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Integrated single-cell and
bulk transcriptome analysis
of R-loop score-based
signature with regard to
immune microenvironment,
lipid metabolism and
prognosis in HCC
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Xiuxin Han1, Chao Zhang1, Yongheng Liu1, Yan Zhang1, Yao Xu1,
Yiqin Li1, Guowen Wang1* and Jinyan Feng1*

1National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s
Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical
University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China,
2Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent

causes of cancer-related morbidity and mortality worldwide. Late-stage

detection and the complex molecular mechanisms driving tumor progression

contribute significantly to its poor prognosis. Dysregulated R-loops, three-

stranded nucleic acid structures associated with genome instability, play a key

role in themalignant characteristics of various tumors. However, the detailed role

and mechanism of R-loops in HCC progression remain elusive and require

further exploration. This study aimed to construct an R-loop scoring signature

centered on prognosis and lipid metabolism, thereby enhancing our

understanding of HCC progression and identifying potential therapeutic targets.

Methods: In this study, we utilized the single-cell RNA-sequencing (scRNA-seq)

data from HCC patients (GSE149614 and CRA002308) to construct an R-loop

scoring model based on the identified R-loop regulator genes (RLRGs) related to

HBV infection through WGCNA analysis. We also explored the tumor

microenvironment and intercellular communication related to R-loop score.

Additionally, a prognostic risk model based on the fatty acid metabolism-

associated RLRGs was constructed using data from the TCGA database, and its

association with immune infiltration, mutations, and drug sensitivity was

analyzed. In vitro and in vivo experiments were performed to investigate the

role of RLRG CLTC in lipid metabolism and HCC progression.

Results: Using scRNA-seq data from HCC, we established an R-loop scoring

model based on identified RLRGs related to HBV infection. Moreover, the more

suppressive tumor immune microenvironment and stronger intercellular

communication were displayed in malignant cells with high R-loop scores. The

cell trajectory and cellular metabolism analysis exhibited a significant association
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between lipid metabolism and RLRGs. Additionally, we constructed a prognostic

risk model consisting of 8 RLRGs related to fatty acid metabolism, which

effectively evaluated the prognostic value, status of tumor immune

microenvironment, gene mutations, and chemotherapeutic drug sensitivity for

HCC patients. Notably, validation experiments suggested that CLTC could

regulate lipid metabolism through R-loop formation and facilitate tumor

progression in HCC.

Conclusion: Collectively, our study proposes an R-loop scoring model

associated with tumor immune microenvironment, lipid metabolism and

prognostic value. CLTC, an R-loop regulator, emerges as a promising

prognostic biomarker and therapeutic target, offering new insights into

potential treatment strategies for HCC patients.
KEYWORDS

R-loop, single-cell RNA-sequencing, HCC, tumor immune microenvironment, lipid
metabolism reprogram, CLTC
Introduction

Hepatocellular carcinoma (HCC) ranks as the sixth most prevalent

cancer and the third leading cause of cancer-related mortality globally,

with approximately 758,000 fatalities and 865,000 new diagnoses

annually (1). In addition to other risk factors such as aflatoxin

exposure, heavy alcohol consumption, obesity, and type 2 diabetes,

HBV or HCV chronic infection accounts for 21% to 55% of HCC

worldwide (2). Recently, metabolic reprogramming, particularly

dysregulation of lipid metabolism, has gained increasing attention as

a critical factor in HCC pathogenesis, significantly influencing its

initiation and progression (3–5). Current therapeutic approaches for

HCC, including surgical resection, liver transplantation, and systemic

therapies, are often hampered by late-stage diagnosis and high

recurrence rates (6, 7). Therefore, further research is imperative to

unravel the molecular mechanisms driving HCC and identify more

effective diagnostic and therapeutic targets.

R-loops are dynamic, triple-stranded nucleic acid structures

consisting of an RNA-DNA hybrid and a displaced single-stranded

DNA that form during transcription (8). Physiological R-loops are

involved in the regulation of RNA transcription and processing,

epigenetic modification, DNA repair, and mitochondrial replication

(8, 9). However, unscheduled R-loops can lead to DNA replication
-seq, single-cell RNA-

rin heavy chains; CNV,

ession network analysis;

Quantitative real-time

ibility complex; TAA,

analysis; LASSO, least

ator-activated receptor;

otal cholesterol.

02
stalling and potential genomic instability, which requires cells to

precisely maintain R-loop homeostasis by R-loop regulator genes

(RLRG), including BRCA2, DHX9, PARP1, and RNASEH1 (10–12).

Given that R-loops dysregulation can lead to DNA damage and cellular

stress, extensive research has demonstrated their involvement in a

variety of physiological processes, including immune regulation,

metabolic reprogramming, and cellular communication (13, 14).

Excessive accumulation of R-loops has been reported to activate the

cGAS-STING inflammatory pathway, increasing the number of

hematopoietic stem and progenitor cells (HSPCs), which are crucial

for maintaining immune system homeostasis (15). Crossley MP and

colleagues dedicated that R-loops accumulation could activate the

innate immune response and regulate cytokine-mediated

inflammatory cascades by inducing the reorganization of immune

cell interactions, potentially contributing to diseases such as

cancer (16).

In recent years, the role of aberrant R-loops in driving the

malignant progression of various cancer types has received

considerable attention. Zhang et al. were the first to construct an R-

loop scoring model according to the identified RLRGs,

comprehensively uncovered the underlying molecular mechanism of

metabolic reprogramming and T cell exhaustion under R-loop score

patterns, and revealed that low R-loop scores displayed glycolysis and

epithelial-mesenchymal transition pathway activation and immune

escape promotion, ultimately impairing antitumor therapeutic

efficacy. Furthermore, inactivation of BRCA2 leads to the formation

of abnormal R-loops, which subsequently induce DNA damage and

chromosomal aberrations, potentially contributing to an increased risk

of breast cancer (17). Besides, knockdown of THOC1 increases R-loop

formation, leading to DNA damage, which reduces HCC cell

proliferation and enhances cisplatin sensitivity (18). MTA2 promotes

HCC stemness via enhancing R-loop formation, which
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transcriptionally suppresses BDH1 through forming a complex with

HDAC2/CHD4 (19). However, further comprehensive studies are

required to elucidate the precise roles and molecular mechanisms of

R-loops in HCC.

By utilizing single-cell RNA sequencing (scRNA-seq) data derived

from HCC, this study constructed an R-loop scoring model,

uncovering a significant correlation between the tumor malignancy

and HBV infection with the R-loop scores. Subsequently, we analyzed

the association between R-loop scores and both the tumor immune

microenvironment and intercellular communication. Furthermore, we

identified that RLRGs were intricately linked to lipidmetabolism, based

on which we constructed an innovative prognostic model by

incorporating bulk RNA-seq data. Notably, we discovered that

CLTC, a crucial RLRG, was significantly upregulated in HCC,

modulated R-loop-mediated lipid metabolism, and facilitated tumor

progression. In conclusion, our findings provide a theoretical

foundation for focusing on R-loops or RLRGs as novel prognostic

and therapeutic targets for HCC.
Materials and methods

Data collection

The scRNA-seq data GSE149614 for HCC patients was

acquired from GEO (https://www.ncbi.nlm.nih.gov/geo), and

CRA002308 was acquired from GSA (https://ngdc.cncb.ac.cn/gsa).

HCC bulk RNA-seq data were downloaded from TCGA (https://

portal.gdc.cancer.gov/), ICGC (https://dcc.icgc.org), and GEO

databases, respectively. The scRNA-seq data GSE149614 includes

8 pairs of primary liver tumor and non-tumor liver tissue samples,

while CRA002308 comprises 7 pairs of liver tumor and normal

tissue samples. The clinical information related to these tissue

samples can be obtained from the supplementary materials of the

corresponding published articles (20, 21). TCGA-LIHC samples

with complete clinical information were utilized as the model training

set, ICGC-LIRI-JP samples with complete clinical information were

utilized as the model validation set, and HCC samples from the GEO

database (accession number GSE76427) were utilized as the external

validation set. The R-loop-related gene set was obtained from the

R-loopBase database (https://rloopbase.nju.edu.cn/download.jsp),

which included a total of 1,268 R-loop regulators.
scRNA-seq data analysis and identification
of the cell type

The HCC scRNA-seq data were systematically processed using the

Seurat (v4.1.1) R package. First, a Seurat object was created using the

CreateSeuratObject function, with the min.cells parameter set to 3 to

exclude genes expressed in fewer than three cells. Subsequently, further

filtering of the cell data was performed, which involved removing cells

with fewer than 200 or more than 8000 detected genes, as well as cells

exhibiting a mitochondrial gene proportion exceeding 20% or a

hemoglobin gene proportion exceeding 5%. To minimize the impact

of doublets, the doubletFinder v3 function from the DoubletFinder
Frontiers in Immunology 03
package was used to identify and filter potential doublets. Key

parameters were set as PCs = 1:20 and pN = 0.25, meaning that 20

principal components were considered to estimate the probability of

each cell being classified as a doublet at 0.25. The filtered data were

subsequently normalized using the LogNormalize method, wherein the

raw counts were scaled to a total gene expression of 10,000 per cell.

Subsequently, 2,000 highly variable genes were identified using the

FindVariableFeatures function, followed by normalization with the

ScaleData function to mitigate the impact of technical noise.

Dimensionality reduction was then performed using the RunPCA

function, with the first 20 principal components selected for

subsequent analyses. For batch effect correction in multi-sample data,

the RunHarmony function of the Harmony package was used for data

integration. The samples were treated as the grouping variable

(group.by.vars = “sample”), with the integration strength parameter

set to lambda = 1 and the clustering penalty parameter set to theta = 2.

The Harmony method, based on Principal Component Analysis

(PCA), corrects for batch effects by embedding and iteratively

removing systematic biases specific to each dataset, enabling effective

integration of cells from different samples so that they cluster together.

Subsequently, UMAP dimensionality reduction was performed using

the ‘umap-learn’ algorithm in the RunUMAP function to facilitate

subsequent visualisation of the integrated data. After batch effect

correction, the FindNeighbours function was used to calculate the

distances between cells and construct a Shared Nearest Neighbour

(SNN) graph. Cell clustering was then performed using the

FindClusters function using the Louvain algorithm with a resolution

parameter set to 0.3 to identify cell subpopulations. Finally, during the

cell annotation phase, the automated annotations generated by the

SingleR software were combined with known cell marker genes and

manual corrections were made to further refine the annotations.
Weighted gene coexpression network
analysis on scRNA-seq data to uncover
gene network modules

We grouped cell populations based on similar origins through

random, non-overlapping sampling from the same tissue source and

cell type, with each group containing 30 cells. The R package WGCNA

(v1.71) was used to construct the co-expression network of R-loop

regulators, with an optimal beta value of 4 selected as the minimum soft-

thresholding power. The parameter minModuleSize was set to 30 for the

dynamic tree cut function. Highly similar modules were identified by

clustering and subsequently merged using a height cutoff of 0.25. Using

the “Eigengenes” function, we found that the co-expressed gene modules

were associated with several clinical features, and modules significantly

correlated with HBV infection were selected.
Building an R-loop scoring model with R-
loop regulators

The R-loop score was calculated using the cal_CRDscore function

from the R package “CRDscore” (v0.1.0). Briefly, the average gene

expression levels were first calculated across all cells. Subsequently, a
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random R-loop score (S_random) was generated using a random

sampling strategy. Next, the score for central expression data for each

sample or cell (S_center) was calculated. Finally, the R-loop score was

obtained by subtracting S_random from S_center. In bulk samples, the

R-loop score was calculated based on the expression of prognosis-

associated differential expression R-loop regulators. Based on the

median R-loop score, cells or samples were categorized into high-

and low-score groups.
The risk-score model’s development
and validation

We first conducted an analysis to investigate the correlation

between 165 R-loop modeling genes and the fatty acid metabolism

pathway and found that PYM1, CTPS1, CLTC, VDAC3, SRPK1, and

NOSIP were positively correlated with fatty acid metabolism, while

FANCG, YWHAZ, and SLC25A6 exhibited a negative correlation. In

total, 9 genes were identified as being associated with the fatty acid

metabolism pathway. Next, using logistic regression with the Least

Absolute Shrinkage and Selection Operator (LASSO) for analysis, we

selected the optimal model genes and identified 8 key genes. The risk

score for each patient, designed to assess the prognostic value of the

risk model, was calculated based on the risk coefficients of the model

genes obtained through multivariable Cox regression analysis, along

with the expression levels of these model genes. The specific formula

used for calculation is as follows: Riskscore = (PYM1 exp) * 0.1635 +

(CLTC exp) * -0.1623 + (VDAC3 exp) * 0.1596 + (SRPK1 exp) *

0.1631 + (NOSIP exp) * 0.0929 + (FANCG exp) * -0.0018 +

(YWHAZ exp) * 0.0802 + (SLC25A6 exp) * -0.3306. Using this

method, we assigned each patient a numerical score reflecting their

prognostic risk based on the expression levels of the model genes. The

‘surv_cutpoint’ function was used to determine the optimal cut-off

value, which was then used to stratify patients into high- and low-risk

groups, with the results visualized using Kaplan-Meier curves. The

same evaluation process was applied to an external validation cohort

to further verify the effectiveness of the risk model.
Cell lines

LO2, Hep3B, Huh-7, HCC-LM3, and HepG2 cells were

obtained from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). Cells were cultured in Dulbecco modified Eagle

medium (DMEM; Cellmax, Beijing, China) supplemented with 10%

fetal bovine serum (Cellmax, Beijing, China) and 1% penicillin-

streptomycin (Biosharp, Anhui, China) in a humidified incubator

with 5% CO2 at 37°C.
DRIP-qPCR

DRIP assays were performed as previously described (22). DNA

was extracted from HCC-LM3 and HepG2 cells, followed by
Frontiers in Immunology 04
overnight incubation at 37°C in ecRNH buffer with or without

treatment with ecRNH (Beyotime, Shanghai, China). RNA-DNA

hybrids from the digested nucleic acids, either treated or untreated

with ecRNH, were immunoprecipitated using the S9.6 antibody

(Abcam, USA) and protein A/G beads (MCE, China) at 4°C

overnight in IP buffer. The beads were then washed four times

with IP buffer for 10 minutes at room temperature, and nucleic

acids were eluted with elution buffer at 55°C for 1 hour. The

immunoprecipitated DNA was analyzed by qPCR.
R-loop dot blot assay

DNA samples were loaded onto an Amersham Hybond-N+

membrane (Solarbio, China). The membrane was UV crosslinked

for 5 minutes and washed with PBST. After blocking with 5% non-

fat milk, the membrane was incubated with the S9.6 antibody

(1:1000, Abcam) overnight at 4°C. Dot blots were then incubated

with HRP-conjugated anti-mouse IgG for 1 hour and visualized

using an imaging system (Bio-Rad, USA).
In vivo mouse models

Female BALB/c nude mice (4-5 weeks old) were obtained from

SPF Biotechnology Co., Ltd. (Beijing, China) and maintained under

specific pathogen-free (SPF) conditions at the Tianjin Medical

University Cancer Institute and Hospital. A total of 1 × 10^7

HepG2 cells, transduced to express either sh-CLTC or sh-NC, were

suspended in 200 μL of PBS and injected subcutaneously into the

right flank of the mice. Tumor volumes were measured using a

vernier caliper every five days and calculated using the formula: V =

(length × width²)/2. After 28 days post-injection, the mice were

euthanized, and the tumors were harvested, photographed, and

weighed. The expression of CLTC, FASN, SCD, and Ki67 in the

tumors was analyzed by immunohistochemistry. All animal

experiments were conducted in compliance with standard

operating procedures and ethical guidelines for animal welfare,

with approval from the Animal Care Committee of the Tianjin

Medical University Cancer Institute and Hospital.
Statistical analysis

The differences in continuous variables between two groups

were assessed using the independent samples Mann-Whitney U

test. The Kruskal-Wallis test was applied to the differences between

three groups. The Chi-square test was used to assess the differences

of categorical variables between two groups. The statistical analyses

in this study were conducted using R software version 4.0.5 and

GraphPad Prism 9.5. Data are presented as mean ± standard

deviation, and each experiment was independently repeated

at least three times. The P value < 0.05 was considered

statistically significant.
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Results

Single-cell transcriptome profiles of HCC
tumor and adjacent non-tumor samples

To elucidate the association between R-loops and the tumor

immune microenvironment landscape in HCC, we first performed

an integrated data analysis of 15 liver cancer samples and their paired

non-cancer samples, derived from the GSE149614 and CRA002308

datasets. The detailed clinical information of 15 HCC samples was

shown in Supplementary Figure S1A, among which 9 displayed HBV

infection, 3 were infected with HCV, and 3 were without viral infection.

Following quality filtering, a total of 174,966 cells were detected, with a

median cell count of 3,658 per sample and a median of 1,464 genes per

cell, of which 93,193 and 81,773 cells originated from cancer samples

and adjacent non-cancer samples, respectively. Using UMAP analysis

for clustering, we identified 17 distinct cell subpopulations based on

typical cell markers, including T cells, NK cells, MAIT cells,

hepatocytes, macrophages, and monocytes (Figures 1A–C).

Specifically, CD3D was used as a marker gene for T cells, while

NKG7 indicated NK cells; ORM1 and ALB were markers for

hepatocytes, and KRT18 defined epithelial cells (Figure 1C).
Frontiers in Immunology 05
Subsequently, comparing cell proportions between the two groups

revealed that the proportions of immune cells, such as T cells and NK

cells, were relatively high in both normal and tumor samples, whereas

the proportions of hepatocytes, epithelial cells, and regulatory T cells

(Treg cells) were higher in tumor samples compared to normal

samples, indicating differential cell distribution (Figures 1D, E). To

distinguish malignant from non-malignant populations, we assessed

copy number variations (CNVs) in hepatocytes and epithelial cells,

using plasma B cells as a reference. Among the 14,499 hepatocytes and

2,414 epithelial cells analyzed, 15,361 cells with high CNV scores were

classified as malignant, while 1,552 cells with low CNV scores were

identified as non-malignant, indicating that the majority of hepatocytes

and epithelial cells were malignant (Supplementary Figure S1B).
The R-loop score is elevated in HCC and is
associated with advanced clinical stages in
HCC patients

To construct a gene co-expression network for HCC patients,

we performed WGCNA and identified seven distinct modules

related to TNM stage and viral infections based on the expression
FIGURE 1

Single-cell transcriptome profiles of HCC tumor and adjacent non-tumor samples. (A) Uniform Manifold Approximation and Projection (UMAP)
displays a total of 174,966 cells, divided into 17 cell types. (B) UMAP projection of HCC tissues and adjacent normal tissues. (C) Dot plot shows the
expression of marker genes across different cell types. (D) The distribution of various cell types in tumor and normal tissues. (E) The proportion of
each cell type in tumor and normal tissues.
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patterns of 1,268 RLRGs (23)(Figures 2A, B, Supplementary Figure

S2A). Notably, the blue module demonstrated a significant positive

correlation with HBV infection (Figure 2B). Considering that HBV

infection is known to be closely associated with the development of
Frontiers in Immunology 06
HCC, we further selected the module genes associated with HBV

infection (blue module), of which a total of 165 RLRGs were

obtained. Functional enrichment analysis revealed that these

genes were significantly enriched in pathways associated with
FIGURE 2

The R-loop score is elevated in HCC and is associated with advanced clinical stages in HCC patients. (A) WGCNA illustrates the associations among
1,268 R-loop regulator genes, with the color intensity representing the strength of the interactions. (B) Correlation analysis of gene co-expression
modules with viral infection status. (C) KEGG pathway enrichment analysis of 165 genes from the blue module. (D) Comparison of R-loop scores
between tumor and normal tissue (Wilcoxon rank-sum test). (E) Comparison of R-loop scores among different cell types (Kruskal-Wallis test). (F)
Comparison of R-loop scores across different clinical stages (Wilcoxon rank-sum test). (G) Comparison of R-loop scores under different viral
infection conditions (Wilcoxon rank-sum test).
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viral carcinogenesis (Figure 2C, Supplementary Figure S2B).

Additionally, a scoring model was constructed to evaluate R-loop

levels using the 165 RLRGs identified. The R-loop scores of tumor

samples were found to be significantly higher than those of normal

samples (Figure 2D). Furthermore, compared to endothelial cells

and fibroblasts, malignant cells had higher R-loop scores

(Figure 2E). Stromal cells also had higher R-loop scores compared

to immune cells (Supplementary Figure S2C). Meanwhile, elevated

R-loop scores were associated with advanced clinical stages

(Figure 2F). Noteworthy, patients with HBV infection exhibited

significantly higher R-loop scores compared to non-infected

patients (Figure 2G). The above results confirm that R-loops

are remarkably elevated in HCC and may play crucial roles in

tumorigenesis and disease progression.
R-loop score describes characteristics of
tumor immune microenvironment

Considering that tumor immune microenvironment poses a

significant barrier to cancer treatment and promotes tumor

progression (24), we further investigated the relationship between

R-loops and immune status. Based on the above R-loop scoring

model, tumor samples were categorized into high and low R-loop

groups according to the R-loop score, and the proportions of

malignant cells, immune cells, and other cell types in both groups

were calculated, respectively. Interestingly, the results indicated that

immune cells constituted the predominant cell type in both groups,

while the proportion of malignant cells was higher in the high R-loop

score group compared to the low R-loop score group, supporting

that the R-loop score might be correlated with the malignancy of

HCC (Figure 3A). Furthermore, we assessed the expression of

immune evasion molecules in the high and low R-loop score

groups. As shown in Figure 3B, it was evident that genes related to

major histocompatibility complex (MHC) and tumor-associated

antigens (TAA) exhibited lower expression in the high R-loop

score group. In addition, utilizing single-sample gene set

enrichment analysis (GSEA), we found that the immunogenic cell

death (ICD) pathway scores were markedly lower in the high R-loop

score group, indicating a diminished immune response against

tumors (Figure 3C). Collectively, these results suggested that the

group with a higher R-loop score was more likely to exhibit immune

evasion responses. Given that T cells, as highly heterogeneous

immune cells, play a pivotal role in anti-tumor immunity, a total

of 48,822 T cells were further analyzed to distinguish subpopulations

using unsupervised clustering. Based on various marker genes, we

identified 11 distinct T cell subpopulations, including CD8+ effector

T cells, CD4+ memory T cells, natural killer T (NKT) cells, CD4+

regulatory T (Treg) cells, MAIT cells, CD4+ naive T cells, natural

killer (NK) cells, CD8+ exhausted T cells, CD4+ Th1-like cells, and

CD8+ memory T cells (Figure 3D, Supplementary Figure S3A, B).

Notably, analysis of T cell differences between the high and low R-

loop score groups revealed a remarkable increase in CD8+ exhausted

T cells in the high R-loop score group, accompanied by a decrease in

CD4+ naive T cells, CD4+ Th1-like cells, and NK cells, suggesting

that high R-loop scores contributed to a suppressive immune
Frontiers in Immunology 07
microenvironment to promote tumor immune evasion

(Figures 3E, F). Subsequently, we conducted KEGG enrichment

analysis on both unregulated and downregulated differentially

expressed genes (DEGs) in various T cell subpopulations with high

and low R-loop scores. As shown, the upregulated genes in the high

R-loop score group were significantly enriched in the TNF, IL-17,

and MAPK signaling pathways, which play critical roles in the

malignant progression and immune evasion of HCC

(Supplementary Figure S3C). In addition, the downregulated

DEGs significantly activated signaling pathways such as apoptosis

and adherens junction (Supplementary Figure S3D). Moreover, to

investigate the potential impact of R-loop levels on immune

activation, we examined the IFN-a response in T cell

subpopulations. IFN-a, a crucial immunomodulatory factor,

possesses potent antitumor, antiviral, and immunoregulatory

capabilities, playing an essential role in both innate and adaptive

immune responses (25). The IFN-a response score in T cell

subpopulations was significantly lower in the high R-loop score

group compared to the low R-loop score group, suggesting that a

high R-loop score suppresses immune activation (Figure 3G).

Notably, the apoptosis scores of CD4+ Treg and CD8+ exhausted

T cells were significantly higher in the low R-loop score group, which

is consistent with the findings from KEGG enrichment analysis

(Figure 3H). Taken together, the R-loop score is instrumental in

assessing differences in patients’ tumor immune microenvironments,

thereby providing valuable insights for selecting appropriate

immunotherapy strategies.
Differences in cell-cell interactions in high
and low R-loop score groups

Since intercellular communication can play a crucial role in

tumor immunity through various mechanisms, such as supporting

immune evasion and remodeling the immune microenvironment, we

hypothesized that such communication may also be involved in

regulating R-loop-mediated differences in tumor immunity.

Consequently, CellChat was utilized to analyze intercellular

interactions among malignant cells and various T cell

subpopulations. As indicated, malignant cells exhibited the highest

number and intensity of interactions with other cells in both the high

and low R-loop score groups, indicating strong interactions between

malignant cells and other cell types and highlighting their central role

in the tumor immune microenvironment. (Figures 4A–D).

The inferred incoming and outgoing interaction strengths were

elaborated in Figures 4E, F. Specifically, malignant cells acted as the

primary signaling output cells, actively participating in intercellular

interactions. Furthermore, we found that the number of intercellular

interaction relationships was significantly higher in the high R-loop

score group compared to the low R-loop score group (Figures 4G, H).

Subsequently, we analyzed ligand-receptor interactions between

malignant cells and T cell subtypes in the high and low R-loop

score groups. As shown in Figure 4I, ligand-receptor-mediated

interactions primarily occurred through the MIF signaling pathway

(MIF-CD74+CXCR4 and MIF-CD74+CD44). Additionally, CCL20

and CCR6 were involved in interactions between malignant cells and
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CD4+ regulatory T cells in the low R-loop score group, whereas in the

high R-loop score group, interactions were observed between

malignant cells and CD8+ memory T cells involving CXCL16 and

CXCR6 interaction, as well as the MIF-CD74+CD44 interaction

facilitated crosstalk between malignant cells and CD8+ exhausted T

cells. Altogether, these findings further elucidate the stronger

intercellular communication in the high R-loop score group, which

might be an important cause of the suppressive immune

escape microenvironment.
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Cell trajectory analysis of malignant cells
with high and low R-loop scores

To further explore the potential evolution of the origin,

differentiation, and trajectory of malignant cells, we first utilized

the Monocle2 R package to reconstruct the pseudo-time trajectory

of malignant cells. As shown, at a critical branching point (Branch

1), all cells diverged into two distinct differentiation trajectories

(Figure 5A). Interestingly, integrating the R-loop scores revealed an
FIGURE 3

R-loop score describes characteristics of tumor immune microenvironment. (A) Comparison of the proportions of immune cells, malignant cells,
and other cells across different R-loop score groups. (B) Expression levels of immune escape molecules in different R-loop score groups. (C)
Differences in ICD scores among different R-loop score groups (Wilcoxon rank-sum test). (D) UMAP of T cells. NKT: natural killer T cells; CD4+ Treg:
CD4+ regulatory T cells; MAIT: mucosal-associated invariant T cells; NK: natural killer cells; CD4+ Th1-like: T helper type 1-like CD4+ T cells.
(E) Proportions of T-cell subsets between high and low R-loop score groups. (F) Comparison of the proportions of T-cell subpopulations with
significant differences between high and low R-loop score groups (Wilcoxon rank sum test). (G) Comparisons of IFN-a response scores for T-cell
subsets between high and low R-loop score groups (Wilcoxon rank-sum test). (H) Comparisons of apoptosis scores for T-cell subsets between high
and low R-loop score groups (Wilcoxon rank-sum test). *P < 0.05; **P < 0.01; ***P < 0.001, P < 0.05 was considered statistically significant.
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increase in malignant cells with low R-loop score during the

transition from state 1 to state 2, and conversely, the gradual

enrichment of the malignant tumor cells with high R-loop score

during the transition from state 1 to state 3, highlighting that R-loop

score affected the cell-state transition trajectory of malignant
Frontiers in Immunology 09
subpopulations. (Figure 5B, Supplementary Figure S4A). In light

of this, heatmaps illustrating the molecular dynamics indicated that

the alterations of the top 50 trajectory-associated genes revealed

that, along with the fate 3 branch, cluster 2 genes activated were

primarily enriched in the peroxisome proliferator-activated
FIGURE 4

Differences in cell-cell interactions between the high and low R-loop score groups. (A) Number of intercellular interaction relationships between the
high R-loop score group, where nodes represent cell types and arrows represent pointing relationships. (B) Number of intercellular interaction
relationships in the low R-loop score group. (C) Heatmap showing the number of intercellular interactions in the high R-loop score group, with the
vertical axis representing signal-giving cells and the horizontal axis representing signal-receiving cells. (D) Heatmap showing the number of
intercellular interactions in the low R-loop score group. (E) Cell signaling patterns in the high R-loop score group, with the horizontal axis
representing output signals and the vertical axis representing input signals. (F) Cell signaling patterns in the low R-loop score group. (G) Number of
intercellular interaction relationships in the high R-loop score group, where the ligand-receptor pair count is indicated by the numbers. (H) Number
of intercellular interaction relationships in the low R-loop score group. (I) Dot plot showing interactions between T cell subsets and malignant cells
in the high and low R-loop score groups via ligand-receptor pairs (interaction degree is represented by color, and dot size indicates the P-value).
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receptor (PPAR) signaling pathway (Figure 5C, Supplementary

Figure S4B). Besides, KEGG analysis of differential genes between

the high and low R-loop score groups further confirmed significant

involvement of the PPAR signaling pathway (Figure 5D). PPARs, as

a class of nuclear receptors abundant in adipose tissue, play a pivotal

role in adipocyte differentiation and fatty acid metabolism (26). As

expected, the analysis of cellular metabolism showed that fatty acid

metabolic pathways were remarkably activated in malignant cells
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with high R-loop scores (Figure 5E), with key fatty acid metabolism-

related genes, such as SCD and ACSL1, notably affected

(Supplementary Figure S4C). Subsequently, we determined the

correlation between 165 R-loop score modeling genes and the

fatty acid metabolism pathway. Importantly, the expression of

PYM1, CTPS1, CLTC, VDAC3, SRPK1, and NOSIP was

positively correlated with fatty acid metabolism (Figures 5F–I,

Supplementary Figures S4D, E), while the expression of FANCG,
FIGURE 5

Cell trajectory analysis of malignant cells with high and low R-loop scores. (A) Pseudotime plot showing the trajectory of all malignant cells between
the high and low R-loop score groups. (B) Trajectory plot indicating the locations of cells with high and low R-loop scores, with pie charts
illustrating the distribution of malignant cells across different trajectory branches. (C) The heatmap illustrates the changes over time for the top 50
genes associated with the trajectory. (D) KEGG enrichment analysis of differentially expressed genes (DEGs) between the high and low R-loop score
groups. (E) KEGG enrichment analysis of metabolic activity in malignant cells with high and low R-loop scores. (F-I) Pearson correlation analysis of
R-loop modeling genes and the fatty acid metabolism pathway, including PYM1 (F), CTPS1 (G), CLTC (H), and VDAC3 (I).
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YWHAZ, and SLC25A6 showed significant negative correlations

with this signaling pathway (Supplementary Figures S4F-H).

Collectively, it is reasonable to speculate that the fatty acid

metabolism pathway may play a pivotal role in mediating the

regulatory effects of R-loops.
Construct and identify the prognostic R-
loop-associated gene signature using bulk
RNA-seq dataset

Next, utilizing the TCGA dataset as a training cohort and based

on the candidate regulator genes mentioned above, eight pivotal

genes (PYM1, CLTC, VDAC3, SRPK1, NOSIP, FANCG, YWHAZ,

and SLC25A6) were ultimately identified by LASSO regression and

multivariate Cox regression to construct a prognostic signature

(Figure 6A). The 8-gene model formula was as follows: Risk score

= (PYM1 exp) * 0.1635 + (CLTC exp) * -0.1623 + (VDAC3 exp) *

0.1596 + (SRPK1 exp) * 0.1631 + (NOSIP exp) * 0.0929 + (FANCG

exp) * -0.0018 + (YWHAZ exp) * 0.0802 + (SLC25A6 exp) * -0.3306.

Based on the median value of risk score, HCC patients from the

TCGA, ICGC, or GSE76427 dataset were categorized into high- and

low-risk groups. The survival curve indicated a poorer prognosis for

patients in the high-risk group across both the training and test

cohorts (Figure 6B, Supplementary Figures S5A, B). Moreover, we

evaluated the prognostic value of R-loop scores using a univariate

Cox model, revealing that patients in the high-risk group had

significantly worse prognosis across all three cohorts compared to

those in the low-risk group (Supplementary Figure S5C). To further

investigate the relationship between risk scores and the tumor

immune microenvironment, we analyzed the proportions of

tumor-infiltrating immune subpopulations in the two groups. The

results revealed significant upregulation of activated B cells, central

memory CD8+ T cells, effector memory CD8+ T cells, immature B

cells, NKT cells, and others in the low-risk group, which was

consistent with the previous findings (Figure 6C). Moreover, the

ImmuneScore, StromalScore, and ESTIMATEScore were higher and

the TumorPurity score was lower in the low-risk group, suggesting a

greater presence of immune components and a lower proportion of

tumor components in their tumor immune microenvironment

(Figure 6D, Supplementary Figure S5D). Analysis of immune

checkpoint differences between high- and low-risk groups revealed

that PDCD1LG2, HAVCR2, CSF1R, CD274, KDR, IDO1, and CD96

were expressed at higher levels in the low-risk group, suggesting that

patients in this group may benefit from treatments targeting the

corresponding immune checkpoint (Supplementary Figure S5E).

Subsequently, we sought to investigate the relationship between R-

loop scores and patients’ responses to immunotherapy. Nevertheless,

immunotherapy datasets for HCC, including GSE215011 and

GSE279750, were unsuitable for evaluating the association between

R-loop levels and prognosis due to the lack of prognostic information

in both datasets. Consequently, we attempted to analyze the impact of

R-loop scores on patients’ responses to immunotherapy using

datasets from other cancers, including breast cancer, melanoma,

and urothelial cancer. Our results indicated that patients who

received immunotherapy in the high-risk group had significantly
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poorer OS compared to those in the low-risk group in five

independent cohorts, including GSE25055 (BRCA, P < 0.0001),

GSE78220 (MM, P < 0.0001), GSE91061 (MM, P = 0.034),

GSE176307 (UC, P = 0.01), and imvigor210 (UC, P = 0.00011)

(Supplementary Figure S5F). Furthermore, patients who responded

to immunotherapy had lower risk scores compared to those in the

non-responder group in four datasets, such as GSE78220 (MM, P <

0.05), imvigor210 (UC, P < 0.05), GSE91061(MM, P > 0.05) and

GSE176307 (UC, P > 0.05) (Supplementary Figure S5G). Meanwhile,

immune response-related factors, antigen presentation and

costimulatory molecules were downregulated in the high-risk

group, while co-inhibitory molecules were upregulated, which is

consistent with the findings (Supplementary Figures S5H-K). In

conclusion, we confirm that the prognostic prediction risk model

established based on RLRGs is indeed related to the immune status,

which could effectively predict the prognosis and response to

immunotherapy in the tumor patients.

Typically, genetic mutations can affect tumor progression and

drug treatment response by modifying the molecular genetic profile

of tumor cells. Supplementary Figure S6A illustrated a

comprehensive overview of the TCGA-LIHC mutation data,

indicating that the most prevalent category of variant

classification was missense mutations, with single nucleotide

polymorphisms being the most common type of variant type.

Furthermore, it was observed that the median value of variants

across each sample was 73, while also displaying the top 10 mutated

genes. In detail, through merging the mutation data with the high-

and low-risk groups, we analyzed the top 20 mutated genes, and the

waterfall diagram was drawn, respectively. As shown, the top 20

mutated genes had a mutation frequency of 93.02% in the high-risk

group and 86.47% in the low-risk group, with TP53 exhibiting the

highest mutation frequency among all genes in both risk groups

(Figures 6E, F). Finally, we further explored the differential response

to 198 chemotherapeutic drugs between the high- and low-risk

groups. The susceptibility to various chemotherapeutic agents

differed between the two groups, among which 11 drugs were

identified as potentially effective treatments for HCC patients in

the high-risk group, including MK-1775, Navitoclax, Ulixertinib,

AZD7762, Wee1 inhibitor, Paclitaxel, BI 2536, MG-132, AZD6738,

Telomerase Inhibitor IX, and Sepantronium bromide (Figures 6G-I,

Supplementary Figures S6B-I). Overall, a novel prognostic model

based on 8 R loop-related genes is constructed and validated in

HCC, which is robustly connected to the genomic heterogeneity

and immunosuppressive status of patients, thereby providing an

option for drug therapy.
CLTC regulates lipid metabolism by
affecting R-loop formation in HCC

As previously mentioned, PYM1, CTPS1, and CLTC showed

the strongest correlation with fatty acid metabolism. To further

examine whether lipid metabolism was associated with RLRGs and

to identify the key factor involved, we compared the mRNA levels of

PYM1, CTPS1, and CLTC in HCC samples from the TCGA cohort

and found that CLTC levels were significantly upregulated in
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clinical HCC tissues relative to the other genes (Figure 7A).

Moreover, CLTC expression was more highly enriched in HCC

tumor samples than in the corresponding normal tissues

(Figure 7B). Of note, HCC patients with higher CLTC expression
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showed poorer survival outcomes compared to those with lower

CLTC expression (Figure 7C). Collectively, these data suggest that

CLTC, as the key RLRG, is associated with a worse clinical

prognosis of HCC patients. Consequently, we selected CLTC for
FIGURE 6

Construct and identify the prognostic R-loop-associated gene signature. (A) The prognostic model was constructed using eight key genes identified
through Lasso analysis. (B) The Kaplan-Meier curve illustrates the survival differences between the high- and low-risk groups in the TCGA database
according to this prognostic model (log-rank test). (C) Comparison of immune cell infiltration between high- and low-risk groups (Wilcoxon rank-
sum test). (D) Comparison of tumor microenvironment scores between high- and low-risk groups (Wilcoxon rank-sum test). (E) Mutational
landscape of patients in the high-risk group. (F) Mutational landscape of patients in the low-risk group. (G-I) Comparison of IC50 values for MK-1775
(G), Navitoclax (H), and Ulixertinib (I) between high- and low-risk groups (Wilcoxon rank-sum test). **P < 0.01; ***P < 0.001, P < 0.05 was
considered statistically significant.
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FIGURE 7

CLTC regulates lipid metabolism by affecting R-loop formation in HCC. (A) Differential expression of PYM1, CTPS1, and CLTC in tumor tissues from TCGA-
LIHC (Kruskal-Wallis test). (B) Differences in CLTC expression between tumor and normal tissues in TCGA-LIHC (Wilcoxon rank-sum test). (C) Overall
survival differences between patients with high and low CLTC expression in TCGA-LIHC (log-rank test). (D) qRT-PCR and western blot assays were used to
measure the expression of mRNA and protein levels of CLTC in four different types of human HCC cell lines and normal human liver cells. (E) qRT-PCR
and western blot analysis of CLTC in HepG2 and HCC-LM3 cells using control shRNA (NC) or CLTC-specific shRNA (sh-CLTC). (F) Dot blot showing
differences in R-loop formation after CLTC knockdown in HepG2 and HCC-LM3 cells. (G, H) DRIP-qPCR was used to assess APOE (G) and RPL13A (H)
expression in HCC-LM3 cells with CLTC knockdown compared to negative controls, with RNase H treatment as a control. (I, J) Expression of the lipogenic
enzyme genes FASN, ACLY, ACC, SCD, and ACSL1 was measured by qRT-PCR in HepG2 (I) and HCC-LM3 (J) cells expressing sh-NC and sh-CLTC.
GAPDH was utilized as an internal control. (K) Measurement of intracellular triglyceride levels in HepG2 and HCC-LM3 cells transfected with sh-CLTC.
(L) Measurement of intracellular cholesterol levels in HepG2 and HCC-LM3 cells transfected with sh-CLTC. (M) Oil Red O staining was used to assess the
effect of CLTC on lipid droplets in HepG2 and HCC-LM3 cells. (N, O) Expression of the lipogenic enzyme genes FASN, ACLY, ACC, SCD, and ACSL1 was
measured by qRT-PCR in HepG2 (N) and HCC-LM3 (O) cells with DHX9 and TOP3B silencing after CLTC knockdown. GAPDH was utilized as an internal
control. (P) Measurement of intracellular triglyceride levels in HepG2 and HCC-LM3 cells with DHX9 and TOP3B silencing after CLTC knockdown.
(Q) Measurement of intracellular cholesterol levels in HepG2 and HCC-LM3 cells with DHX9 and TOP3B silencing after CLTC knockdown. (R) Oil Red O
staining was used to assess lipid droplets in HepG2 and HCC-LM3 cells with DHX9 and TOP3B silencing after CLTC knockdown. The following notation
indicates statistically significant differences: **P < 0.01; ***P < 0.001, ns, not significant. P < 0.05 was considered statistically significant (two-tailed t test).
ns, not significant.
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the functional experiment validation. Firstly, we measured the

expression levels of CLTC in HCC cell lines (HepG2, Hep3B,

Huh-7, and HCC-LM3) and a normal human liver cell line

(LO2). RT-qPCR and western blot analysis exhibited a

remarkable upregulation of CLTC in HCC cell lines compared to

the LO2 cells (Figure 7D). Before loss-of-function assays, the

knockdown efficiency of CLTC was assessed by RT-qPCR and

western blot assays in HCC-LM3 and HepG2 cells. The results

showed that CLTC expression was observably down-regulated in

sh-CLTC-transfected cells compared to the negative control

(Figure 7E). We next examined the effect of CLTC deficiency on

R-loop formation and found that CLTC knockdown significantly

reduced total R-loop formation in HCC cells, as determined by the

S9.6 immuno-dot blot assay (Figure 7F). The APOE, RPL13A, and

EGR1 loci, which are known to be involved in R-loop structures,

were found to pause RNA Pol II transcription by forming R-loop

structures (27). Meanwhile, the R-loop complex was sensitive to

RNase H, which hydrolyzes RNA in RNA/DNA hybrids. We

further conducted RNA-DNA immunoprecipitation and qPCR

(DRIP-qPCR) analysis in HCC-LM3 and HepG2 cells. We noted

a depletion of R-loop formation in sh-CLTC-transfected cells.

Importantly, when the samples were treated with RNase H, the

levels of R-loops dramatically decreased, confirming that the signal

detected was specific for RNA-DNA hybrids (Figures 7G, H and

Supplementary Figures S7A–D), suggesting that CLTC played a key

role in R-loop formation.

Next, we aimed to determine whether CLTC affected lipid

metabolism in HCC cells. As reported, abnormal lipid

metabolism in tumors is accompanied by dysregulation of some

key lipogenic enzymes, including FASN, ACLY, ACC, SCD, and

ACSL1 (28). RT-qPCR results displayed that the expression of the

key lipid synthesis genes was significantly down-regulated following

CLTC suppression (Figures 7I, J). Besides, Pearson correlation

analysis showed that CLTC RNA level was positively correlated

with the RNA levels of the key lipid synthesis genes, including

FASN (r = 0.17, P = 0.0021), ACLY (r = 0.39, P = 5.4e-14), ACC (r =

0.31, P = 2.6e-09), SCD (r = 0.58, P = 0.00079), and ACSL1 (r = 0.54,

P = 0.0019) (Supplementary Figure S7E-I). Moreover, the levels of

triglycerides and cholesterol in HCC cells with CLTC knockdown

were significantly reduced compared with those in control cells

(Figures 7K, L). The effect of CLTC on lipogenesis in HCC cells was

further investigated using Oil Red O staining, which showed that

CLTC inhibition decreased lipid droplet levels in HepG2 and HCC-

LM3 cells (Figure 7M). To determine whether the regulation of lipid

metabolism by CLTC was mediated through R-loop formation, we

conducted a rescue experiment in HCC cells. S9.6 immuno-dot blot

and DRIP-qPCR assays revealed that the silencing of DHX9 and

TOP3B, synergistic suppressors of promoter-associated R-loops,

reversed the reduction in R-loop levels caused by CLTC knockdown

(Supplementary Figures S7J-P). As indicated, RT-qPCR assays

demonstrated that silencing CLTC significantly downregulated

the mRNA levels of lipid metabolism-related genes, which could

be partially reversed by restoring R-loop levels (Figures 7N, O).

Additionally, the restoration of R-loop partially rescued the

inhibitory effect of CLTC knockdown on the levels of triglycerides

and cholesterol (Figures 7P, Q). Oil Red O staining revealed that
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CLTC knockdown significantly reduced lipogenesis in HCC cells,

while restoration of R-loop could partially alleviate this phenotype

(Figure 7R). Therefore, we conclude that CLTC as a key RLRG

could regulate lipid metabolism by affecting R-loop formation in

HCC cells.
CLTC promotes tumor progression in HCC

Considering that CLTC regulates lipid metabolism, which is

crucially linked to tumor progression, we therefore further explored

whether CLTC could modulate the tumor progression.

Consequently, we conducted a series of functional experiments to

evaluate the role of CLTC in HCC progression. To identify the effect

of CLTC on the cell proliferation in HCC, we performed CCK8,

colony formation, and EdU assays. Firstly, CCK8 assays clearly

showed that CLTC knockdown inhibited cell viability in HepG2

and HCC-LM3 cells at different time points (24, 48, 72, and 96 h)

(Figure 8A). As shown in Figure 8B, CLTC suppression significantly

decreased colony formation compared to the sh-NC group.

Consistently, EdU assays revealed that the ratio of EdU-positive

nuclei in the sh-CLTC group was lower than that of sh-NC group

(Figure 8C). Taken together, our data suggest that CLTC

knockdown could block the proliferation of HCC cells. Moreover,

we further investigated the effect of CLTC on cell metastasis by

adopting the wound healing and transwell assays in HCC cells. The

wound healing assays illustrated that the wound width of the sh-NC

group was remarkably shortened than that of the sh-CLTC group

(Figure 8D). Similarly, the transwell assays revealed fewer migrated

cells in the sh-CLTC group compared to the sh-NC group

(Figures 8E, F), confirming that knockdown of CLTC could

significantly diminish the migratory ability of HCC cells. To

evaluate the effect of CLTC on HCC progression in vivo, a

subcutaneous tumor model was established in BALB/c nude mice.

In comparison to the sh-NC group, mice in the sh-CLTC group

exhibited significantly lower tumor volume and weight, suggesting

that CLTC knockdown effectively inhibited tumor growth

(Figures 8G–I). Meanwhile, Immunohistochemical (IHC) analysis

of xenograft tumors demonstrated that the protein levels of CLTC,

along with the lipid metabolism-related genes FASN and SCD, were

significantly decreased in the sh-CLTC group compared to the sh-

NC group. Furthermore, a decrease in Ki-67 expression was

observed in the sh-CLTC group compared to the sh-NC group,

suggesting a reduced rate of cellular proliferation (Figure 8J).

Collectively, these findings suggest that depriving CLTC can

suppress the progression of HCC.
Discussion

R-loops play a multifaceted role in gene regulation by aiding

transcriptional termination, facilitating centromere function,

promoting DNA methylation, and supporting histone modification

(29–31). Dysregulation of R-loops is associated with increased genomic

instability, a hallmark of cancer that contributes to its initiation and

progression (32). Recent research indicates that a predictive model
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based on RLRGs is effective in assessing immune evasion, metabolic

reprogramming, and prognosis in lung cancer patients, further

confirming the strong link between abnormal R-loops and tumor

progression (33). Notably, research has uncovered aberrant R-loops as

a significant mechanism potentially contributing to drug resistance and
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tumor stemness in HCC (18, 19). Nonetheless, the precise role and

underlyingmolecular mechanisms of abnormal R-loops and the related

genes in HCC remain incompletely understood, underscoring the need

for further investigation. In this study, R-loop scores emerged as an

effective signature of tumor malignancy and chemotherapy response,
FIGURE 8

CLTC promotes tumor progression in HCC. (A) The CCK-8 assay was utilized to assess the proliferation capacity of HepG2 and HCC-LM3 cells
expressing sh-NC and sh-CLTC. (B) Colony formation of HepG2 and HCC-LM3 cells was significantly reduced in the sh-CLTC group compared to
the sh-NC group. (C) The proliferation of HepG2 and HCC-LM3 cells expressing sh-NC and sh-CLTC was evaluated using the EdU assay. (D) Scratch
wound-healing assays were used to assess the migration of HepG2 and HCC-LM3 cells expressing sh-NC and sh-CLTC. (E, F) The impact of CLTC
on cell migration was investigated using transwell assays in HepG2 and HCC-LM3 cells. (G) Representative images of the xenograft tumors derived
from the indicated HepG2 cells. (H, I) Tumor volumes (H) and weights (I) of the xenografts originating from the indicated HepG2 cells. (J)
Representative IHC staining showing the protein expression of CLTC, FASN, SCD, and Ki67 in the aforementioned groups. ***P < 0.001. P < 0.05 was
considered statistically significant (two-tailed t-test).
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offering a valuable tool for evaluating the tumor immune

microenvironment, genetic mutations, and prognosis in HCC

patients. Importantly, we found that CLTC, a key RLRG, regulated

lipid metabolism by influencing R-loop formation and facilitated

tumor progression in HCC.

Recently, limited research suggests that R-loops may be

involved in regulating the replication and transcription processes

of viral genomes. For instance, computational analysis of over 6,000

viral genomes indicates that R-loop-forming sequences are

regulated in over 70% of dsDNA viruses, demonstrating their

extensive distribution across viral genomes (34). The Yiu group

demonstrates that, in the absence of BNRF1, SMC6 disrupts the

formation of replication compartments by recognizing and binding

to R-loop regions within the EBV genome, thereby regulating

genome stability and infectious virion production (35). Of note,

HCC patients commonly exhibit concurrent HBV infection, which

reportedly facilitates the carcinogenesis and malignant progression

through direct or indirect mechanisms (36). In this study, we

constructed an R-loop scoring model using the 165 R-loop

regulators that were significantly associated with HBV infection.

As expected, the R-loop scores of HBV-infected samples were

significantly higher than those of non-infected samples,

suggesting a strong correlation between R-loop scores and HBV

infection. Furthermore, the R-loop scores were upregulated in

tumor samples and malignant cells and increased with clinical

stage, indicating that R-loop formation might contribute to the

initiation and malignant progression of HCC.

In the tumor immune microenvironment, complex intercellular

communication among tumor cells, immune cells, and stromal cells

influences tumor progression and treatment response (37). Certain

studies indicate that R-loops may modulate the tumor immune

microenvironment by influencing cellular homeostasis among

different cell types. For example, a deficiency in Ten-eleven

translocation (TET) enzyme leads to an increase in G-quadruplexes

and R-loops, disrupting normal B cell homeostasis and promoting B

cell lymphoma development, whereas therapies targeting R-loops

enhance apoptosis in TET-deficient B cells (38). Notably, the

treatment response and disease progression of HCC patients vary

greatly among individuals due to their complex tumor immune

microenvironment and high heterogeneity (39). During our

analysis of immune cells in the tumor immune microenvironment,

we found that CD4+ naive T cells, CD4+ Th1-like cells, and NK cells

were significantly downregulated in the high R-loop score group,

while CD8+ exhausted T cells were markedly increased. Decreased

CD4+ naive T cells directly impact antigen-specific responses and the

generation of effector T cells (40), while the decrease in CD4+ Th1-

like T cells weakens the body’s immune surveillance and attack

against tumors (41), and the decrease in NK cells impairs the

ability to clear tumor cells (42). The increased presence of CD8+

exhausted T cells suggests impaired functionality, characterized by a

reduced proliferative capacity and weakened tumor-killing

capabilities (43). Besides, high R-loop scores were associated with

lower levels of TAA, MHC, ICD and IFN-a response score. These

changes suggest that R-loop accumulation mediates the formation of

an immunosuppressive microenvironment, thereby facilitating

immune evasion. In recent years, immunotherapy has emerged as a
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new beacon of hope for patients with advanced HCC, progressively

becoming a focal point in both foundational and clinical research.

Regrettably, only a minority of patients exhibit positive responses to

immunotherapy (44). Therefore, we proposed that R-loops could

serve as biomarkers to identify patients who might benefit more from

immunotherapy. The regulatory role of R-loops in the tumor

immune microenvironment observed in scRNA-seq data prompted

us to further explore the relationship in bulk RNA-seq data. Immune

evasion, facilitating tumor suppression or evasion of immune cell

attacks through various mechanisms, was correlated with the extent

of immune cell infiltration (45). We further observed that activated B

cells, central memory CD8+ T cells, effector memory CD8+ T cells,

immature B cells, NKT cells, exhibited lower expression in the high-

risk group, suggesting suppression of anti-tumor immune function,

potentially aiding tumor immune evasion. Immune checkpoint

analysis indicates that patients in the low-risk group are more

likely to benefit from immune checkpoint inhibitors (ICIs)

treatment, highlighting the potential of R-loop scores to guide

personalized ICIs therapy. In addition, TP53 had the highest

mutation frequency in both high- and low-risk groups, with its

inactivation or mutation altering T cell activity and recruitment,

leading to dysregulation of the tumor immune microenvironment

and immune escape. Since the therapeutic response of patients in

different risk groups is influenced by their immune status, we aimed

to identify drugs that are more effective for patients in high-risk

groups to improve their prognosis. Based on our findings, we

identified eleven drugs, including MK-1775 and Navitoclax, that

show promising therapeutic potential for high-risk patients.

Cancer cells require substantial energy during their development to

adapt to the demands of survival, growth, proliferation, invasion, and

metastasis, which are supported by reprogrammed lipid metabolism

(46). Abnormal lipid metabolism, in particular, contributes to

malignant progression and drug resistance in HCC, as the liver

serves as the core metabolic organ (3). R-loops reportedly may play a

role in regulating cellular lipid metabolism. The SARS-CoV-2 spike

protein increases R-loop formation on MSR1 mRNA, leading to

inhibition of macrophage lipid uptake and thereby alleviating

atherosclerosis (47). Cell trajectory analysis of our data revealed that

the expression of genes related to the PPAR pathway became

progressively stronger as the percentage of malignant cells with high

R-loop levels increased. Meanwhile, as PPAR signaling plays an

important role in adipocyte differentiation and fatty acid metabolism,

we further observed that malignant cells in the high R-loop score group

significantly activated fatty acid metabolism-related pathways.

Subsequently, our prognostic model, established using eight RLRGs

significantly associated with lipid metabolism, revealed markedly lower

survival rates in the high-risk group. To the best of our knowledge, this

study is the first to demonstrate a link between R-loops and lipid

metabolism in tumors, and further investigation is warranted to clarify

the underlying molecular mechanisms.

Clathrin, a multimeric protein complex composed of three

CLTC and three clathrin light chains, plays a critical role in

mitotic progression and membrane trafficking (48). CLTC has

been reported to promote the development and progression of a

wide range of tumors and is associated with poor prognosis. For

example, CLTC facilitates the oncogenesis and progression in
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osteosarcoma by activating the TGF-beta and AKT/mTOR

signaling pathways (49). CLTC, which is upregulated in tumor

tissues, promotes tumorigenesis by altering the cellular response to

TGF-b and is considered a potential biomarker for assessing

prognosis and treatment efficacy in HCC (50). In this study, by

integrating single-cell RNA-seq and bulk RNA-seq data with

experimental validation, we proposed a novel perspective that

CLTC could regulate lipid metabolism through its influence on

R-loop formation, and promote the proliferation and migration of

HCC cells, thus providing novel insights into targeting R-loops for

HCC treatment.
Conclusions

In conclusion, at single-cell resolution, we investigated the

strong association of R-loop levels with malignancy and HBV

infection of HCC and observed that elevated R-loop formation

disrupts the balance of T cells and immune escape molecules,

thereby creating an immunosuppressive microenvironment that

promotes tumor progression. In addition, a novel prognostic

model based on eight RLRGs was constructed and validated to

effectively assess the tumor immune microenvironment, drug

response, and prognosis in HCC patients. Notably, targeting

CLTC, a critical RLRG, can effectively inhibit R-loop-mediated

lipid metabolic reprogramming, and suppress the proliferation

and migration of HCC, which suggests that R-loops could serve

as potential therapeutic targets and prognostic biomarkers for HCC.
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