromal tissues that carry out immunotherapy. TILs include

T-helper cells (CD4+), cytotoxic T cells (CD8+), Foxp3+CD4+

regulatory T cells (Tregs), tumor-associated macrophages

(TAMs), natural killer cells (NKCD57+), and myeloid-derived

suppressor cells (MDSCs) etc (23). T cells were further subdivided

into seven different subpopulations, including CD8+T, CD4+T,

Th17, Treg, Th1, exhausted CD8+T cells (CD8Tex), and

proliferating CD3+T cells (Tprolif), through automatic annotation

(Figure 3A). Our data showed that CD8Tex, Treg, Th1, and Tprolif

are majorly originated from tumor tissues, whereas CD4+T and NK

cells are predominantly isolated from PBMCs (Figure 3B). The

status of different CDMs was compared in CD4+ T, CD8+ T, CD8+

Tex, Th17 and Treg between tumor tissues and NL controls, results

showed that Th17 cells from tumor tissues manifested dramatically

higher levels of alkaliptosis, whereas CD4+T and Treg from tumor

tissues presented a decreased in apoptosisa (Figure 3C). We further

compared the status of CDMs between the circulating T cells

derived from PBMCs and tumor-infiltrating T cells, and results

showed that enhancement of cuproptosis is observed in CD4+ T,

CD8+ T and Tprolif that derived from PBMCs of patients

(Figure 3D). Subsequently, we evaluated the correlations between

the state of T cells and cell death, and found that T cells in

cytotoxicity manifested significantly high level of lysosomal_cd,

and T cells in terminal exhaustion showed high levels of pyroptosis

and apoptosis (Figure 3E) highlighting that T cells from tumor

patients manifest higher level of cell death.
T cells are more susceptibility to cell death
validated by bulk-RNA sequencing data

We then collected bulk RNA-seq data of HNC from TCGA

database to validate the distribution of different CDMs. Compared

to NL controls, the tumor samples from HNC exhibit significantly
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higher levels of parthanatos, necroptosis, mitotic_cd, disulfidptosis,

autosis, anoikis as well as alkaliptosis, whereas cuproptosis and mpt

were reduced dramatically (Figure 4A).

The tumor mutation burden (TMB), microsatellite instability

(MSI), and immune scores (IS) are often used as indicators to
Frontiers in Immunology 04
predict the response to immunotherapy (24), however, no

associations were observed between the CDMs and MSI as well as

TMB (Figure 4B). ESTIMATE algorithm could calculate tumor

microenvironment (TME) score by expression profiles data, such as

stromal score, immunity score, and tumor purity (25). We found
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FIGURE 1

Deciphering the distribution of CDMs in HNC. (A) Schematic representing patients were recruited in this study. TH, thyroid carcinoma; HP,
hypopharyngeal carcinoma; OP, oropharyngeal carcinoma; NP, nasopharyngeal carcinoma; OC, oral squamous cell carcinoma. (B) UMAP projection
of 326178 cells aggregated from six different datasets. (C) UMAP projection of HNC subtypes aggregated (left) and the violin plot shows the scores
of different CDMs in different HNC subtypes (right). (D) UMAP projection of different HNC tissues aggregated (left) and the violin plot shows the
scores of different CDMs in different HNC tissues (right). (E) HNC patients were categorized into HPV-positive (left) and HPV-negative (right) groups
and the distribution of different CDMs was shown. (F) The status of different CDMs in different disease stages was shown.
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that many CDMs including apoptosis, autophagy, immunogenic

cell death, lysosomal_cd and pyroptosis, are positively correlated

with StomalScore, ImmuneScore and ESTIMATEscore, whereas

they are negatively associated with RNA stemness score (RNAss)

(Figure 4C). Further investigations showed that apoptosis,

autophagy, immunogenic cell death, lysosomal_cd and pyroptosis

are restricted in T cells, especially CD8+ T cells in tumor tissues

(Figure 4D), confirming T cells from HNC patients are more

susceptibility to cell death.
Frontiers in Immunology 05
Integrative construction of a consensus
cell death-related signature

To explore the clinical application value of cell death, univariate

Cox analysis was selected to identify 154 prognostic genes from the

expression profiles of these eighteen CDMs (Supplementary Table

S2). These prognostic genes were subjected to our machine

learning-based integrative procedure to develop a consensus cell

death-related (CDR) signature. In the TCGA-HNSC dataset, we
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Depicting different CDMs in cell subsets based on scRNA-seq atlas. (A) UMAP projection of cell type annotation for HNC single-cell atlas. (B) Dot
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fitted 100 kinds of prediction models through the LOOCV framework

to build model and further calculated the C-index of eachmodel across

three validation datasets (GSE41613, GSE65858 and TCGA).

Interestingly, the optimal model was a combination of RSF and

superPC (direction=both) with the highest average C-index (0.651),

and this combination model had a leading C-index in all validation

datasets (Figure 5A). Furthermore, the Lasso regression was used to

reduce variables from the optimal model (Figure 5B), and the optimal

l was obtained when the partial likelihood deviance reached the

minimum value based on the LOOCV framework (Figure 5C).

Twenty-five cell death associated genes with nonzero Lasso
Frontiers in Immunology 06
coefficients were subjected to stepwise Cox proportional hazards

regression, which identified a final set of 10 genes (MRPL10,

DDX19A, NDFIP1, PCMT1, HPRT1, SLC2A3, EFNB2, HK1, BTG3

and MAP2K7) to build the final CDR signature (risk score =

(4.985107*10-4)*NDFIP1EXP + (-1.068404*10-03)*MAP2K7EXP +

(1.441470*10-04)*SLC2A3EXP + (1.123539*10-04)*EFNB2EXP +

(3.678527*10-04)*HPRT1EXP + (8.106291*10-04)*DDX19AEXP

+ (-3.859801*10-04)*BTG3EXP +(8.725573*10-05)*HK1EXP +

(4.235660*10-04)*PCMT1EXP + (8.672*10-04)*MRPL10EXP,

Figure 5D). We established a CDR signature based on these ten

genes and calculated the risk score for each patient from TCGA-
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T cells from HNC patients manifested high levels of cell death. (A) UMAP projection of T/NK subtypes from HNC based on single-cell atlas. (B) bar
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HNSC dataset, and patients were then categorized into high- and low-

risk score groups based on the optimal cut-off value which determined

by the survminer package. The risk score, patient status (alive or death),

overall survival (OS), and the transcription of these 10 genes in various

clinical features were described (Figure 5E). Interestingly, patients in

the high-risk score group had significantly dismal OS relative to the

low-risk score group (p<0.0001, Figure 5F). The area under curve

(AUC) value of receiver operating characteristic (ROC) curve is 0.772,
Frontiers in Immunology 07
higher than others clinical classifications (Figure 5G). Collectively, we

established a cell death related risk score (CDRscore) model based on

the CDR signature and this model is more accurate than other clinical

information in predicting the prognosis of HNC.

Data from two other datasets (GSE65858 and GSE41613) were

also recruited to validate the clinical values of our CDRscore model,

and results confirmed that this CDRscore model well distinguished

the patients’ OS due to cases in the high-risk score group had
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FIGURE 4

The distribution of different CDMs in HNC via Bulk RNA-seq atlas. (A) Box plot showed the different of CDMs between tumor tissues and normal
tissues in all TCGA-HNSC bulk RNA sequencing atlas. (B) The correlations of different CDMs and MSI (left) as well as TMB (right). (C) The heatmap
showed the correlations between immune score and different CDMs, and dots indicate statistically significant results (D) Dot plot showed
correlations between immune cell infiltration and different CDMs. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.
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significantly dismal OS relative to the low-risk score group

(Supplementary Figures S2A, B). A nomogram consisting of a

CDRscore model and various clinicopathological features were

established to accurately forecast the survival of HNC patients

(Supplementary Figure S2C). The calibration curve was used to

verify the validity and accuracy of the nomogram for the predictive
Frontiers in Immunology 08
OS probability of 3- and 5-year in TCGA-HNSC patients

(Supplementary Figure S2D). The DCA curves showed that the

CDRscore model was more beneficial for predicting the outcome of

HNC patients than any single prognostic factor (Supplementary

Figure S2E), indicating our CDRscore model has clinical utility for

predicting HNC prognosis.
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FIGURE 5

Integrative construction of a consensus CDR signature. (A) A total of 100 kinds of prediction models via LOOCV framework and further calculated
the C-index of each model across all validation datasets. (B) LASSO regression analysis of the cell death related genes selected by RSF and superPC.
(C) The plot showed the determination of the optima with log(l) values on the abscissa for LASSO regression analysis. (D) Ten cell death related
genes finally obtained in stepwise Cox regression. (E) Distribution of risk score, patients’ survival status and the transcription of indicated genes in
high/low risk group from TCGA-HNSC based on our RCD signature. (F) Kaplan-Meier curves of OS according to our CDR signature in TCGA-HNSC.
(G) ROC curves for our CDR signature with risk score and clinical data.
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Different physiological characteristics in
patients with high- and low- risk CDRscore

The cell death-associated genes involved in construction of our

CDRscore model are associations with autophagy, autosis,

ferroptosis, immunogenic, mitotic_cd, mpt, necroptosis and

pyroptosis (Figure 6A). We then compared the transcriptional
Frontiers in Immunology 09
alterations in patients with high- and low- risk scores classified by

our CDRscore model, and Gene Set Enrichment Analysis (GSEA)

showed that most immune response associated pathways, such as T/

B cell receptor signaling pathway and Intestinal immune network

for IgA production, were significantly down-regulated in patients

with high-risk CDRscore, nevertheless, the tumor development

related pathway, including epithelial mesenchymal transition,
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FIGURE 6

Different biofunctions between the high- and low- risk score groups classified by the CDRscore model. (A) Graphical summary of the ten signature
genes and the CDMs. (B) GSEA of the upregulation and downregulation in high-risk score group. (C) Box plot showed the different GSVA results
between high- and low-risk score groups. (D) Heatmap showed the different immune cell infiltration based on seven different analytic method
between high- and low-risk group. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.
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ECM receptor interaction, angiogenesis, TGF-b signaling and

hypoxia, were significantly up-regulated (Figure 6B). These results

were also supported by Gene Set Variation Analysis (GSVA)

(Figure 6C), suggesting that the TME from the high- and low-risk

CDRscore patients are completely difference. Subsequently, we used

seven different mainstream methods (TIMER, CIBERSORT,

CIBERSORT.ABS, QUANTISEQ, MCPCOUNTER, XCELL and

EPIC) to analyze the differences of immune cell infiltration

between high- and low- risk score groups, results showed that the

infiltration of macrophages (M0) and neutrophils were increased

significantly in the high-risk score group, while the infiltration of B

cells, macrophages (M2) and CD8+ T cells was decreased

dramatically compared to low- risk score group (Figure 6D).

Large-scale whole-exome sequencing reveal that the genomic

mutations of many genes, including TP53, CDKN2A, PTEN,

PIK3CA, HRAS, NOTCH1, IRF6, and TP63, are a major driver of

HNC carcinogenesis (26, 27). We also compared the counts of

genomic mutations, and no significant differences were observed

between these high- and low-risk score groups, neither synonymous

nor non-synonymous mutation (Supplementary Figure S3A). The

top ten genes with high-frequency mutations in the high-risk

CDRscore group (n=238) and low-risk score group (n=246) was

also compared (Supplementary Figure S3B). Interestingly, the

mutation rate of TP53 in the high-risk score group is significantly

higher than that in low-risk score group, conversely, the low-risk

score group has a significant increase in NSD1 mutation frequency

than that in the high-risk score group (Supplementary Figure S3C),

demonstrating patients in high- and low- risk score groups have

different genomic mutations.
Explore the impact of CDRscore model at
single-cell level based on scRNA-seq

We explored the distribution of these ten genes associated to our

CDRscore model at single-cell level (Supplementary Figure S4A). We

found that most genes were expression in malignant cells, such as

NDFIP1, MRPL10, HPRT1, BTG3, PCMT1 and HK1. It seems that

the distributions of NDFIP1, PCMT1 and SLC2A3 are broadly and

across all detected cell subsets. Comparative analysis showed that

genes such as BTG3, PCMT1 and HK1 are gradually increasing in

epithelial/malignant cells from tumor tissues compared to these cells

from normal tissues (Supplementary Figure S4B).

We then compared the distribution of risk scores in various

tissues, and results showed that NL presented lowest level of risk

score, but the risk scores were elevated significantly in tumor,

PBMCs and tLN (Figure 7A). Patients from the GSE181919

dataset were also categorized into the high- and low-risk score

groups based on our CDRscore model, and the risk scores of these

two groups showed significant difference (Figure 7B). Moreover, the

frequency of malignant cells and T/NK cell infiltration in the high-

risk score group were significantly higher than those from the low-

risk score group (Figure 7C). The proliferation ability of malignant

cells (indicated by DNA replication) (Figure 7D), and the

transcription of exhausted-related marker genes (PDCD1, BACH2,

ETV1, HAVCR2, LAG3 and ENTPD1) on T cells (Figure 7E) in the
Frontiers in Immunology 10
high-risk score group was significantly higher than that in the low-

risk score group. Previous work have demonstrated that the

expression of exhausted-related marker genes and malignant cell

proliferation is induced by TGF-b signaling (28), and analysis of the

TGF-b signaling pathway network indicated that patients with

high-risk scores presented a higher activity of TGF-b signaling

(Figure 7F). Especially increased binding of TGF-b related ligand-

receptors such as ACVR1- TGFBR1 ligand-receptors pairs,

indicating that although the infiltration of T cells in the high-risk

group increased, most of the T cells were depleted and did not exert

anti-tumor functions (Figure 7G).
Verification of our CDRscore model via ST
in situ

To verify our above results, we then performed the ST from LSCC

patients (n= 2) and normal larynx control samples (n=1) based on 10

x Genomics Visium. The diameter of each spot was 55mm (capturing

8 ~ 20 cells) of this 10 x Genomics Visium, and each tissue section

within the capture area (6.5 mm x 6.5 mm) contained up to 4900

spots. We annotated cell types of ST by deconvolution, and normal

larynx tissues showed high frequencies of epithelial cells and

fibroblasts, whereas, malignant cells, T cells and B cells were

increased significantly in LSCC samples (Figure 8A). The

transcription of genes associated to our CDRscore model were

increased significantly in LSCC samples, except that MRPL10 was

not detected in ST (Figure 8B). It seems that LSCC and NL

manifested different kinds and levels of cell death, and malignant

cells manifested high levels of mpt and apoptosis, while immunogenic

is the main cell death in fibroblasts (Figure 8C). LSCC samples with

high-risk score based on our CDRscore model was mainly

enrichment in malignant cells (Figure 8D). After dimension

reduction and clustering of tumor samples, cluster1 and cluster2,

which mainly contain malignant cells, presented significantly higher

risk score than other clusters (Figure 8E). We also found the spots

with high-risk score are colocalization with malignant cell

proliferation (DNA replication) and TGF-b signaling. Most

important, both the TGF-b signaling and malignant cell

proliferation highly overlap with spots of high-risk scores at the

interface between malignant cells and immune cells (Figure 8F).

Additionally, the high-risk score is negatively associated with genes

associated with T cell receptor (TCR) signaling pathway but is

positively correlated with LAG3 gene expression (Figure 8G).
Discussion

HNC is the 7th prevalent type of cancer that occur in the

mucosal surfaces of oral cavity, nasopharynx, oropharynx,

hypopharynx, and larynx. Tobacco, alcohol, betel nuts, and

human HPV infection are the main risk factors (22). Surgery,

radiation, chemotherapy as well as immunotherapy, have been

selected for advanced HNC treatment, unfortunately, the

efficiency of these methods is limitation, probably due to various

genetic and epigenetic alterations (29). It is generally accepted that
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cancer cells are resistant to apoptosis, and induction of tumor cell

death is a novel treatment strategy (30). A cohort of classical forms

of CDMs have been studied in different kinds of tumor, and

deciphering novel CDMs in the regression of HNC might supply

some promising strategies for therapy. Here, scRNA-seq data from
Frontiers in Immunology 11
sixty-four cases of HNC were collected in six different datasets and

used for pan-cell death analysis at single-cell level, results showed

that T cells rather malignant cells manifest higher levels of cell

death. Previous work have showed that the immunotherapy based

on immune checkpoint inhibitors (ICIs) sometimes is limitation
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probably is due to the absence of TILs (31), our results support this

conclusion and further illustrated that cell death, including

alkaliptosis and cuproptosis, might involve in inducing T cell

deletion within HNC tissues.
Frontiers in Immunology 12
Recently, NCCD established guidelines encompassing

morphological and biological aspects of eighteen different types of

CDMs (32), some kinds of CDMs are controlled by specific signal

transduction pathways, including p53 signalling, KRAS signalling,
0

20

40

60

80

0 25 50 75 100 125

UMAP_1

U
M

AP
_2

risk score

0

20

40

60

80

0 25 50 75 100 125

UMAP_1

U
M

AP
_2

DNA replication

0

20

40

60

80

0 25 50 75 100 125

UMAP_1

U
M

AP
_2

Colocalization of risk score and DNA replication

2.5

5.0

7.5

10.0

2 4 6 8 10

risk score

D
N

A
 re

pl
ic

at
io

n

Color threshold: 0.5

0

20

40

60

80

0 25 50 75 100 125
UMAP_1

U
M

AP
_2

risk score

0

20

40

60

80

0 25 50 75 100 125
UMAP_1

U
M

AP
_2

TGF-β signal

0

20

40

60

80

0 25 50 75 100 125
UMAP_1

U
M

AP
_2

Colocalization of risk score and TGF-β signal

2.5

5.0

7.5

10.0

2 4 6 8 10
risk score

TG
F-

β 
si

gn
al

Color threshold: 0.5

type
B_Plasma.cells
Dendritic.cells
Endothelial.cells
Epithelial.cells
Fibroblasts
Macrophages
Myocytes
T.cells

type
B_Plasma.cells
Dendritic.cells
Endothelial.cells
Fibroblasts
Macrophages
Malignant.cells
T.cells

0

500

1000

1500

2000

type
B_Plasma.cells
Dendritic.cells
Endothelial.cells
Epithelial.cells
Fibroblasts
Macrophages
Myocytes
T.cells

0

400

800

1200

type
B_Plasma.cells
Dendritic.cells
Endothelial.cells
Fibroblasts
Macrophages
Malignant.cells
T.cells

NDFIP1 MAP2K7 SLC2A3 EFNB2 HPRT1 DDX19A BTG3 HK1 PCMT1

0
1

2
3

4
5N

or
m

al
Tu

m
or

0.00

0.01

0.02

clu
ste

r0

clu
ste

r1

clu
ste

r2

clu
ste

r3

risk score

***
***

***
***

0.00

0.25

0.50

0.75

1.00

cluster0

R
atio

Sample
B_Plasma.cells
Dendritic.cells
Endothelial.cells
Fibroblasts
Macrophages
Malignant.cells
T.cells

cluster1
cluster2

cluster3

R=-0.058,p<0.005

risk score

TC
R

 s
ig

na
l

-0.005 0.000 0.005 0.010 0.015 0.020

-0.1

0.0

0.1

0.3

0.2

correlation of TCR signal and risk score

R=0.043,p<0.05

LA
G

3

-0.005 0.000 0.005 0.010 0.015 0.020

0.0

0.5

1.0

2.0

1.5

correlation of LAG3 and risk score

risk score

Cluster
cluster0

cluster1

cluster2

cluster3

alkaliptosis

anoikis

apoptosis

autophagy

autosis

cuproptosis

disulfidptosis

ferroptosis

immunogenic

mpt

necroptosis

oxeiptosis

parthanatos

pyroptosis

Den
dri

tic
.ce

lls

End
oth

eli
al.

ce
lls

Fibr
ob

las
ts

Mac
rop

ha
ge

s

Mali
gn

an
t.c

ell
s
T.ce

lls

Predictor

Ta
rg

et

Importance

0

1

2

intra

Dendritic.cells

Endothelial.cells

Fibroblasts

Macrophages

Malignant.cells

T.cells

ris
k s

co
re

Importance

-0.4
-0.2
0.0
0.2

intra

Predictor

Ta
rg

et

A

B

C

E

D F

G I

H

alkaliptosis
anoikis

apoptosis
autophagy

autosis
cuproptosis

disulfidptosis
entotic.cd

ferroptosis
immunogenic
lysosomal.cd

mitotic.cd
mpt

necroptosis
netotic.cd
oxeiptosis

parthanatos
pyroptosis

Den
dri

tic
.ce

lls

End
oth

eli
al.

ce
lls

Epit
he

lia
l.c

ell
s

Fibr
ob

las
ts

Mac
rop

ha
ge

s

Myo
cy

tes
T.ce

lls

Importance

-1
0
1
2
3
4

intra

Predictor

Ta
rg

et

Normal Tumor

FIGURE 8

Verification of our CDRscore model via ST. (A) Deconvoluted ST images of normal samples (left) and tumor samples (right) from LSCC, each spot
included a pie chart and showed potential cell composition. The pie chart on the right showed the total proportion of cells from two samples,
respectively. (B) The ST images showed the transcription of genes from CDR signature in normal and tumor tissues. (C) The median importance of
different cell death models in the predicting cell subsets of normal (left), and tumor tissues (middle), and high risk-score was seen in malignant cells
(right). (D) ST images showed four different clusters in tumor sample. (E) Statistic analysis of risk score among four different cluster. (F) the
proportion of different cell subtypes across clusters. (G) ST images showed the colocalization between risk score and TGF-b signaling (G) and DNA
replication (H). (I) The correlations between risk score and TCR signaling pathway (up panel) and the transcription of LAG3 (down
panel). ***p<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1487966
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2024.1487966
NOTCH signalling, hypoxia signalling, and metabolic

reprogramming (6). The potential roles of these different kinds of

CDMs in carcinogenesis, including HNC, were also analyzed. For

example, Li Y et al., reported that necroptosis is an independent

prognostic marker for HNC patient’s OS and progression-free

survival (33). Patients of HNC with Caspase-8 mutation are

sensitive to necroptosis signals and manifest better clinical

outcomes (34). Numerous necroptotic drugs like Etoposide,

Shikonin, TRAIL, staurosporine, taxol, 5-fluorouracil (5-FU),

sorafenib, and camptothecin, have been used for the treatment of

cancers including HNC (35). We here showed that CD8Tex cells in

tumor tissues manifested extremely lower levels of necroptosis

(Figure 3C), suggesting that deletion of CD8Tex cells via

targeting the necroptotic pathway seems to be a potential

therapeutic strategy for HNC.

It seems that higher ferroptosis potential index (FPI) is

significantly associated with worse OS in HNC patients (36).

SLC7A11, a key regulator of ferroptosis which transports

extracellular cystine into cells for glutathione biosynthesis, is highly

expressed in HNC, and reduction in ferroptosis through

overexpression of SLC7A11 has been found to be positively

modulated by lymph node metastasis (37, 38). Importantly, some

natural compounds like Artesunate, exhibits a specific ferroptosis

effect on HNC cells through the upregulation of lipid ROS generation

and the downregulation of cellular glutathione (GSH) levels (39),

suggesting that therapies associated with HNC can be expected to

focus on the regulation of ferroptosis-mediated cell death. We here

showed that HPV infected malignant cells and Treg in tumor tissues

present extremely low levels of ferroptosis (Figure 1C, 3C), indicating

that ferroptosis might participate into the development of HNC.

Cuproptosis has been recognized as a novel form of PCD that has

been confirmed to promote the occurrence and development of

tumors. Based on exploration through bioinformatics, researchers

have established that cuproptosis-related lncRNA has an impact on

prognosis in HNC (40). Zhang S et al. elucidated the relationship

between cuproptosis and the immune microenvironment in HNC,

highlighting the fact that cuproptosis metabolism may be a possible

predictive biomarker for HNC treatment (41). Additionally, OSCC

cell metastasis is closely associated with cuproptosis with high

expression of AFOC-DEGs (42). We here showed that the effective

T cells, including CD4+T, CD8+T and Tprolif in tumor tissues have

higher levels of cuproptosis than T cells from PBMCs of tumor

patients (Figure 3C), illustrating that the reduction of effective T cells

within tumor tissues might be caused by cuproptosis.

Machine Learning (ML) algorithms are artificial intelligence

(AI)-driven algorithms that can profoundly impact biomedical

research, personalized and precision medicine (43). By analyzing

genomics, pathomics, imaging, and other biological data with

computers, mathematical modeling, and applying it to clinical

and scientific research, ML is a method for discovering novel

things on patients. For example, Liu W et al. developed a random

forest ML model that accurately predicts the risk of bone metastasis

in patients with thyroid cancer (44). Zhu J et al., established an

optimal XGBoost model to predict the risk of central lymph node

metastasis in patients with papillary thyroid carcinoma (45).

Moreover, ML algorithm models are better than traditional
Frontiers in Immunology 13
methods in predicting early-stage colorectal cancer lymph node

metastasis (46). Recently, Liu Z et al., have developed a MI-based

integrative procedure for constructing a consensus immune-related

lncRNA signature IRLS, which is an independent risk factor for

overall survival and displays stable and powerful performance (47).

Here some cell death-associated prognostic genes were subjected to

ML-based integrative procedure to develop a consensus CDR

signature, we fitted 100 kinds of prediction models through the

LOOCV framework to build model and further calculated the C-

index of each model across three validation datasets (GSE41613,

GSE65858 and TCGA). Interestingly, the optimal model was a

combination of RSF and superPC (Figure 5A). Finally, a CDRscore

model was established based on the transcription of ten cell death

associated-genes (MRPL10, DDX19A, NDFIP1, PCMT1, HPRT1,

SLC2A3, EFNB2, HK1, BTG3 and MAP2K7), univariate and

multivariate COX results indicated that CDRscore was an

independent prognostic factor in HNC, patients in high

CDRscore manifested worse survival rates, less immune cell

infiltration, more active of epithelial mesenchymal transition,

TGF-b-related pathways and hypoxia, higher transcription of T

cell exhausted markers, and stronger TP53 mutation. The TNM

stages are conventional tools for evaluating clinical outcomes and

treatment decisions for HNC. Additionally, some biomarkers,

including TMB, microsatellite state; and TP53, CDKN2A, PTEN,

PIK3CA, HRAS, NOTCH1, IRF6, or TP63 mutation are also

significantly correlated with the clinical strategies and outcomes

(26, 27). Notably, our signature worked independently of these

factors and had significantly superior performance in predicting

prognosis according to the C-index assessment (Figure 5F).

Presently, stRNA-seq has been widely applied to investigate

tumor heterogeneity due to this technique enables transcriptomic

data to be acquired from intact tissue sections and provides spatial

distribution information (48). stRNA-seq remedies the

disadvantage of scRNA-seq, whose data lack spatially resolved

information (49). For examples, Thrane K et al. found there is a

unique tumor microenvironment near the tumor regions where

multiple tumor-related signaling pathways were activated by

applied stRNA-seq to decipher lymph node biopsies from

melanoma (50). Yoosuf N et al., demonstrated that stRNA-seq

can effectively enhance invasive ductal carcinoma diagnostic

accuracy by stRNA-seq (51). Moncada R et al. observed that

fibroblasts are enriched in tumor regions rather than in the

matrix of sections from pancreatic cancer patients based on the

combination of scRNA-seq and stRNA-seq data (20). We here also

deciphered the spatial distributions between TGF-b, malignant cells

and high-score of clusters LSCC samples, and ST from LSCC

showed that clusters with high-risk scores were colocalized with

TGF-b and the proliferating malignant cells, additionally, the risk

scores have a negative correlation with TCR signaling but positive

association with LAG3 transcription (Figure 8), illustrating that data

from ST validate our CDRscore model.

In summary, based on a multitude of bioinformatics and ML

algorithms, we developed a stable and powerful CDRscore model

for assessing the prognosis of HNC. This CDRscore model is a

promising tool to optimize decision-making and surveillance

protocols for individual HNC patients.
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Materials and methods

Data acquisition

We collected Bulk RNA-seq and scRNA-seq data from GEO

database (https://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://

portal.gdc.cancer.gov/). For bulk RNA-seq analysis, we obtained

TCGA-HNSC datasets containing RNA-seq expression matrix,

clinical information, and masked annotated somatic mutation

from TCGA. Additionally,GSE65858 dataset, which contains 270

HNC samples (52) and GSE41613 dataset,which includes 97 OSCC

samples (53) along with their clinical information, were

downloaded from the GEO database. For scRNA-seq analysis, the

following datasets were downloaded from the GEO database:

GSE103322 (containing primary cancer and metastatic tumors in

lymph nodes from oral cavity tumors) (54), GSE148673 (tumor

tissues from anaplastic thyroid cancer) (55), GSE150321 (tumor

tissues from laryngeal squamous cell carcinoma) (56), GSE162025

(tumor-blood pairs from nasopharyngeal carcinoma) (57),

GSE172577 (tumor tissues from oral squamous cell carcinoma)

(58) and GSE181919 (comprising normal tissue(NL), precancerous

leukoplakia (LP), primary cancer(CA) and metastatic tumors in the

lymph nodes) (59).
scRNA-seq analysis

In our study, we processed a total of 326178 single cells utilizing

data from six GEO datasets, which included GSE103322,

GSE148673, GSE150321, GSE162025, GSE172577, and

GSE181919. These datasets encompassed various types of tumor

tissues and normal tissues, allowing us to perform comprehensive

scRNA-seq analysis. Seurat (V5.0.3) was used to perform scRNA-

seq analysis. First, Low quality cells (<500 genes/cell, >5%

mitochondrial genes or a log10 (UMI per gene) < 3) were

excluded,and then potential doublets were identified and excluded

using scDblFinder (V1.16). Then, the expression matrix was

normalized and scaled with default settings using Seurat.To

reduce the computational load, sketch-based analysis was used to

reduce dimensionality through principal component analysis

(PCA) and UMAP.Unsupervised cluster analysis was then applied

to identify clusters, and the results were subsequently applied to the

full dataset.Marker genes within each cluster were pinpointed using

the FindAllMarkers function from Seurat,with logFC > 0.2 and

adjusted p -value < 0.05. Then, clusters were annotated based on

canonical maker genes from previously published studies.
Enrichment analysis

To explore the potential biological functions of differentially

expressed genes, Gene Ontology (GO) functions and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed using clusterProfiler

(V4.7.1.003) (60). ClusterProfiler was also utilized to identify
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highly relevant KEGG and HALLMARK pathways differentiating

the high-risk and low-risk subgroups through Gene Set Enrichment

Analysis (GSEA) from the Molecular Signatures Database

(MSigDB, http://software.broadinstitute.org/gsea/msigdb/).
T cell state assessed

Tcellsi(v0.1.0) (T cell state identifier) was used to assess eight

different states of T cells, including quiescence, regulating,

proliferation, helper, cytotoxicity, progenitor, exhaustion, terminal

exhaustion and senescence, based on the expression matrix of HNC

scRNA-seq atlas.
Pseudo-time analysis

Monocle2(V 2.24.0) was used to infer pseudo-time progression

based on the expression matrix of malignant cells. High variable

genes was used to filter data and reduce dimension (61).
Construction of CDRscore signature

To develop a consensus cell death model with high accuracy and

stability performance, we integrated 10 machine learning algorithms

and generated 100 algorithm combinations. The integrative

algorithms included random survival forest (RSF), elastic network

(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares

regression for Cox (plsRcox), supervised principal components

(SuperPC), generalized boosted regression modeling (GBM), and

survival support vector machine (survival-SVM). First, univariate

Cox regression was used to identify prognostic genes based on the

TCGA-HNSC cohort. Then, 100 algorithm combinations were

performed on the prognostic genes to fit prediction models based

on the leave-one-out cross-validation (LOOCV) framework within

the TCGA-HNSC cohort and validated on GSE65858 and GSE41613

datasets. For each model, the Harrell’s concordance index (C-index)

was calculated across all validation datasets, and the model with the

highest average C-index was considered optimal. Thereafter, the

feature variables selected for the optimal model were further

reduced using LASSO regression, and a multi-factor stepwise Cox

regression analysis was employed to finalize the model.
GSVA

GSVA(v1.46.0) is an unsupervised and non-parametric

technique utilized to evaluate gene set enrichment in

transcriptomes. GSVA reallocates gene-level modifications to

pathway-level modifications by integrating the scoring of gene

sets of interest, thereby inferring the biological functions of the

samples. In this study, we retrieve gene collections from the MsigDB

(v7.0) and apply the GSVA algorithm to assess each collection

comprehensively, to examine potential alterations in the biological

functions of diverse samples.
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Immune infiltration analysis

We utilized the TIMER 2.0 (http://timer.comp-genomics.org/

timer/) to analysis immune infiltration of TCGA-HNSC. In

addition, other immune infiltration analyses results including

CIBERSORT, QUANTISEQ, MCPCOUNTER,XCELL, EPIC were

download from TIMER 2.0 (62).
Cell-cell interaction inference

To analyze intercellular communication within our integrated

cel l database, we employed CellChat (V1.6.1 , http://

www.cellchat.org/) (63), using default parameters, to infer

potential signaling interactions between cells based on a

predefined database of ligand-receptor pairs. Special attention was

given to the interactions between various Endothelial/Malignant

cells and immune cells.
Nomogram and calibration

To assess the prognostic value of the risk score over time in the

entire TCGA dataset, we performed ROC analysis. Additionally, we

investigated the role of the risk score in different clinical subgroups,

including age, stage, T, N and gender. To provide a comprehensive

predictive tool, we constructed a nomogram using multivariate Cox

regression analysis, which integrated the risk score along with

clinical information. Furthermore, we employed calibration

curves to evaluate the accuracy of the constructed nomogram.
LSCC samples collection

Two LSCC tissue samples and a normal tissue sample were

collected. All clinical data were derived from surgical and

pathological reports. Unless otherwise specified, all patients

received standard postoperative care (SOC). The excised tissues

were fixed in formalin and embedded in paraffin (FFPE), and

pathological classifications were confirmed by three pathologists

using Hematoxylin and Eosin (H&E) staining. All surgical

specimens and clinical data were obtained after obtaining written

informed consent from the patients. Clinical information was de-

identified and used in accordance with the Institutional Review

Board of the 989th Hospital of the People’s Liberation Army (REB:

2024-141).
ST sequencing

This experiment are conducted by the Visium Technology

Platform of 10x Genomics company. The reagents and consumables

in the experiment are provided by this platform, and the specific

product numbers can be found at www.10xgenomics.com/products/

spatial-gene-expression.
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Slide preparation

This method has been described previously with slightly

difference (64). Briefly, the Visium Spatial Gene Expression Slide

(from Visium Spatial Gene Expression Slide Kit, 10x Genomics, PN-

1000185) includes four capture areas (6.5 mm by 6.5 mm), each

defined by a fiducial frame (fiducial frame + capture area is 8 mm by

8 mm). The capture area has ~5000 gene expression spots, each spot

with primers that include Illumina TruSeq Read 1 (partial read 1

sequencing primer), 16–nucleotide (nt) spatial barcode (all primers in

a specific spot share the same spatial barcode), 12-nt UMI; 30-nt poly

(dT) sequence (captures polyadenylated mRNA for cDNA synthesis).
RNA integrity number

We use RNeasy Mini Kit (QIAGEN, catalog no. 74104) to test

the integrity of RNA. After taking 10 slices of 10-mm-thick

cryosections, RNA was extracted and analyzed by RNeasy Mini

Kit immediately. An RNA integrity number of ≥7 is qualified.
Tissue fixation, staining, and imaging

Tissue sections on the Visium Slide (from Visium Slide Kit) were

fixed using methanol (MilliporeSigma) by incubating 30 min at -20°

C. For tissue staining, sections were incubated in isopropanol

(MilliporeSigma) for 1 min, in hematoxylin (Agilent) for 7 min, in

Bluing Buffer (Agilent) for 2 min, and in Eosin Mix (MilliporeSigma)

for 1 min at room temperature. Last, slides were incubated for 5 min

at 37°C in the Thermocycler Adaptor (10x Genomics, PN-3000380).

Then, the stained tissue sections are imaged.
Tissue permeabilization and
reverse transcription

For tissue permeabilization, the slides were first placed in the

Slide Cassette (from the Visium Slide kit) for the optimal

permeabilization time. A permeabilization enzyme (from the

Visium Reagent kit) was used for permeabilizing the tissue

sections on the slide for incubating for the predetermined

permeabilization time. The polyadenylated mRNA released from

the overlying cells was captured by the primers on the spots. After

washing by 0.0.1×SSC (sal ine sodium citrate buffer ,

MilliporeSigma), RT Master Mix (provided in Visium Reagent

kit) containing reverse transcription reagents was added to the

permeabilized tissue sections in the Thermocycler Adaptor.

Incubation with the reagents produces spatially barcoded full-

length cDNA from polyadenylated mRNA on the slide.
Second strand synthesis and denaturation

After removing RT Master Mix (provided in Visium Reagent

kit) from the wells, sections were incubated in 0.08 M KOH for
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5 min and washed by Buffer EB (QIAGEN). Then, Second Strand

Mix (provided in Visium Reagent kit) was added to the tissue

sections on the slide to initiate second strand synthesis on the

Thermocycler Adaptor. This is followed by denaturation and

transfer of the cDNA from each capture area to a corresponding

tube for amplification and library construction. The slides were

washed by Buffer EB and incubated in 0.08 M KOH for 5 min. Then,

samples from each well were transferred to a corresponding tube

containing tris-HCl (1 M;pH 7.0) in eight-tube strip for

amplification and library construction.
cDNA amplification and quality control

Denaturation sample of 1xl was transferred to the quantitative

polymerase chain reaction (qPCR) plate well containing the qPCR

Mix [nuclease-free water + KAPA SYBR FAST qPCR Master Mix

(KAPA Biosystems) + cDNA Primers (from Visium Reagent kit)].

The Cq value for each sample was recorded after qPCR. For cDNA

amplification, cDNA Amplification Mix (from Visium Reagent kit)

was added to the remaining sample from denaturation. Then, the

product was incubated in Thermocycler Adaptor for a cycle. For

cDNA Cleanup-SPRIselect, 60 ml of SPRIselect reagent (Beckman

Coulter) was added to each sample and incubated for 5 min at room

temperature. The sample was repeatedly adsorbed by the

magnet·High, washed with ethanol (MilliporeSigma) and Buffer

EB and transferred to a new tube strip. Then, we ran 1 ml of sample

on an Agilent Bioanalyzer High Sensitivity chip (Agilent, catalog no.

50674626) for cDNA quality control (QC) and quantification.
Visium spatial gene expression
library construction

Enzymatic fragmentation and size selection were used to

optimize the cDNA amplicon size. Sample indexes and TruSeq

Read 2 (read 2 primer sequence) were added via End Repair, A-

tailing, Adaptor Ligation, and PCR. The final libraries contain the

P5 and P7 primers used in Illumina amplification. Library

construction was performed with Library Construction Kit (10x

Genomics, catalog no. PN-1000190).
Raw sequencing data processing

The Visium Spatial RNA-seq output and bright-field and

fluorescence microscope images were analyzed by Space Ranger

(version 1.1.0) to detect tissue, align reads, generate feature-spot

matrices, perform clustering and gene expression analysis, and

place spots in spatial context on the slide image. These pipelines

combined Visium-specific algorithms with the widely used RNA-

seq aligner STAR.
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ST data analysis

The Visium ST raw-seq were processed with the Space Ranger

pipelinenomics). Then the data was scaled and normalized via the

function scTransform, integrated via CCA, reduce dimensions

through PCA and U-MAP, unsupervised clusters via

FindNeighbors and FindClusters with resolution = 0.3 and

identified different expression spots based on R package Seurat.

Spatial co-localization and cellular niche used Seurat andmistyR (65).
Statistical analysis

The R v4.2.2 was applied to conduct all statistical analyses in

this study. The Wilcoxon test was implemented to compare the

GSVA scores and immune infiltration between two groups.

Spearman correlation analysis was used to investigate the

relationship. The false discovery rate (FDR) was calculated by the

Benjamini-Hochberg procedure (B-H). The log-rank test was

utilized to assess the significance of observed differences in overall

survival (OS) by survminer (66). Statistical significance was

determined by p <0.05, unless explicitly specified otherwise.
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