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Somatic mutations in tumor cells give rise tomutant proteins, fragments of which

are often presented by MHC and serve as neoantigens. Neoantigens are tumor-

specific and not expressed in healthy tissues, making them attractive targets for

T-cell-based cancer immunotherapy. On the other hand, since most somatic

mutations differ from patient to patient, neoantigen-targeted immunotherapy is

personalized medicine and requires their identification in each patient.

Computational algorithms and machine learning methods have been

developed to prioritize neoantigen candidates. In fact, since the number of

clinically relevant neoantigens present in a patient is generally limited, this

process is like finding a needle in a haystack. Nevertheless, MHC presentation

of neoantigens is not random but follows certain rules, and the efficiency of

neoantigen detection may be further improved with technological innovations.

In this review, we discuss current approaches to the detection of clinically

relevant neoantigens, with a focus on antigen processing and presentation.
KEYWORDS
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Introduction

Mutant peptides derived from somatic mutations are often presented by MHC

molecules and give rise to neoantigens (1, 2). Neoantigens are not subject to central

tolerance and can therefore induce T cell responses in patients. In preclinical and clinical

settings, antitumor effects of immune checkpoint blockade (ICB) are mediated by T cells

recognizing neoantigens (3–5). Adoptive cell transfer of neoantigen-reactive CD4+ T cells

resulted in tumor regression in a patient with epithelial tumor (6). The phase IIb study of

the neoantigen vaccine in combination with ICB showed improved recurrence-free survival

(RFS) and distant metastasis-free survival in patients with resected melanoma (7). Even in

patients with pancreatic cancer, vaccinated patients with neoantigen reactive T cells showed

prolonged RFS (8). Vaccination-induced neoantigen-reactive T cells persist for years,

suggesting their contribution to long-term prevention of relapse or metastasis (9–11).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1487378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1487378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1487378/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1487378&domain=pdf&date_stamp=2024-11-06
mailto:kanaseki@sapmed.ac.jp
https://doi.org/10.3389/fimmu.2024.1487378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1487378
https://www.frontiersin.org/journals/immunology


Tokita et al. 10.3389/fimmu.2024.1487378
These observations strongly suggest a central role for neoantigens in

mediating host T cell immune responses against tumors, and

manipulation of T cell responses to neoantigens may lead to

success in cancer immunotherapy (12–15).

Although neoantigens are attractive targets for immunotherapy

in a variety of cancers, most (if not all) neoantigens differ between

patients. In addition, it is becoming clear that the frequency of

immunogenic neoantigens that induce T-cell responses in patients

is very low and may be limited to a few percent of somatic

mutations (16–19). Thus, neoantigen-targeted immunotherapy

becomes personalized medicine, requiring screening for each

patient, and such a needle in a haystack must be efficiently

identified from a large number of mutations. Advances in next-

generation sequencing technology have enabled the identification of

nonsynonymous mutations in tumor exomes and the in silico

prediction of the affinity between mutant peptides and patient

MHC alleles for potential neoantigens. The in silico prediction

algorithm for neoantigens is being continuously improved (20, 21).

However, when looking at a patient’s T cell response, the percentage

of predicted sequences that do not induce a response remains high,

making it a challenge to efficiently detect neoantigens by in silico

prediction alone (22). In a previous report, neoantigens were

predicted using different pipelines from different laboratories, but

in total only about 6% of the predicted neoantigens were

successfully recognized by the patient’s T cells (23). Such a high

false-positive rate may be due to T cell-side factors, such as the

diversity of T cell receptor (TCR) repertoires, or tumor cell-side

factors, such as the complexity of intracellular antigen processing.

In this review, we focus on the latter, highlighting current issues in

the identification of clinically relevant neoantigens and potential

solutions from an antigen processing perspective with the goal of

clinical application of neoantigens.
What are clinically relevant
neoantigens from an antigen
presentation perspective?

Naive T cells are primed by professional antigen presenting cells

(APCs) in the lymph nodes, and effector T cells subsequently migrate

and recognize tumor cells. For a clinically relevant T cell immune

response to occur against an antigen, the antigen must be

immunogenic (capable of inducing a host T cell response) and

presented on cell surfaces (naturally processed and presented by

MHC). Although these two requirements are closely related, they are

not necessarily the same. For example, in a vaccination setting

targeting cytotoxic CD8+ T cells, administered neoantigens (or

nucleotide sequences encoding neoantigens) will be taken up by

APCs and may be able to induce a circulating T cell response in the

peripheral blood since they are in principle foreign to the host.

However, an anti-tumor effect cannot be expected if the tumor cells

themselves do not endogenously present the neoantigens on their

MHC. As discussed below, for various reasons, not all expressed gene

products withMHC-binding properties are necessarily processed and

presented to cell surface MHCs. Conversely, even if tumor cells
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present immunogenic neoantigens, the neoantigens may fail to elicit a

spontaneous endogenous T cell response if cross-presentation of the

neoantigens by professional APCs was insufficient. Therefore,

clinically relevant neoantigens that elicit spontaneous T cell

responses should be those presented by APCs (e.g., cross-

presentation) and tumor cells (e.g., endogenous presentation).

In contrast, it is unknown whether this principle applies to

MHC-II neoantigens. The significance of MHC-II neoantigen

presentation on tumor cells is likely to depend on the phenotype

of the neoantigen-reactive CD4+ T cells. For helper T cells that exert

their antitumor effects indirectly through the production of effector

cytokines, by helping to prime CD8+ T cells, or by activating

myeloid-derived cells, MHC-II neoantigen presentation on tumor

cells would not be mandatory, and in fact many tumor cells of

epithelial origin lack surface MHC-II expression (24–26).

Meanwhile, cytotoxic CD4+ T cells capable of lysing tumor cells

require MHC-II neoantigen presentation on tumor cells (27, 28).

Paradoxically, however, MHC-II neoantigen presentation on tumor

cells can also inhibit antitumor effects, possibly by inducing

neoantigen-reactive regulatory CD4+ T cells in the tumor

microenvironment (29). Thus, clinically relevant neoantigens that

may lead to therapeutic effects must be presented by MHC; while

the case of MHC-I neoantigens is straightforward, the case of

MHC-II neoantigens requires further classification and validation

with respect to CD4+ T cell differentiation types.
Endogenous antigen processing and
MHC class I presentation

The cell surface repertoire of peptide-MHC-I complex (pMHC-I)

is formed by the intracellular antigen presentation pathway consisting

of a multi-step process involving the antigen processing machinery

(APM) (Figure 1) (30–32). The proteasomes degrade proteins in the

cytoplasm and yield protein fragments, which serve as precursors

of MHC-binding peptides. APCs and tumor cells differ in the

composition of proteasome subunits, with APCs expressing

the immunoproteasomes and tumor cells of epithelial origin

expressing the immunoproteasomes only under IFNg stimulation.

In melanoma patients treated with ICB, higher expression of the

immunoproteasomes correlates with improved prognosis, possibly

suggesting their influence on neoantigen production with clinical

significance (33). The peptide precursors, which are yet too long for

MHC binding, are then transported into the endoplasmic reticulum

(ER) by the transporters associated with antigen processing (TAP).

An ER-resident aminopeptidase, ERAAP (or ERAP1), is present in

the ER and trims the amino acids from the N-terminus of the

precursors to yield short peptides with optimal lengths for MHC

binding (34). Hence, the C-terminal end of peptides is completed in

the cytoplasm (by the proteasomes), while the N-terminal end is

completed in the ER (by ERAAP). In the endoplasmic reticulum,

empty MHC-I molecules associate with TAP, tapasin, ERp57, and

calreticulin to form a structure called the peptide loading complex

(PLC), which exchanges candidate peptides to form pMHC-I (35).

ERAAP and PLC are thought to generate and select peptides that fit
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into MHC-I molecules, thereby providing stable pMHC-I on the

cell surface.

It should be noted that, in theory, cells are not capable of

presenting all protein fragments. Since the number of MHC-I

molecules (on the order of 105) is limited compared to the

number of protein fragments produced in the cytosol, the

proportion of intracellular peptides that are ultimately presented

by surface MHCs is thought to be very small (36). The actual

number of different peptides would be much smaller, since peptides

with high gene expression levels are likely to account for multiple

copies of MHC-I molecules. Peptides are selected mainly due to

their ability to bind to the host MHC-I molecule, but there are other

limitations besides MHC binding. For example, ERAAP cannot
Frontiers in Immunology 03
trim proline, so sequences a few amino acids downstream of proline

are unlikely to be presented by MHC-I, even if they have

appropriate MHC-I binding motifs (37–39). Thus, not only

peptide sequences but also surrounding sequences influence the

efficiency of antigen processing. Furthermore, APM expression is

not always constant across cells. Loss of APM expression, which is

often observed in tumor cells, is likely to influence pMHC-I

repertoire formation (40, 41). Thus, the surface MHC-I peptide

repertoire is elaborately regulated through endogenous antigen

processing pathway; however, the repertoire can be influenced by

multiple factors, such as APM expression and competition among

candidate peptides, and this complexity may preclude accurate

prediction of the peptides presented on the cell surface.
FIGURE 1

MHC-I antigen processing and presentation pathway. In tumor cells, mutant proteins with substituted amino acids are translated from transcripts
with nonsynonymous somatic mutations and, like other proteins, are processed and fragmented by proteasomes in the cytoplasm. Upon IFNg
stimulation, proteasomes are transformed into immunoproteasomes composed of different subunits, yielding protein fragments of different lengths
that serve as precursors of MHC-bound peptides. Such peptide precursors are then transported to the ER through the TAP. Inside the ER, an
aminopeptidase, ERAAP (ERAP1), trims amino acids from the N-terminus of the precursors, yielding peptides of optimal length for binding to host
MHC-I. At the same time, empty MHC-I forms the PLC with b2m, tapasin, calreticulin, and ERp57, which removes and exchanges unstable peptides
bound to MHC-I. Stabilized pMHC-I is released from the PLC and transported to the cell surface to form the surface pMHC-I repertoire. When
peptides with mutated amino acids are presented, they may serve as neoantigens that elicit a T cell response because they are foreign to the host.
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Landscape of MHC class I
presented peptides

Landscapes of peptides displayed by MHC can now be explored

by immunopeptidomics or MHC ligandome analysis, in which

MHCs are extracted directly from cell lysates and the bound

peptides are eluted and comprehensively sequenced by mass

spectrometry (MS). The increased sensitivity of MS allows the

sequencing of thousands of MHC-I and MHC-II peptides,

separately or simultaneously, per sample (42). Sequencing results

from a variety of normal and tumor tissue types have been collected

and used as training data to improve in silico algorithms for

predicting MHC-presented peptides (43). The recovery of

naturally presented peptides reveals the nature of antigen

processing and presentation. The repertoire of source genes

providing an immunopeptidome is not ubiquitous but limited,

with only about 60% of expressed protein-coding genes (exon

regions) yielding MHC-I represented peptides (44). This

proportion is likely to vary further as translation and MHC-I

presentation of peptides is now known to occur outside the exons

or from unconventional open reading frames (45–47).

Furthermore, peptides with higher source gene expression or

abundant proteins are more likely to be presented to MHC (38,

48). The distribution of MHC-presented peptide sites within a

protein sequence is not also uniform, but rather skewed toward

certain sites, often forming “hotspots” (44, 49).Because MHC

anchors often contain hydrophobic amino acids, peptide

sequences tend to concentrate in transmembrane regions where

hydrophobic residues are unevenly distributed (50). The presence of

such hotspots clearly indicates that the peptides presented by MHC

are not randomly selected from a given protein fragments, but that

their selection follows certain biological rules.

Identification of neoantigens
presented by MHC class I or II

As mentioned above, neoantigens with immunogenicity and a

higher probability of being presented by MHC need to be

prioritized for clinical applications, such as use as vaccines or

efficacy biomarkers for ICB. An efficient approach to identify

immunogenic neoantigens would be to use the TCRs of clonally

expanded tumor-infiltrating T cells (TILs) as a screening probe.

Since TILs are already primed and migrating into the tumor,

neoantigens recognized by such TCRs should naturally be

presented to MHC. High-throughput and sensitive screening

platforms have been developed and reported (51–53). Meanwhile,

a reliable way to identify MHC-presented peptides would be

immunopeptidomics using MS. This approach al lows

comprehensive identification of MHC-presented neoantigens

directly from tissue samples, including solid tumors of epithelial

origin (54–57). While this approach may have a lower detection

sensitivity due to technical limitations of MS, this approach may be

useful for identifying both immunodominant and subdominant
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neoantigens, the latter of which do not spontaneously induce host

T-cell responses and thus may be missed by TIL probes. These MS-

detected neoantigens tend to be immunogenic and recognized by

patient TILs, potentially suggesting a link between immunogenicity

and the level of natural MHC presentation.

On the other hand, both approaches require a specific type of

biomaterial, TILs or frozen tumor tissue, which are not always

available for every patient in clinical settings and require organized

logistics. To overcome this limitation, we propose to exploit the

nature of antigen processing and use wild-type surrogate

immunopeptidome data instead of tumor immunopeptidomes

(Figure 2). The majority of immunopeptidomes are matched

between different individuals carrying the same MHC type, which

may be consistent with the presence of hotspots for MHC

presentation in protein sequences.In fact, even among different

individuals, about 70% of presenting peptides overlap when

MHC types match in the same organ (57, 58). Even between

different organs, about 60% of the immunopeptidomes match in

both mouse and human, which could be due to the sharing of highly

expressed transcripts between different organs (59). Furthermore,

MHC presentation of neoantigens is often accompanied by

presentation of their wild-type counterparts, as demonstrated by

immunopeptidomics (33, 54, 57, 60–63). Neoantigens accompanied

with wild-type MHC presentation or those whose wild-type

counterparts are already registered in public databases as MHC-

presented peptides tend to be immunogenic (64). Therefore, it may

be possible to predict naturally presented neoantigens using

MHC-matched surrogate wild-type immunopeptidome data in

combination with somatic mutation data from the patient’s

tumor. We have recently reported an approach called neoantigen

selection using surrogate immunopeptidomes (NESSIE), which has

efficiently identified immunogenic neoantigens in colorectal and

endometrial cancer patients compared to conventional in silico

prediction (65). Since this approach analyzes surrogate (e.g. blood)

immunopeptidomes but not tumor immunopeptidomes, frozen

tumor samples are not required and can be widely used in

clinical practice.

In contrast, there are specific types of neoantigens that cannot

be detected by NESSIE. As sources of clinically relevant,

immunogenic MHC-I neoantigens, SNVs account for 98.2% (56/

57) and indels for 1.8% (1/57), with SNV-derived neoantigens being

by far the most common (19). Of these, indel-derived neoantigens

cannot be detected by NESSIE due to the lack of wild-type

counterparts. SNV-derived neoantigens are more complicated. If

the mutated amino acid were not an MHC-binding anchor, NESSIE

would detect the neoantigen. Even if an MHC-binding anchor was

substituted (anchor-type neoantigen), NESSIE would detect the

neoantigen unless MHC presentation of its wild-type peptide was

completely absent. The percentage of anchor-type neoantigens

associated with zero (undetectable) wild-type MHC presentation

is unclear. Although there may be limitations as this approach relies

on the detection of wild-type counterparts, it is conceptually novel

and the sensitivity and specificity of this type of approach compared

to conventional methods should be further investigated.
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Conclusion

Neoantigens are truly tumor-specific, a key link between T cells

and tumor cells, and thus serve as attractive targets for

immunotherapy. However, it is clear that the prioritization of

clinically relevant neoantigens remains a challenge and a bottleneck

in their clinical application. This challenge would be overcome by

technological advances such as the rapid and comprehensive screening

of antigens recognized by the TIL repertoire, the development of highly

sensitive immunopeptidomics independent of sample quality, and the

development of in silico prediction technology based on learning from

the results obtained. In particular, although difficult to quantify

unambiguously, certain rules exist in the selection of antigens by the

antigen processing and presentation pathway, and we consider that

their successful application will further improve the efficacy and lead to

the success of personalized immunotherapy.
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FIGURE 2

Current approaches to neoantigen identification. (A) In silico prediction of neoantigens from genomic data. It is widely used because it can quickly
identify neoantigens based on tumor mutation and MHC data. The sensitivity is considered high, but the false positive rate is also high and the
specificity is considered low. (B) T-cell assay using TIL TCRs as screening probes. A reliable approach to identify immunogenic neoantigens with high
specificity, but time consuming and labor intensive. (C, D) Immunopeptidomics using MS. A reliable approach to identify neoantigens naturally
presented by MHC, but time-consuming and labor-intensive. Sensitivity depends on sample quality and MS performance. (C) Conventional
immunopeptidomics screening tumor immunopeptidomes. (D) Alternative immunopeptidomics screening surrogate (i.e. blood) immunopeptidomes
for wild-type counterparts of neoantigens.
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