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Melanoma is a highly malignant skin tumor characterized by high metastasis and

poor prognosis. Recent studies have highlighted the pivotal role of melanoma

stem cells (MSCs)—a subpopulation of cancer stem cells (CSCs)—in driving tumor

growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in

other cancers, MSCs possess unique characteristics, including specific surface

markers, dysregulated signaling pathways, and the ability to thrive within

complex tumor microenvironment (TME). This review explored the current

landscape of MSC research, discussing the identification of MSC-specific

surface markers, the role of key signaling pathways such as Wnt/b-catenin,
Notch, and Hedgehog (Hh), and how interactions within the TME, including

hypoxia and immune cells, contribute to MSC-mediated drug resistance and

metastatic behavior. Furthermore, we also investigated the latest therapeutic

strategies targeting MSCs, such as small-molecule inhibitors, immune-based

approaches, and novel vaccine developments, with an emphasis on their

potential to overcome melanoma progression and improve clinical outcomes.

This review aims to provide valuable insights into the complex roles of MSCs in

melanoma biology and offers perspectives for future research and therapeutic

advances against this challenging disease.
KEYWORDS

melanoma stem cells, surface marker, signaling pathway, tumor microenvironment,
therapeutic advances
Introduction

Melanoma, recognized as the most formidable skin malignancy, with an alarming

global trend characterized by escalating incidence and mortality rates (1). According to

International Agency for Research on Cancer (IARC), there are approximately 325,000 new

cases associated with cutaneous melanoma in 2020 (2), accounting for 1.7% of all cancer

diagnoses, with a potential 57,000 deaths in the same period (1). The armamentarium of

melanoma treatment modalities encompasses surgical intervention, radiation therapy,
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chemotherapy, immunotherapy, and targeted therapy (3, 4). Due to

its great heterogeneity and high metastatic potential, melanoma

demonstrates a considerably restricted responsiveness to currently

available therapeutic interventions (5).

CSCs represent a limited subset of neoplastic cells residing

within tumor microenvironment (TME), distinguished by their

intrinsic potential for incessant self-renewal, unrestricted

proli ferative expansion, and pluripotent aptitude for

differentiation across diverse cellular lineages (6). They are also

recognized as the origin of tumor relapse and the facilitators of

metastatic progression, primarily due to their comparatively

quiescent state and their capability to efflux chemotherapeutic

agents from intracellular compartments (7, 8). Similar to other

stem cells, melanoma spheroid cells, demonstrate the capacity for

proliferation, differentiation, and self-renewal (9, 10). Furthermore,

their substantial tumorigenic potential was corroborated through

experiments involving SCID/NOD mice.

The absence of established markers for distinguishing

melanoma stemness underscores the central and contentious

issue in the current discourse: the identification of melanoma

stem cells (MSCs). Presently, the most extensively investigated

markers include CD20 (11, 12), CD133 (13–15), CD271 (15, 16),

ABCB5 (17, 18), and SOX10 (19, 20); nonetheless, none of these

markers has definitively demonstrated exclusive specificity for

MSCs. Efforts to target these markers have led to the

development of novel therapeutic strategies aimed at isolating

and eliminating these resilient cells.

In addition to surface markers, targeting aberrant signaling

pathways in MSCs has emerged as another promising strategy.

Abnormal activation of pathways such as Wnt, Hedgehog(Hh),

and Notch is commonly associated with the maintenance of MSC

characteristics (21), including their self-renewal and drug

resistance (22). Therapeutic interventions targeting these

pathways—such as small molecule inhibitors or pathway-specific

antibodies—have shown potential in disrupting the stemness and

survival of MSCs, thereby curbing melanoma progression.

Moreover, recent advances in immunotherapy have further

expanded the arsenal against melanoma, with a growing focus on

targeting CSCs to mitigate tumor relapse and metastasis.

Immune checkpoint inhibitors(ICIs), such as anti-PD-1/PD-L1

and anti-CTLA-4, have been pivotal in reactivating the immune

system’s ability to recognize and attack CSCs, thereby improving

clinical outcomes for many patients (23, 24). Emerging

approaches like CAR-T cell therapy and CSC-targeted

vaccines, seem to be a potentially powerful choice for

prevention or treatment of cancers (25). These innovations not

only deepen our understanding of the interplay between CSCs

and the immune system but also open new avenues for

developing therapies aimed at reducing recurrence and

overcoming resistance in melanoma treatment.

In this comprehensive review, we synthesized recent research

on cell surface markers and signaling pathways implicated in

melanoma stemness, while also elucidating how MSCs interacted

with the complexities of the TME. Additionally, we discussed the

therapeutic implications of targeting these aspects, offering insights

into potential directions for improving melanoma treatment
Frontiers in Immunology 02
strategies. These insights were expected to pave the way for more

effective therapeutic approaches, warranting further in-depth

research and exploration.
Methods

Literature search strategy

A comprehensive literature search was conducted to gather

relevant studies for this review. The search was performed across

major scientific databases including PubMed and Web of Science.
Keywords

The search included combinations of keywords such as “cancer

stem cells”, “melanoma”, “tumor microenvironment”, “biomarkers”,

“signaling pathway”, “sphingolipids”, “S1P”, “exosomes”,

“immunotherapy”, “Targeted therapy”, “drug resistance”, “immune

modulation”, “immune cells” and “metabolic reprogramming”.

Boolean operators (AND, OR) were used to refine the search,

ensuring thorough coverage of all relevant topics.
Inclusion and exclusion criteria

Studies included in this review were selected based on relevance

to the impact of the TME on MSCs, interactions between immune

cells and MSCs, and molecular mechanisms within the TME that

influence CSC survival and function. Only peer-reviewed articles

written in English were considered. Studies were excluded if they

focused on non-melanoma cancers or lacked sufficient data on the

interaction between the TME and MSCs.
Time frame

The review primarily includes studies published within the past

20 years (2004-2024), ensuring a focus on recent advancements

while also capturing significant earlier research that has contributed

to the understanding of TME-CSC interactions.
Identifying Biomarkers for MSCs

CSCs are believed to manifest cellular surface and intracellular

indicators traditionally correlated with tissue-specific stem cells,

playing a pivotal role in the generation of tumor heterogeneity (26).

From amolecular point of view, MSCs can be isolated and identified

by the expression of stemness-associated markers, such as surface

markers, ATP-binding cassette (ABC) transporters, embryonic

stem cells and intracellular markers (27). Conversely, the presence

of distinct biomarkers for MSCs remains a subject of debate,

primarily due to the remarkable plasticity of this malignancy and

the potential coexistence of various mechanisms contributing to
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melanoma progression (28). As mentioned previously, MSCs can be

characterized based on the expression of markers such as CD20,

CD133, and CD271 et al., and the main MSCs markers proposed

and studied in the previous literature are summarized as

follows (Table 1).
CD20

CD20, a non-glycosylated phosphoprotein, plays a regulatory

role in the proliferation and differentiation of B lymphocytes. Given

its ubiquitous expression on the surface of B lymphocytes and its

tendency to bind readily to antibodies without shedding,

monoclonal antibodies targeting CD20 have emerged as the

standard treatment for non-Hodgkin’s lymphoma. In 2005, a

study found that the tumor stem cell population was enriched in

the CD20(+) fraction of melanoma cells. Fang et al. (11) identified

the presence of multipotent spheroid cells within melanoma cell

lines. Their study has revealed that the stem cell population within

melanoma cells is notably enriched in the CD20(+) fraction, thus

designating it as a MSCs population. Notably, the CD20(+) fraction

demonstrated a tendency to form larger spheres in comparison to
Frontiers in Immunology 03
the CD20(-) fraction, along with a heightened potential for

mesenchymal differentiation (11). It is crucial to highlight that

CD20(+) cells, which play a pivotal role in tumor stemness,

constitute a relatively small fraction, representing approximately

2% of the total melanoma cell population. Schlaak et al. treated

patients with metastatic melanoma by injecting the therapeutic

anti-CD20 antibody rituximab at the lesion site and showed that the

use of rituximab yielded excellent efficacy, accompanied by a

reduction in the melanoma serum marker S-100 to levels within

the physiological range (29).
CD133

CD133, or Prominin-1, is considered to be the most important

surface marker for identifying mesenchymal stem cells (30–32).

Indeed, in various tumor types, such as glioma, colon cancer,

pancreatic cancer, and liver cancer, CD133(+) cells consistently

display characteristics resembling those of stem cells (32),

underscoring the potential significance of CD133 as a marker for

tumor stem cells. In the context of melanoma, only the CD133(+)

subpopulation, not the CD133(-) counterpart of melanoma cells,

were able to reform a Mart-1 (a characteristic melocytic marker)

positive tumour in NOD-SCID mice (33). CD133 expression levels

demonstrate an elevation in both primary and metastatic

melanomas when contrasted with their normal pigmented nevi

counterparts (34). Additionally, research findings from other

studies have also indicated a correlation between increased

CD133 expression levels and enhanced tumorigenicity and

metastatic propensity in melanoma (30). However, doubts still

abound, researchers sought to assess whether markers such as

CD10, CD133, nestin and CD20 could assess the prognosis of

advanced melanoma, the results showed that they were unable to

detect a significant correlation between nestin or CD133 expression

in melanoma and patient survival or clinical outcome (35), which

implies that CD133 may not exert a significant influence as a

prognostic factor.
CD271

CD271, also termed the low-affinity nerve growth factor

receptor or p75NTR, is a characteristic marker of mesenchymal

stem cells (36, 37). Melanocytes are formed during the

differentiation of multipotential neural crest stem cells (NCSCs)

under precise regulatory mechanisms. CD271 exhibits analogous

expression patterns in melanocytes, melanoma cells, and NCSCs

(38). Furthermore, it plays a pivotal role in governing the

preservation of cellular stemness and migratory characteristics via

an intricate network of interconnected genes. The tumorigenic

assay performed by Bolok et al. showed that CD271 was

identified as a CSC marker that can identify and prospectively

isolate MSCs (37). However, CD271(+) melanoma cells lack

expression of typical melanoma cell surface markers such as TYR,

MART, and MAGE, leading to the speculation that CD271+

melanoma cells may be in a state of incomplete differentiation. In
TABLE 1 Function of common melanoma stem cells(MSCs) markers.

Biomarkers
of MSCs

Function

CD20 CD20 represents a phenotype of MSCs associated with
melanoma drug resistance. CD20+ cells comprise
approximately 2% of the total melanoma cell population.
This CD20-expressing melanoma subpopulation is
distinguished by its capacity for self-renewal, differentiation
into multiple cell lines, and heightened tumorigenicity.

CD133 CD133, a member of the pentameric transmembrane
glycoproteins, is considered the most important surface
marker for the recognition of mesenchymal stem cells.
CD133+ cells exhibit stem cell-like properties in a variety of
tumors including glioma, colon cancer, pancreatic cancer,
and liver cancer.

CD271 CD271 is a low-affinity nerve growth factor receptor that
plays an important role in promoting melanoma cell
invasion and migration in vitro. CD271 promotes the
conversion of melanoma cells from a highly proliferative
and less aggressive to a less proliferative and more
aggressive phenotype.

ABCB5 ABCB5 is a plasma membrane protein and a member of the
human P-glycoprotein family. It is highly overexpressed by
CSCs in various human malignancies.ABCB5 is associated
with clinical tumor progression, chemoresistance and
relapse in patients with malignant melanoma.

ALDH ALDHs are a superfamily of detoxifying enzymes. Involved
in oxidative stress response, contributing to drug resistance
in melanoma. ALDH1 has been linked to the regulation of
signaling pathways involved in CSC maintenance, such as
the Wnt/b-catenin, Notch, and Hedgehog pathways.

SOX10 SOX10 is a thread-specific transcription factor that
promotes the development of neural crest cells and
contributes to the growth of melanoma cells.
Bolded values indicate the names of melanoma stem cell (MSC) markers, highlighting key
identifiers for MSC functions within the table.
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addition, CD271 regulates phenotypic transition, a process that

results in rapid and reversible conversion of the proliferative state to

an invasive state or of the non-stem cell state to a stem cell state, by

mechanisms that are not entirely understood (38). Cheli et al.

considered that CD271 was not a perfect marker for MSCs, their

study showed that not all CD271+ cells were tumorigenic, only the

slow-growing CD271+ cel l subpopulat ion was highly

tumorigenic (39).
ABCB5

ABCB5, a member of the ABC family of transporter proteins, is

highly expressed in CD133(+) melanoma cells. It is considered to be

one of the markers of MSCs and is closely associated with

chemotherapy resistance in MSCs (40, 41). In 2008, Schatton

et al. confirmed that ABCB5 can be used as a molecular marker

for MSCs, ABCB5(+) melanoma cells had a higher tumorigenic

potential than the ABCB5(-) somatic cell population in subsequent

mouse xenograft trials, which re-established clinical tumour

heterogeneity. In vivo genetic genealogy tracing demonstrated the

specific ability of the ABCB5(+) subpopulation to self-renew and

differentiate compared to ABCB(-), as ABCB(+) cancer cells

produced both ABCB5(+) and ABCB5- progeny, whereas the

ABCB5(-) tumor population produced only ABCB5(-) cells (42).

A study by Wang et al. confirmed that ABCB5 is a key factor in

promoting melanoma metastasis. ABCB5(+) malignant MSCs

showed a higher metastatic potential compared to ABCB5(-)

melanoma subpopulation (43).
ALDH

Aldehyde dehydrogenase (ALDH) is a polymorphic enzyme

family responsible for the oxidation of aldehydes to carboxylic

acids. ALDH has also emerged as a promising marker for CSCs,

playing a role in resistance to various chemotherapeutic agents and

immune responses across a range of human solid tumors (32, 44, 45).

The human ALDH superfamily comprises 19 isoforms, each with

distinct biological functions beyond their enzymatic role in

detoxifying bioaldehydes and xenobiotics. Among these, several

isoforms are closely associated with the characterization of CSCs

and the acquisition of malignant properties and drug resistance. For

instance, the ALDH1 family—particularly ALDH1A1, ALDH1A2,

and ALDH1A3—has been identified as a critical marker for normal

stem cells and CSCs. ALDH1 plays a key role in retinoic acid (RA)

signaling, which is essential for maintaining the “stemness” properties

of CSCs (46). The high ALDH activity detected in the Aldefluor assay

is often attributed to ALDH1A1, which contributes to the aldehyde-

induced fluorescence staining (47, 48). However, recent studies have

shown that ALDH1A3 also significantly contributes to Aldefluor

positivity, indicating a broader role for ALDH1 isoforms in CSC

characterization (49). ALDH2, another isoform, has been strongly

correlated with alcohol-related tumor formation, while ALDH3A1 is

implicated in drug resistance through the oxidation of

chemotherapeutic agents like oxazaphosphorines, including
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cyclophosphamide (CP) (47). In melanoma, ALDH(+) cells have

been found to be more tumorigenic compared to ALDH(-) cells.

Knockdown of ALDH expression using siRNA or shRNA leads to cell

cycle arrest, apoptosis, reduced cell viability in vitro, and reduced

tumorigenesis in vivo (50). Nonetheless, it is noteworthy that both

ALDH(+) and ALDH(-) melanoma cell subpopulations displayed

comparable tumorigenic capabilities in both in vivo and in vitro

assays. Additionally, both subgroups exhibited similar responsiveness

to anti-melanoma drugs, including dacarbazine and lexatumumab

(51). Tumors from ALDH(-) cells largely maintained the parental

ALDH(-) phenotype in vivo after 2-3 passages. This reaffirms that the

observed tumorigenicity is indeed an inherent trait of ALDH(-) cells

and is not attributed to inadequate segregation of the two distinct

subpopulations. In contrast, tumors originating from ALDH+ cells

display a mixed population—predominantly ALDH(+) cells, with 20-

40% of cells lacking ALDH activity (51). While ALDH(+) melanoma

cells show a higher capacity to generate phenotypic heterogeneity, the

functional implications of this trait remain unclear. The inability of

the ALDH phenotype to distinguish between cells responsible for

tumor initiation and therapy resistance suggests that it may not

necessarily mark the more aggressive subpopulations within

malignant melanoma. These findings imply that the ability to

reestablish tumor heterogeneity is not inherently tied to a more

aggressive phenotype. Therefore, further research is needed to

determine whether ALDH can serve as a reliable marker for MSCs.
SOX10

SOX10 is in the high-mobility-group (HMG)-box family of

transcription factors and plays an important role in the development

of melanocytes and other neural crest cells (52). The researchers

conducted subcutaneous injections of melanoma cells with normal

SOX10 expression andmelanoma cells with SOX10 silenced by shRNA

in immunodeficient NOD/SCID or nude mice. After an eight-week

period, the melanoma cells expressing SOX10 consistently led to the

development of substantial in vivo tumors (11 out of 14). In contrast,

none of the subcutaneously injected melanoma cells expressing SOX10

shRNA (0 out of 16) resulted in tumor formation, even after an

additional six weeks of observation.This strongly indicate that the

silencing of SOX10 is highly efficacious in preventing the formation of

tumors in melanoma cells in an in vivo setting (53). SOX10 also plays a

significant role in mediating resistance to BRAF inhibition in

melanoma. The downregulation of SOX10 triggers the activation of

TGF-b signaling, which results in the upregulation of epidermal growth

factor receptor (EGFR) and platelet-derived growth factor receptor b
(PDGFRB), ultimately leading to the development of a slow-cycling

phenotype. This, in turn, contributes to resistance against BRAF and

MEK inhibition by bestowing survival signals that are independent of

the MAPK pathway (54). Willis et al. conducted a study to investigate

the staining sensitivity and specificity of SOX10 as a marker for

metastatic melanoma. Their research focused on sentinel lymph

nodes that had been previously diagnosed as positive or negative.

The results revealed that SOX10 immunostaining successfully

identified metastatic melanoma in all examined cases, achieving a

100% detection rate. Additionally, a statistically significant increase in
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staining intensity for SOX10 was observed when compared to S100

protein, HMB-45, and Melan-A (with respective p-values of 0.000,

0.000, and 0.003) (20). The preceding research indicates that SOX10

has the potential to serve as a marker for MSCs.
Major signaling pathways in MSCs

Many signaling pathways critical for regulating the survival,

proliferation, self-renewal, and differentiation characteristics of

normal stem cells experience aberrant activation or suppression

during tumorigenesis or within the realm of CSCs (55). Mutations

in the driving signals of CSCs can trigger the activation of tumor

growth-driving pathways, which is the most common mechanism

of tumor progression and drug resistance (28). Thus far, various

signaling pathways have been identified as participating in the

biological functions of MSCs, including Wnt, Notch, and Hh

pathways(Figures 1–3), which are succinctly delineated below.
Wnt signaling pathways

The Wnt signaling pathway is a crucial regulatory pathway that

governs various cellular functions across different biological

contexts, including embryonic development, tissue homeostasis,
Frontiers in Immunology 05
stem cell maintenance and cell proliferation and differentiation

(56). The most prominent Wnt signaling pathways include

canonical pathways known as the Wnt/b-catenin pathway and

non-canonical pathways such as the Wnt/PCP (planar cell

polarity) pathway, the Wnt/Ca2+pathway, and the WNT/RTK

(receptor tyrosine kinase) pathway (57). Both canonical and non-

canonical WNT signaling cascades play fundamental roles in

shaping the development and evolution of CSCs (58). Active

Wnt/b-catenin signaling was reported in ∼30% of melanoma

tumors, indicating a potentially specific role for this signaling

pathway in this aggressive type of cancer (59). Prior research has

demonstrated that curtailing the heightened activation of b-catenin,
a key gene in the Wnt signaling pathway, or its inactivation by

inhibiting the APC gene can reduce the accumulation of b-catenin
in cells, thus inhibiting the ability of tumor stem cells to self-renew

and proliferate and differentiate, and restoring the sensitivity of

CSCs to radiotherapy (60–62). The expression of the Frizzled 3

receptor (FZD3) is integral to the processes of proliferation and

differentiation of melanocyte derivatives in an in vitro setting. It was

established that FZD3 is essential for melanoma oncogenesis and

establishes a positive feedback mechanism for activating the MAPK

signaling network by initiating the non-canonical WNT pathway.

Downregulation of FZD3 diminished the growth, colony-forming

potential and invasive ability of melanoma cells, besides, the

inhibition of FZD3 expression suppressed melanoma initiation
FIGURE 1

Wnt/b-catenin pathway in CSCs. (By Figdraw). Wnt ligands bind to cell surface receptors, leading to the stabilization and accumulation of b-catenin
in the cytoplasm. Subsequently, b-catenin translocates into the nucleus, where it acts as a coactivator for transcription factors of the T-cell factor/
lymphoid enhancer factor (TCF/LEF) family. This leads to the activation of target gene expression, which regulates cell proliferation, survival, and
differentiation. Dysregulation of the Wnt/b-catenin pathway has been implicated in various diseases, including cancer, where aberrant activation of
the pathway contributes to tumor initiation, progression, and metastasis.
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and growth in vivo. Moreover, the clinical association of FZD3

expression with melanoma progression and reduced patient

survival has been observed (63).
Notch signaling pathways

Similar to the Wnt signaling pathway, the Notch signaling

pathway also assumes a significant role in the regulation of the

maintenance and self-renewal of CSCs (64). The Notch pathway is

composed of four different transmembrane receptors, Notch1 to

Notch4, and their membrane-bound ligands, Jagged1, Jagged2, and

Delta1, Delta3, and Delta4 (65). Previous studies have shown that

Notch1 is highly expressed in 50-60% of melanomas and 65% of

melanoma cell lines, while it is very low or undetectable in normal

melanocytes and pigmented nevi (66). In a separate study,

researchers have conducted an analysis of Affymetrix expression

profiles employing a dataset derived from 44 samples obtained from

patients diagnosed with metastatic melanoma. The findings from

this analysis indicated a potential linkage between the activation of

the Notch signaling pathway and the prognosis of individuals

afflicted with metastatic melanoma (67, 68). Huynh et al. used

RO4929097(a novel g-secretase inhibitor) to target Notch signaling,

the results revealed that it affected the oncogenic and stem cell-like

properties of primary melanoma cells. Furthermore, through the

utilization of in vivo tumorigenic assays, their research
Frontiers in Immunology 06
unequivocally substantiated the capability of RO4929097 to

effectively curtail the growth of both primary and metastatic

melanoma cells (67). This observation further underscores the

potential of targeting the Notch signaling pathway as a promising

therapeutic strategy for the eradication of melanoma.
Hedgehog-GLI signaling pathways

The Hh signaling pathway is a well-conserved cascade essential

for embryonic development, tissue homeostasis, and the

maintenance of stem cells (69, 70). The Hh signaling pathway

exhibits distinct functions in different types of cancer (71).

Throughout tumor development, Hh signaling plays three major

roles: driving tumor initiation, promoting tumor growth, and

regulating residual cancer cells following therapy (55).

Additionally, emerging evidence suggests that the Hh pathway is

involved in promoting the self-renewal of CSCs (72). Evidence

indicates that the Hh pathway is crucial for the oncogenic

characteristics of melanoma, SHH-GLI signaling regulates the

proliferation and survival of human melanoma (73). In 2012,

Roberta et al. demonstrated for the first time that blocking of the

Hh-GLI pathway decreased self-renewal and tumorigenicity of

ALDH high MSCs (61), suggesting that the Hh-GLI1 signaling

pathway significantly influences the self-renewal and tumorigenesis

of MSCs. Additionally, the investigators observed that targeting the
FIGURE 2

Notch signaling pathway in CSCs (By Figdraw). Notch receptors (Notch 1-4 in mammals) interact with ligands (such as Delta-like ligands and
Jagged/Serrate ligands) on neighboring cells. This interaction triggers a series of proteolytic cleavage events that release the intracellular domain of
Notch (NICD). NICD then translocates into the nucleus, where it forms a transcriptional activation complex with other proteins, including the CSL
(CBF1/Suppressor of Hairless/Lag-1) transcription factor. This complex regulates the expression of target genes involved in various cellular processes.
Dysregulation of the Notch signaling pathway has been implicated in numerous diseases, including cancer, neurodevelopmental disorders, and
cardiovascular diseases.
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Hh transcription factors GLI1 and GLI2 restored the sensitivity of

human melanoma cells resistant to vemurafenib and even inhibited

acquired chemotherapy resistance in melanoma patients (74).
Interaction between MSCs and
tumor microenvironment

Increasing evidence indicates that the TME critically regulates

the maintenance of CSCs, thereby controlling cancer progression

and metastasis (75). The TME is a markedly heterogeneous and

intricate milieu, comprising a complex network of cells and

extracellular macromolecules. This encompasses stromal cells,

immune cells, epithelial cells(ECs), and supporting cells within

the extracellular matrix (ECM) (76). Moreover, various

microenvironmental factors, such as the perivascular niche and

hypoxia, have also been substantiated (77). The constituents within

the TME play a pivotal role in facilitating the growth, sustenance,

and differentiation of CSCs (78). Furthermore, they are involved in

conferring therapeutic resistance by shielding tumor cells from

damage caused by treatment interventions (79, 80). It has also

been shown that CSCs also contribute to the re-establishment of the

TME by transdifferentiating into a spectrum of normal stroma-like

cells, such as vascular ECs, vascular pericytes or fibroblasts (81, 82).

Understanding the intricate interactions within the TME, including

those between CSCs and various cellular components, is crucial for
Frontiers in Immunology 07
unraveling the mechanisms that underlie tumor progression and

therapeutic resistance.
Immune cell interactions

MSCs interact with immune cells in the TME to evade immune

detection and promote tumor growth.

T Cells
Cytotoxic T Cells (CD8+ T cells) play a central role in targeting

and killing melanoma cells, including MSCs (83). However, MSCs

can evade immune surveillance by downregulating MHC molecules

and upregulating immune checkpoint molecules such as PD-L1 and

CTLA-4, which suppresses the activity of cytotoxic T lymphocytes

(CTLs). For example, CSCs in mouse B16 melanoma models have

been shown to express higher levels of PD-L1 compared to their

non-CSC counterparts (84). CTLA-4, a key immune checkpoint,

acts during the early stages of T cell activation and serves as a crucial

negative regulator of T cell-mediated immune responses. In

melanoma cell lines B16-F0 and B16-F1, approximately 30-40%

of CSCs expressed CTLA-4, and blockade of CTLA-4 suppressed

stem cell-like properties and significantly inhibited spheroid

formation in vitro (85). Additionally, ABCB5+ melanoma cells

have been reported to exhibit markedly reduced or absent

expression of MHC class I molecules, allowing these cells to
FIGURE 3

Hedgehog signaling pathway in CSCs. (By Figdraw). Hh ligands (such as Sonic Hedgehog, Indian Hedgehog, and Desert Hedgehog) bind to the
Patched-1 (Ptch1) receptor, relieving its inhibition on Smoothened (Smo). This leads to the activation of downstream signaling cascades, including
the Glioma-associated oncogene homolog (Gli) transcription factors. In CSCs, dysregulated Hh signaling can promote self-renewal, proliferation,
survival, and resistance to therapy. Additionally, the Hh pathway has been implicated in maintaining the stemness and plasticity of CSCs, as well as
promoting tumor initiation, progression, and metastasis.
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escape recognition by CD8+ T cells and thereby impairing the anti-

tumor immune response (86). It’s worth mentioning that CSCs’

own oncogenic signaling pathways may also contribute to immune

escape. For instance, activation of the WNT/b-catenin signaling

pathway in melanoma correlates with deletion of the T-cell gene

expression signature (87, 88). Additionally, MSCs secrete

immunosuppressive cytokines such as TGF-b and IL-10, which

promote the recruitment and expansion of Regulatory T cells

(Tregs) and Myeloid-derived suppressor cells(MDSCs), and

reduce their efficiency in attacking tumors (89–91).

Tregs
Tregs suppress anti-tumor immune responses, creating an

immunosuppressive environment that supports MSCs survival

and maintenance. They are often recruited by MSCs through

cytokines like TGF-b and IL-10 (83).

Tumor-associated macrophages
In melanoma, TAMs represent a predominant immune cell

population within TME and play a critical role in carcinogenesis,

metastasis, and drug resistance (92, 93). TAMs contribute to these

processes by promoting angiogenesis, facilitating tumor cell

invasion and metastasis, inducing immunosuppression, and

enhancing resistance to chemotherapy through the secretion of

various cytokines and remodeling of the ECM (94, 95). Moreover,

MSCs also promote macrophages conversion to the tumor-

supportive M2 phenotype, and impair dendritic cell function,

reducing antigen presentation and T cell activation (96).

Myeloid-derived suppressor cells
MDSCs are potent suppressors of T cell responses and are

known to create an immunosuppressive niche that protects MSCs.

In addition, MDSCs are critical in driving epithelial-mesenchymal

transition (EMT) and enhancing stemness of CSCs (97). The

accumulation of MDSCs in peripheral blood and within the TME

has been closely associated with disease progression, diminished T

cell activity, and poorer prognosis in melanoma patients (83, 98).

Dendritic cells
While DCs are essential for antigen presentation and initiating

anti-tumor immune responses, CSCs can impair DC function,

reducing their ability to activate T cells. CSCs can release

cytokines like IL-10, which hinder DC maturation and promote

an immune-tolerant environment (97, 99).

Natural killer cell
NK cells are key effector lymphocytes in the innate immune

system and play a crucial role in protecting the host from tumor

invasion (100). They interact directly with tumor cells and CSCs or

indirectly with other cells to regulate tumor growth within the TME

(101). NK cells are capable of targeting MSCs due to their ability to

recognize stressed cells that lack MHC class I expression. However,

MSCs can evade NK cell activity by releasing immunosuppressive
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factors that inhibit NK cell function. For instance, Integrin-like

protein 1 (ITGBL1), a factor highly expressed in MSCs, has been

found to impair NK cell cytotoxicity and promote melanoma

progression (102).

Neutrophils
Neutrophils can exhibit both pro-tumor (N2) and anti-tumor

(N1) activities. In the case of MSCs, they often adopt an

immunosuppressive phenotype (N2), which supports tumor

progression. Soluble factors like TGF-b, IL-6, and IL-8, secreted

by MSCs, facilitate neutrophil recruitment and induce a shift

toward an N2 phenotype. This process is driven by the activation

of ERK, p38, and STAT3 signaling pathways, alongside the

upregulation of CXCR2 and NF-kB (101). In addition, studies

have shown that in melanoma patients, the more neutrophils

there are, the higher the risk of progression and death (103).
Extracellular matrix and stromal cells

Cancer-associated fibroblasts
Within the TME, fibroblasts become activated in response to

various inflammatory cytokines produced by cancer cells, host

immune cells, and stromal cells. These activated fibroblasts are

commonly referred to as CAFs (104). CAFs secrete growth factors,

foster angiogenesis, remodel the ECM, facilitate metastasis, and

modulate immune infiltration, creating a supportive niche for

tumor cells (105, 106). Melanoma-associated fibroblasts reduce

melanoma cells’ sensitivity to NK-mediated lysis by secreting

active MMPs (107). Apart from these, they also influence key

pathways like Notch and Wnt, maintaining CSC stemness and

differentiation. In 2018, Su and colleagues defined and isolated a

functional subpopulation of CAFs using specific cell surface

markers, namely CD10 and GPR77. Their findings suggested that

targeting specific subpopulations of CAFs could represent an

effective therapeutic strategy for addressing solid tumors driven

by CSCs (108).
Extracellular matrix
The ECM serves as the principal structural component within

the TME, forming a network of biochemically distinct elements

such as fibronectin, glycoproteins, proteoglycans, and

polysaccharides (109). It governs melanoma phenotypic

transitions, metastatic processes, and therapeutic resistance

through direct influence on intracellular signaling pathways like

integrin, Notch, Wnt/b-catenin, TGF-b, and Hippo/YAP pathways

(110). The ECM also affects immune cell recruitment, allowing

CSCs to evade immune surveillance. The dense ECM acts as a

physical barrier, preventing CTLs and NK cells from infiltrating the

tumor core. Additionally, ECM components and CAFs secrete

chemokines that attract Tregs and MDSCs, while also

sequestering chemokines to hinder effector immune cell

recruitment (111).
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Soluble factors and metabolites

Melanoma cells can shape their microenvironment through

both direct cellular interactions and the release of soluble factors,

which are essential for their growth and metastatic potential (112).

These soluble factors include cytokines, chemokines, growth and

angiogenic factors and other signaling molecules (113). For

instance, factors released by macrophages can stimulate nearby

melanoma cells, leading to an increased production of melanoma

inhibitory activity (MIA) in vitro. This elevated MIA, in turn,

enhances the invasive capacity of melanoma cells by modulating

their attachment to the ECM (114). Additionally, TGF-b, IL-6, and
IL-8 released by CAFs and TAM can promote CSCs self-renewal

and tumor progression by activating pathways like STAT3, NF-kB,
and Wnt (80, 81). VEGF and other angiogenic factors

secreted by TME cells enhance neovascularization, creating a

vascular niche that further supports CSCs survival and expansion

(115). Conversely, MSCs can contribute to an inflammatory

microenvironment within the TME by secreting cytokines and

chemokines, such as IL-6, IL-8, and TNF-a. These inflammatory

factors recruit immune cells and hematopoietic stem cells into the

TME, fostering an environment conducive to tumor growth and

metastasis (112). Moreover, these soluble factors not only promote

CSCs growth but also contribute to the establishment of an

immunosuppressive microenvironment by recruiting Tregs and

MDSCs, thereby inhibiting effective immune surveillance (83).
Metabolic adaptations
The metabolic adaptations of MSCs are crucial for their survival

within the nutrient- and oxygen-limited conditions of the TME.

These adaptations include shifts in glycolysis, oxidative

phosphorylation, and lipid metabolism, enabling MSCs to

efficiently manage energy production and survive under stress.

Metabolic reprogramming of tumor cells due to genetic mutations

is a key factor in the formation of TME, which is characterized by

the “Warburg effect”, a predominantly aerobic glycolytic mode of

energy supply (116). These metabolic changes can enhance MSCs

survival and their ability to resist harsh conditions in the TME

(117). In addition to increased glucose uptake and aerobic

glycolysis, tumor cells require lipid metabolic reprogramming to

enhance their biological behavior. Lipids are a source of energy and

the structural basis of all membranes. However, lipids have also

emerged as mediators that not only influence classical oncogenic

signaling pathways but also contribute to the development of

melanoma (118). Moreover, sphingolipids, particularly

sphingosine-1-phosphate (S1P), are bioactive lipids that play a

critical role in the regulation of MSCs and their interactions with

the TME. S1P promotes Stat3- and Akt-mediated tumor cell growth

while upregulating Bcl-2/Bcl-xL, resisting p53-mediated apoptosis,

and stimulating a vicious cycle of tumorigenesis (119). In

melanoma, sphingolipid signaling can enhance MSCs survival by

promoting resistance to apoptosis and facilitating interactions with

other cells in the TME (120).
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Extracellular vesicles

Tumor-derived EVs
Melanoma cells produce various EVs, including exosomes

(EXOs), microvesicles and apoptotic bodies (121). These EVs are

carriers of proteins, lipids, and nucleic acids, such as mRNAs,

microRNAs (miRNAs), and long non-coding RNAs (lncRNAs),

which contribute to pro-tumor processes, including angiogenesis,

immune modulation, and alteration of tissue microenvironments

(122). For instance, MSCs can enhance the metastatic colonization

of non-MSCs through exosomal transfer mechanisms, thereby

improving the transfer efficiency (123). Additionally, another

study showed that Melanoma-Derived Exosomes (MEXs)

also induced vascular leakage at pre-metastatic sites and

reprogrammed biofilm progenitor cells to a pro-angiogenic

phenotype (124). Studies have shown that MEXs played an

important role in regulating immune responses, evading the

immune system and suppressing multiple immune system

functions by either directly impairing the function of immune

effector cells or indirectly stimulating regulatory cells (125–127).

In addition, tumor microvesicles (TMVs) also play multiple roles in

disease development and dissemination, such as transferring

growth factor receptors, enhancing cell viability, inducing

angiogenesis, evading immune detection, and generating drug

resistance (128). Exosomes released from tumor cells and stromal

cells effectively promote CSCs to remain stem and tumorigenic

(129): some tumor-derived exosomes are able to carry stem cell-

related genes, such as OCT-4, SOX-2, NOTCH1, and NANOG, or

promote their expression by mediating lncRNA/microRNA to

enhance the stem cellularity of CSCs and maintain tumor

heterogeneity (130).

TME-derived Evs
EVs released by various cells within the TME can influence the

phenotype of tumor cells, affecting their growth, aggressiveness,

metastatic potential, and responsiveness to therapy (131). For

instance, cells like TAMs and CAFs secrete exosomes that deliver

signaling molecules to MSCs, affecting their proliferation,

invasiveness, and immune evasion capabilities (132). Exosomes

derived from CAFs have been shown to alter cancer cell

metabolism, shifting it away from oxidative phosphorylation

towards glycolysis and glutamine-dependent reductive

carboxylation, which supports tumor growth under conditions of

nutrient stress (130, 133). In addition, the direct cytotoxic and

cytostatic effects of immune cell-derived EVs on melanoma have

been confirmed through both in vitro and in vivo studies (130). Zhu

et al. showed that NK cell-derived exosomes have a cytotoxic effect

on melanoma cells and delay tumor progression (134).
Neurons and nerve fibers

Neurons and nerve fibers are critical components of the TME,

playing significant roles in immunomodulation and the regulation
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of various signaling pathways in tumor cells and other cellular

elements within the TME (135). These neural elements are key

facilitators of pathways that drive tumor growth and metastasis

(136). The interactions between neurons, nerve fibers, and the TME

can be broadly categorized into two main types: (1)Perineural

Invasion (PNI), which describes the process where tumor cells

invade and grow along nerves. PNI is a common feature in many

solid tumors and is associated with a poor prognosis; and (2)

Neural-Tumor Interactions, which refer to the biochemical

communication among immune cells, malignant cells, and nerve

fibers within the TME (135, 137). Moreover, nerve fibers within the

TME can secrete a variety of growth factors, neurotrophins, matrix

metalloproteinases, neuropeptides, and neurotransmitters, which

activate membrane receptors on tumor cells and support tumor

progression (138). Recent studies have highlighted the role of the

sympathetic nervous system (SNS) in melanoma progression

through its action on b-adrenergic receptors (b-ARs) expressed

on tumor cells (135). Activation of these receptors triggers the

release of pro-tumorigenic cytokines and metalloproteinases in

melanoma cell lines, which further facilitates melanoma growth

and metastasis (139).
Endothelial cells

Endothelial cells (ECs) play a critical role not only in vascular

functions such as alloimmunity, immune cell recruitment, immune

tolerance, and vascular inflammation, but also in modulating

immune responses across various tissues and organs (140). In

malignant tumors, angiogenesis is primarily driven by multiple

pro-angiogenic factors, including growth factors, cytokines, and

ECM proteins, which act on vascular ECs (141). In melanoma,

increased ALDH1A1 expression and activity upregulates the release

of pro-angiogenic factors, and these factors modulate the

angiogenic profile of ECs by rearranging the Notch pathway

(142). Compared to non-tumor ECs, those within the tumor

environment exhibit enhanced proliferation, migration, and tube

formation in response to these stimuli. Furthermore, they show

increased resistance to therapy under the influence of VEGFA

signaling (101, 143). Additionally, ECs derived from CSCs have

been identified in various solid tumors, such as gliomas, renal

cancers, and breast cancers (81, 144, 145). CSCs can differentiate

not only from epithelial cells but also from ECs (145). This further

supports the hypothesis that the CSC population has stem cell

characteristics associated with tumor growth and vascularization.

Hypoxia
Hypoxia-induced CSC formation is a mechanism for tumor

therapy resistance and progression (146). Hypoxia-inducible factors

(HIFs) not only mediate the transcriptional response of normal and

tumor tissues to local hypoxia, but also promote tumor

development by altering cellular metabolism and stimulating

angiogenesis. HIF-1a, in particular, orchestrates responses to

hypoxia, including the upregulation of the melanocyte-specific
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Hypoxia-induced HIFs also promote EMT, a process crucial for

the acquisition of invasive properties in MSCs. HIFs directly induce

the expression of EMT-related transcription factors like TWIST,

SNAIL, and ZEB1, which facilitate the transition to a more

mesenchymal phenotype, increasing migratory and invasive

capabilities. Ghosh et al. showed that under hypoxic conditions,

TAMs and Tregs achieve self-renewal of CSCs in melanoma by

increasing the level of TGF-b expression, which then facilitates the

induction of glucosylceramide synthetase through the PKCa/P38/c-
Fos signaling pathway (148).
Therapeutic resistance

Drug resistance mechanisms:
The TME contributes to MSC-mediated drug resistance through

multiple mechanisms, including the secretion of survival-promoting

cytokines (149, 150), EVs released by melanoma cells (151), the

induction of autophagy (152), and the activation of pro-survival

signaling pathway (13, 153). For instance, growth factors like

epidermal growth factor (EGF) and fibroblast growth factor (FGF)

activate signaling pathways like the PI3K/AKT and MAPK pathways,

promoting CSCs proliferation (154). The hypoxic environment and

ECM components can also act as physical barriers, reducing drug

penetration toMSCs (155). In addition, CAFs create a resistance niche

by interacting closely with CSCs, secreting factors such as IL-6 and IL-

8 that promote CSC survival (156).

The intricate interactions between MSCs and various

components of the TME contribute to a dynamic environment

that fosters melanoma progression and resistance to therapy. These

relationships are key to maintaining the supportive niche that

allows the tumor to thrive despite treatment efforts. Therefore, a

deeper understanding of these complex mechanisms is essential for

developing targeted strategies to disrupt this tumor-supportive

environment and enhance therapeutic outcomes. A depiction of

the TME involving MSCs is provided in Figure 4, illustrating the

critical elements and interactions within this microenvironment.
Therapeutic strategies related
to MSCs

Advanced metastatic melanoma is a very challenging cancer

because it is resistant to conventional therapies. Conventional anti-

cancer therapies focus on eradicating vast populations of tumors

that have different properties than the CSC subpopulation. CSCs

exhibit remarkable resistance to apoptosis and DNA damage repair

mechanisms, enabling evasion of conventional tumor therapies

such as radiotherapy and chemotherapy, which are the root cause

of tumor recurrence and metastasis. Therefore, targeting MSCs is

expected to be a novel approach in the treatment of melanoma, as

shown in Figure 5, which highlights innovative therapeutic

strategies targeting MSCs.
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Targeting cellular markers of MSCs

Cellular markers of MSCs are closely linked to their tumorigenic

potential, making them a promising target for therapeutic

intervention. Targeting specific stemness markers on MSCs has

shown potential in suppressing melanoma progression. For

instance, monoclonal antibodies directed against ABCB5 have been

demonstrated to induce antibody-dependent cell-mediated

cytotoxicity (ADCC) in ABCB5-positive MSCs. Systemic

administration of these antibodies has resulted in significant

tumor-suppressive effects (157, 158). Similarly, monoclonal

antibodies targeting distinct epitopes of the CD133 protein have

exhibited cytotoxic effects on melanoma cells, effectively inhibiting

tumor growth (159). Suppression of CD133 expression was further

associated with reduced metastatic potential and decreased levels of

MMP2 and MMP9 (159, 160). CD44, another stemness marker, is

expressed across various CSC populations, including melanoma.

Shen et al. reported that lipid nanoparticles coated with hyaluronic

acid (HA)—a natural ligand for CD44—and loaded with paclitaxel

analogs (PTX-loaded HA-SLNs) induced significant apoptosis in

CD44-positive B16F10 melanoma cells, both in vitro and in vivo

(28, 161). As mentioned earlier, CD20 is a well-known cell surface

marker of MSCs. Schlaak et al. treated a patient with chemotherapy-

refractory metastatic melanoma with the anti-CD20 monoclonal

antibody rituximab in combination with low-dose dacarbazine,

which showed that the patient achieved complete remission of all
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black markers S-100 were reduced to normal levels, and that no

treatment-related toxicity was observed (29). Moreover, Morita and

colleagues developed a humanized anti-CD271 monoclonal antibody

(hCD271 mAb) that specifically targeted CD271-positive MSCs.

Their in vivo studies revealed that this antibody significantly

reduced melanoma growth in xenograft models by depleting the

CD271-positive cell subpopulation (162). These findings suggest that

targeting MSC-specific markers could provide a means to impair

tumor growth and reduce recurrence rates in patients.
Targeting aberrant signaling pathways
in MSCs

The maintenance of biological characteristics and self-renewal

of MSCs is closely related to multiple signaling pathways (60). Key

pathways such as Hh, Notch, and Wnt/b-catenin, which are

essential for the formation of melanocyte lineages, have been

shown to be strongly associated with the malignant behavior of

melanoma cells (163). Inhibition of the Hedgehog pathway,

particularly targeting the activator smoothened (SMO) using

small interfering RNA (siRNA) and the small molecule inhibitor

NVP-LDE-225, has been effective in curbing melanoma growth in

vitro. Additionally, NVP-LDE-225 not only induced apoptosis in

vitro but also inhibited tumor growth in xenograft models (164).
FIGURE 4

CSCs and microenvironment in melanoma. (By Figdraw).
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SMO inhibitors like Vismodegib and Sonidegib have been approved

for clinical use; however, their effectiveness has been limited by the

development of drug resistance and notable side effects (165).

Recent research by Pietrobono et al. led to the development of

novel SMO inhibitors based on acylguanidine or acylthiourea

scaffolds, which specifically target SMO in melanoma cells,

thereby reducing Gli1 expression, inducing DNA damage and

apoptosis, and inhibiting the self-renewal of MSCs (166). In the

presence of Hh pathway repression, gene expression data also

revealed compensatory upregulation of two other developmental

pathways, Notch and Wnt (164). The Notch signaling pathway has

also been explored as a therapeutic target. Chanh et al.

demonstrated that RO4929097, a gamma-secretase inhibitor,

reduced the oncogenicity and stem-like properties of melanoma

cells in vitro, suggesting that Notch inhibition could be a promising

strategy for targeting MSCs (67). Moreover, Notch inhibitors have
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shown potential as radiosensitizers, as their combination with

radiation reversed the radiation-resistant phenotype of melanoma

in vitro and reduced cell migration (167). Additionally, the FDA-

approved antipsychotic drug Pimozide has shown efficacy in

inhibiting the Wnt/b-catenin signaling pathway, displaying

specific cytotoxicity against cancer cells, including melanoma

(168). Previous studies have demonstrated that DAPT (a Notch

inhibitor), Cyclopamine (an Hh signaling inhibitor), and XAV939

(a Wnt signaling inhibitor) (169), which target CSCs, may represent

potentially effective strategies for treating patients with melanoma

(22). In addition, Demcizumab (anti-Notch ligand, DLL4

antibody), OMP-52M51 (anti-Notch1 antibody), and OMP-18R5

(anti-Wnt receptor, FZD monoclonal antibody) are expected to be

better therapeutic agents in the future against melanoma (21, 22).

While these approaches hold the potential for disrupting the

tumorigenic properties of MSCs, they are not without challenges.
FIGURE 5

The innovative therapeutic approaches targeting MSCs. (By Figdraw).
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The Hh, Notch, and Wnt pathways are integral to normal

melanocyte development and other physiological functions, which

increases the risk of toxicity when employing inhibitors against

these pathways. Therefore, the clinical development of these

targeted therapies will require a careful approach, emphasizing

precise drug delivery systems and guided administration to

minimize off-target effects and improve therapeutic selectivity.

Future research should focus on optimizing these delivery

strategies and validating their safety and efficacy in clinical

settings to ensure that the benefits outweigh potential risk.
Targeting the microenvironment of MSCs

The diverse biological characteristics of MSCs are closely

influenced by their surrounding microenvironment, which plays a

crucial role in maintaining their stem-like properties and

contributing to therapy resistance (170). Studies have shown that

modulating this microenvironment can significantly impact the

behavior of MSCs. For example, Kim et al. have demonstrated that

SDF-1/CXCR4 played an important role in the lymphatic metastatic

microenvironment of chemoresistant melanoma cells. Targeting

this axis could potentially inhibit the lymphatic metastasis of

CD133(+) chemoresistant melanoma cells, offering a promising

therapeutic approach (171). Moreover, research indicates that

TAMs can interact with CSCs, including MSCs, to promote

therapeutic resistance. Mitchem et al. showed that targeting TAM

could effectively overcome CSC-mediated therapeutic

resistance (172).

In addition to TAMs, other immune cells, such as Treg, are also

capable of promoting stemness and treatment resistance in tumor

stem cells and can serve as potential targets for the immune

microenvironment modulation of CSCs (86). Targeting the

hypoxic microenvironment has also shown promise in treating

MSCs, with both HIF-1a and HIF-2a emerging as valuable targets

(173). Kim et al. found that the HIF-1a inhibitor IDF-11774

inhibited the growth and metastasis of B16F10 melanoma by

downregulating HIF-1a expression (174).

Advances in CAR-T cell therapy have introduced new strategies

for targeting MSCs. CAR-T cells engineered to recognize CSC

surface markers have shown promising results (175). CAR-T cells

targeting TYRP1 demonstrated enhanced anti-tumor activity in

vitro and in vivo in both skin and rare melanoma subtypes, with

minimal toxicity observed in preclinical models, and Phase I clinical

trial is currently in preparation based on these promising

outcomes (176).

Recent studies have also indicated that CSC-based vaccines could

inhibit the metastasis of primary tumors by inducing humoral and

cellular immune responses that lead to the lysis of these targeted CSCs

(177). Yin et al. developed a novel Melanoma stem cells (MSCs)-based

vaccine that induces CD8+ T cells to specifically target MSCs. The

vaccine was found to promote the maturation of DCs, activate CD8+

T cells, inhibit the expression of CTLA-4, PD-1 and Tim-3, and

increase the expression of IFN-g and GzmB in CD8+T cells. The

specific targeted killing effect of the vaccine inhibited melanoma

growth and metastasis (178). DCs, as the most powerful antigen-
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various clinical trials to induce effective antitumor immune responses

(25). For example, a novel vaccine targeting CD133(+) CD44(+)

MSCs inmelanoma, expressing a 6kDa early secretory antigenic target

(ESAT-6) and secreting interleukin (IL)-21, significantly suppressed

melanoma growth and metastasis in mice, extending survival (179).

ICIs and monoclonal antibodies have reactivated cancer

immunotherapy (180, 181). However, while some patients showed

partial or even complete responses to immunotherapy, a substantial

number did not respond favorably (181). Researchers believed that

cancer vaccines may produce tumor-specific T cells, which may be

enhanced by ICIs that counteract immunosuppressive mechanisms

(182). To investigate this hypothesis, Zheng et al. explored this

strategy by combining a MSC-lysate pulsed dendritic cell (MSC-

DC) vaccine with PD-L1 and CTLA-4 inhibitors in a mouse model.

This dual immune blockade led to significantly greater tumor

regression compared to the vaccine alone, suggesting that this

combination could enhance immune-mediated anti-tumor

responses (182).
Conclusions and future directions

Melanoma is a kind of skin malignant tumor with high

aggressiveness, high metastasis, and poor prognosis. The limited

efficacy of conventional treatment modalities, coupled with the

emergence of drug resistance and recurrence post-intervention,

contributes significantly to the unfavorable therapeutic landscape,

thereby constituting a substantial contributor to melanoma-related

mortality. The main reason for treatment failure in melanoma

patients is the development of tumor heterogeneity, which is due

to the formation of genetically distinct subgroups. These

subpopulations encompass a minority faction comprising CSCs

and a prevailing majority constituting non-tumor stem cells, which

collectively compose the tumor mass.

Melanoma contains multiple subpopulations of tumor-

initiating cells(TICs), each with different cell surface markers, and

promotes melanoma metastasis and drug tolerance by activating a

range of signaling pathways. This intricate regulatory network plays

a pivotal role in melanoma initiation, progression, and therapeutic

resistance. While efforts targeting markers and signaling pathways

associated with MSCs have shown promise, challenges persist. The

surface markers of MSCs lack sufficient specificity, and the

relationship between marker expression, self-renewal capacity,

tumorigenic potential, and differentiation remains incompletely

understood. Furthermore, comprehensive investigations into the

interplay among various markers and signaling pathways are still

lacking. Given that these pathways are crucial for both MSCs and

normal stem cells, interventions in these signaling pathways may

interfere with the function of normal stem cells and cause potential

toxicity. High-throughput screening of CSCs offers an objective

approach to identify new therapeutic targets specifically for CSCs.

Moving forward, it will be essential to carefully distinguish between

normal stem cells, CSCs, and non-stem tumor cells to identify

specific markers unique to CSCs. This will provide a solid

experimental basis for developing targeted therapies. Additionally,
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strategies like targeted nanoparticles, which can deliver drugs

directly to tumor cells, and localized administration methods,

which restrict treatment to the tumor site, show great promise in

reducing off-target effects and enhancing therapeutic precision.

Combination therapy is a major trend in the clinical treatment of

tumors, and combining tumor stem cell-targeted therapies with

conventional therapies is considered to be a new direction to

improve the efficiency of tumor treatment, and provides new

opportunities for the treatment of melanoma patients who are

resistant to existing therapies and lead to recurrence and

metastasis. Moreover, MSCs are closely related to the TME. In

addition to adapting to changes in the TME, melanoma can also

alter and have an effect on the TME; while the TME can not only

affect the self-renewal ability of MSCs, but also induce the

transformation of normal cells and non-cancer stem cells to CSCs.

Consequently, only by comprehensively considering the

characteristics of all cell subpopulations in tumor tissues and fully

grasping the interaction mechanisms of different cell

subpopulations in tumors can a more effective and precise tumor

immunotherapy protocol be established.

In addition, the current research on MSCs therapy has mostly

focused on functional experiments in vitro, while relatively few

studies were related to their use in humans, and more clinical

studies are needed to further support and justify them.
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